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Abstract
In this paper, a dynamic compartmental model is constructed for the transmission of
HIV/AIDS receiving drug treatment and knowledge from effective awareness
programs through media. Using stability theory of differential equations the model is
analyzed qualitatively. The equilibrium points in the local and global stability proof are
found to be stable under certain conditions. Further, we use Pontryagin’s Minimum
Principle in the time-dependent constant control case to derive necessary conditions
for the optimal control of the disease. Sensitivity analysis is also performed to check
the robustness of the model with respect to small changes in parametric values of the
system. In order to predict the long term dynamics of the disease, projections are
made. These studies reveal that HIV incidence could be substantially reduced by
improving the test-and-treat strategy and implication of media awareness.
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1 Introduction
According to the report from the US Centers for Disease Control and Prevention, acquired
immune deficiency syndrome (AIDS) was first identified as a distinct infectious disease
in the year 1981. Since then, more than 70 million people have been infected and about
35 million people have already died of this disease. World Health Organization (WHO)
reported that globally, there were 36.9 million people who were living with HIV at the end
of 2017 and 940,000 people died of HIV-related illnesses worldwide in the same year. Can
you imagine what would happen if this number of deaths still happen for next few years?

Nevertheless, there is no room for complacency. Countries need to live up their com-
mitment, adopted by the United Nations General Assembly in September 2015, to end
the AIDS epidemic as a public health threat by 2030. The immediate challenge is to reach
the Fast-Track targets for 2020, and a rational step should be immediately taken to make
people aware about the disease, and its preventive measures, through the media, as HIV-
related deaths are still unacceptably high.
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Recent studies suggested that education and media have a great visitation in preventing
the spread of HIV/AIDS among married couples in Bangladesh [1, 2]. Broadcast media,
being the primary source of information, can not only increases the governmental health
care involvement to control the spread of HIV but also makes people acquainted with the
disease. Del Valle et al. (2004) studied the effects of education, temporary vaccination, and
treatment on HIV transmission in a homosexually active population [3]. It was suggested
by them that along with proper vaccination and treatment, awareness programs could be
one of the effective solutions in reduction of such diseases. Gumel et al. (2004) worked
on determining the optimal vaccine coverage and efficacy levels needed for community-
wide eradication of HIV [4]. Baryarama et al. (2005) worked on a mathematical model and
explained that there is a tendency for the epidemic to stabilize at higher numbers of infec-
tives and AIDS cases than the minimum numbers attained during the first decline of the
epidemic [5]. Hove-Musekwa et al. (2009) worked to determine the effects of carriers and
randomly screened carriers, who are aware of their status, on the transmission of HIV [6].
Tripathi et al. (2007) also proposed a model presented without interventions, which con-
siders infection leading to asymptomatic HIV infectives who are later screened and finally
develop AIDS [7]. A similar approach was undertaken earlier by Hyman et al. (2003) with
differential infectivity and staged progression models [8]. In our recent works, we have
shown that the incidences can be controlled if people take obligatory precautions to make
themselves protected [9, 10]. They can minimize the risk if they become well-informed
and aware about the prevalence. Other research articles are also studied to improve this
modeling process [11–14].

These studies have motivated us to formulate a mathematical model that incorporates
both of these events: test-and-treat program and media awareness. In the modeling pro-
cess, we assume that the growth rate of the cumulative density of awareness programs
driven by the media is proportional to the number of untreated infectives present in the
population. The whole population is divided into five separate classes; high-risk unaware
susceptible class, class of non-diagnosed HIV infected individuals, diagnosed class of HIV-
positive individuals who have not yet progressed to AIDS, class of those individuals with
clinical AIDS, and aware susceptible class. We also discuss the equilibrium points and
their stability. Finally, we solve the model numerically and then discuss the results from
the biological aspect.

2 The model
We formulate a mathematical model which considers voluntary counseling and testing
followed by immediate initiation of drug therapy, where HIV-positive individuals were
identified and immediately received anti-retroviral treatment. Following this assumption,
we consider a region with total population N(t) at any instant of time t. The whole popula-
tion is subdivided into five classes, that are: unaware susceptibles, S(t); aware susceptibles,
S+(t); unaware and untreated infected individuals, I(t); diagnosed and treated infected in-
dividuals who have not yet developed to AIDS, ID(t); and diagnosed infected individu-
als with clinical AIDS, IDA(t). Therefore, N = S + S+ + I + ID + IDA. As mentioned earlier,
the number of awareness campaigns is considered explicitly and is represented by M(t)
at time t. The growth rate of awareness campaigns is assumed to be proportional to the
number of diagnosed infected people, with and without AIDS developed, present in the
population. Moreover, the diminution of awareness campaigns due to societal and psycho-
logical barriers is also incorporated in the model. Further, it is also assumed that people
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with possession of awareness may lose it with the passage of time, due to memory fad-
ing or other reasons. On the basis of the assumptions above, the dynamics of model are
governed by the following system of nonlinear ordinary differential equations:

dS
dt

= Π – β(I + λ1ID + λ2IDA)S – dS – cSM + ωS+,

dI
dt

= β(I + λ1ID + λ2IDA)S – (δ + d + dI)I,

dID

dt
= ρδI –

(
ξ ′ + d + αI

)
ID,

dIDA

dt
= (1 – ρ)δI + ξ ′ID – (d + αA)IDA,

dS+

dt
= cSM – (d + ω)S+,

dM
dt

= μ(ID + IDA) – μ0M,

(1)

with initial values S(0) = S0, I(0) = I0, ID(0) = ID0 , IDA(0) = IDA0 , S+(0) = S+0 and M(0) = M0

at t = 0, and ξ ′ = ξ (1 – η), where η is effectiveness of the drug input and ξ represents the
rate of progression from HIV diagnosis to the AIDS class.

Here, the constant recruitment rate in the susceptible population is Π either by birth or
immigration. There is a constant natural death rate d. β is the product of the effective con-
tact rate between susceptible and infected individuals to result in HIV infection and the
transmission probability of HIV per contact. λ1, λ2 are the modification factors account-
ing for varying levels of the activity and infectiousness of the diagnosed HIV-positive in-
dividuals and the AIDS patients, respectively. The dissemination rate of awareness among
susceptible, at which they form the aware class, is represented by c. The transfer rate from
aware susceptible to unaware susceptible class is denoted as ω. δ is the diagnosis rate and
dI is the natural death rate of infected individuals. ρ is the proportion of diagnosed indi-
viduals who have not yet developed to AIDS (0 ≤ ρ ≤ 1). Here, αI and αD are additional
death rates for the diagnosed HIV-positive individuals and for those who are AIDS in-
fected, respectively. The parameter μ is the proportionality constant which governs the
implementation of awareness programs and μ0 denotes the depletion rate of these pro-
grams due to ineffectiveness, public interests, social problems, etc.

Throughout this paper, to shorten the notation, we use the following notations: μ1 =
δ + d + dI , μ2 = ξ ′ + d + αI , μ3 = d + αA, μ4 = d + ω.

2.1 Model properties:
System (1) will be analyzed in a domain D ⊂ R

6
+, where all feasible solutions enter the

region

D =
{

(S, I, ID, IDA, S+, M) ∈R
6
+ : 0 ≤ N ≤ Π

d
, 0 ≤ M ≤ μΠ

μ0d

}
. (2)

Theorem 2.1 The solutions of system (1) with initial conditions satisfy S(t) > 0, I(t) > 0,
ID(t) > 0, IDA(t) > 0, S+(t) > 0, M(t) > 0 for all t > 0. The regionD ∈R

6
+ is positively invariant

and attracting with respect to system (1).
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Proof From the first equation of (1) we have

Ṡ ≥ –
[
β(I + λ1ID + λ2IDA) + d + cM

]
S,

giving

S(t) ≥ S(0) exp

[
–

∫ t

0

{
β(I + λ1ID + λ2IDA) + d + cM

}
ds

]
> 0.

In a similar fashion we can show that I(t), ID(t), IDA(t), and S+(t) are all strictly positive.
Thus we can conclude that all solutions of system (1) remain positive for all t > 0. Now,
we will show that all feasible solutions are uniformly bounded in D. Using the fact that
N = S + I + ID + IDA + S+, we get

Ṅ = Π – dN – dII – αI ID – αAIDA ≤ Π – dN .

Solving this differential equation, we have

0 ≤ N(t) ≤ Π

d
+ N(0)e–dt ,

where N(0) represents the initial value of the total population at time t = 0. Thus, 0 ≤
N(t) ≤ Π

d hold, as t → ∞. Therefore, it is clear from the above that Π/d is an upper bound
of N , provided N(0) ≤ Π/d. If N(0) > Π

d , then N will decrease to this level. Hence, all
feasible solutions of the system attracted or remain in the region D. Further, the usual
existence, uniqueness, and continuation results hold for the system in this region. �

3 Analysis of equilibria
In this section, we focus on the existence and stability of equilibria for system (1). The
equilibrium points are obtained by equating the right-hand side of each equation in (1) to
zero and it is found that system (1) has two non-negative equilibria.

Let (S∗, I∗, I∗
D, I∗

DA, S∗
+, M∗) denote an equilibrium point. Clearly, from the third equation

we have I∗
D = ρδ

μ2
I∗, then from the fourth equation I∗

DA = δ
μ2μ3

[ρξ ′ + (1 – ρ)μ2]I∗. Next,
from the second equation we obtain two possibilities: either I∗ = 0 or βS∗[1 + λ1

ρδ

μ2
+

λ2
δ

μ2μ3
(ρξ ′ + (1 – ρ)μ2)] = μ1. In the first case we subsequently obtain M∗ = 0 from

the sixth equation, S∗
+ = 0 from the fifth equation, and S∗ = Π

d =: S0 from the first one,
which gives us disease-free equilibrium (DFE). In the latter case we easily see that S∗ =

μ1
β[1+λ1

ρδ
μ2

+λ2
δ

μ2μ3
(ρξ ′+(1–ρ)μ2)]

> 0 and all other coordinates of this equilibrium point are de-

pendent on the value of I∗, namely S∗
+ = c

μ4
S∗M∗ and M∗ = μδ

μ0μ2μ3
[ρ(μ3 +ξ ′) + (1 –ρ)μ2]I∗,

which allows to calculate I∗ from the first equation. We obtain

Π – μ1I∗ – dS∗ – d
c

μ4
S∗ μδ

μ0μ2μ3

[
ρ
(
μ3 + ξ ′) + (1 – ρ)μ2

]
I∗ = 0,


⇒ I∗ =
Π – dS∗

μ1 + cdS∗μδ

μ0μ2μ3μ4
[ρ(μ3 + ξ ′) + (1 – ρ)μ2]

.

It is obvious that I∗ > 0 implies positivity of all other coordinates, and therefore S∗ < S0 is
the condition guaranteeing the existence of positive (endemic) equilibrium (EE).
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3.1 Disease-free equilibrium (DFE) and basic reproduction number R0

The model has always a disease-free equilibrium E0 = (S0, 0, 0, 0, 0, 0) = ( Π
d , 0, 0, 0, 0, 0). Lo-

cal stability of E0 is governed by basic reproduction number R0; cf. [15]. Biologically
speaking, R0 is an average number of new secondary infections generated by a single
HIV infected individual, introduced into a susceptible population. The basic reproduc-
tion number R0 could be determined using the next generation approach [15]. Using this
approach we need to renumber the model variables in such a way that compartments re-
flecting infected individuals are at the beginning, so we have x = (I, ID, IDA, S, S+, M)T , with
the number of infected compartments equal to 3. Now, by XS we denote the set of all
disease-free states, XS = {x ≥ 0 : xi = 0 for i = 1, 2, 3}. System (1) shall be written in the
form

ẋi = fi(x) = Fi(x) – Vi(x), i = 1, 2, . . . , 6,

where Fi describes a rate of appearance of new infections in compartment i, while Vi =
V–

i – V+
i and V+

i is a rate of transfer into the compartment i, V–
i is a rate of transfer out of

the compartment i. The following assumptions are to be posed:
• (A1) Fi(x) ≥ 0, V+

i (x) ≥ 0, V–
i (x) ≥ 0 for any x ≥ 0;

• (A2) if xi = 0, then V–
i = 0;

• (A3) Fi = 0 for i > 3;
• (A4) if x ∈XS , then Fi(x) = 0 and V+

i (x) = 0 for i = 1, 2, 3;
• (A5) if x0 is DFE, then eigenvalues of the Jacobi matrix Df (x0) restricted to the

subspace F = 0 have all eigenvalues with negative real parts.
According to Lemma 1 in [15]

F (x0) =

(
F 0
0 0

)

, V(x0) =

(
V 0
J3 J4

)

,

where F and V are squared matrices of dimension m and R0 = �(FV –1) (� denotes a spec-
tral radius). Eventually, according to Theorem 2 in [15], we know that x0 is locally asymp-
totically stable for R0 < 1 and unstable for reverse inequality.

In the case of system (1),

F =

⎛

⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎝

β(I + λ1ID + λ2IDA)S
0
0
0
0
0

⎞

⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎠

and

V+ =

⎛

⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎝

0
ρδI

(1 – ρ)δI + ξ ′ID

Π + ωS+

cSM
μ(ID + IDA)

⎞

⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎠

, V– =

⎛

⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎝

μ1I
μ2ID

μ3IDA

β(I + λ1ID + λ2IDA)S + dS + cSM
μ4S+

μ0M

⎞

⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎠

.
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It is obvious that F , V+, V– satisfy Assumptions (A1)–(A4). Moreover,

Df (x)|F=0 =

⎛

⎜
⎜⎜
⎜⎜
⎜⎜⎜
⎝

–μ1 0 0 0 0 0
ρδ –μ2 0 0 0 0

(1 – ρ)δ ξ ′ –μ3 0 0 0
0 0 0 –d – cM ω –cS
0 0 0 cM –μ4 cS
0 μ μ 0 0 –μ0

⎞

⎟
⎟⎟
⎟⎟
⎟⎟⎟
⎠

,

and all eigenvalues z of Df (E0)|F=0 are real negative. Namely, z1 = –μ1, z2 = –μ2, z3 = –μ3,
z4 = –d, z5 = –μ4, z6 = –μ0. Therefore, all assumptions posed in [15] are satisfied and E0

is locally stable if R0 < 1.
Let us calculate R0. The matrices F and V for new infection terms and remaining trans-

fer terms are respectively given by

F =

⎛

⎜
⎝

βΠ

d λ1
βΠ

d λ2
βΠ

d
0 0 0
0 0 0

⎞

⎟
⎠ and V =

⎛

⎜
⎝

μ1 0 0
–ρδ μ2 0

–(1 – ρ)δ –ξ ′ μ3

⎞

⎟
⎠ .

The basic reproduction number R0 is thus given by R0 = �(FV –1) = βΠ

dμ1
(1 + λ1

ρδ

μ2
+

λ2
δ[ρξ ′+(1–ρ)μ2]

μ2μ3
).

Corollary 3.1 If βΠ

dμ1
(1 + λ1

ρδ

μ2
+ λ2

δ[ρξ ′+(1–ρ)μ2]
μ2μ3

) < 1, then the disease-free equilibrium E0 is
locally asymptotically stable.

Notice that, the inequality R0 < 1 is equivalent to S∗ > S0 which means that the positive
equilibrium EE does not exist. On the other hand, if EE exists, then DFE is unstable.

3.2 Endemic equilibrium (EE) and its stability
System (1) has an endemic equilibrium E∗ = (S∗, I∗, I∗

D, I∗
DA, S∗

+, M∗) with positive coordi-
nates provided that R0 > 1. From the analysis presented at the beginning of this section
we have

S∗ =
Π

dR0
,

I∗ =
Π (R0 – 1)μ0μ2μ3μ4

μ0μ1μ2μ3μ4R0 + Πcμδ[ρ(μ3 + ξ ′) + (1 – ρ)μ2]
,

I∗
D =

ρδ

μ2
I∗,

I∗
DA =

δ

μ2μ3

[
ρξ ′ + (1 – ρ)μ2

]
I∗,

S∗
+ =

Πcμ
dR0μ0μ1μ4

[
ρδ +

δ[ξ ′ + (1 – ρ)(d + αI)]
μ3

]
I∗,

M∗ =
μ

μ0μ1

[
ρδ +

δ[ξ ′ + (1 – ρ)(d + αI)]
μ3

]
I∗.
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Remark Observe from the expression of I∗ that when R0 > 1, the endemic equilibrium
exists. We thus have the existence condition of the endemic equilibria. It is also important
to note that ∂I∗

∂c and ∂I∗
∂δ

are negative. This means, as long as infected individuals become
aware and go under treatment, the equilibrium level of unaware and untreated infectives
starts to decrease. This shows that the dissemination rate and the treatment rate really
have significant input in HIV control.

In order to attain full characterization of the endemic equilibrium E∗, we study the
asymptotic stability behavior using Lyapunov’s stability theory. If this function has only
a single minimum, i.e., an equilibrium point, and it is strictly decreasing along all non-
equilibrium solutions, then all solutions tend to the equilibrium point where the scalar
function (Lyapunov function) is minimum. The results obtained by performing local and
global stability analysis of the obtained equilibria are stated in the following theorems.

Theorem 3.2 The endemic equilibrium E∗ is locally asymptotically stable (LAS) in D,
provided the inequalities hold:

ψ3ξ
′2 <

4
25

ψ2μ2μ3, (3)

ψ5μ
2 <

1
5
ψ2μ0μ2, (4)

ψ5μ
2 <

1
5
ψ3μ0μ3, (5)

ψ4c2S∗2 <
1
3
ψ5μ0μ4, (6)

where ψi (i = 2, 3, 4, 5) are chosen so that conditions (35), (36), (37), and (38) are satisfied.

In the next theorem, we show that the endemic equilibrium point E∗(S∗, I∗, I∗
D, I∗

DA,
S∗

+, M∗) is globally asymptotically stable.

Theorem 3.3 The endemic equilibrium E∗ is globally asymptotically stable (GAS) in D,
provided the following inequalities hold:

1 (d + μ3)2 <
2
3

d2μ4

cM∗ ;

2 max

{
1

11

[(
(2d + αI)2

d
+

cα2
I M∗

dμ4

)
cα2

AM∗

μ4
+

(
(αI + αA)2 +

(dI + αA)2ξ ′2

(1 – ρ)2δ2

)]
W ,

1
8

λ2
1(2d + dI)2Π2

d2(I∗ + λ1I∗
D + λ2I∗

DA)2

[
αA +

(dI + αA)μ3

(1 – ρ)δ

]
,

1
8

λ2
2(2d + dI)2Π2

d2(I∗ + λ1I∗
D + λ2I∗

DA)2

[
αI

+
(dI + αI)μ2

ρδ

]
,

1
12

[
αI +

(dI + αI)μ2

ρδ

][
αA +

(dI + αA)μ3

(1 – ρ)δ

]}

<
1

36

[
αI +

(dI + αI)μ2

ρδ

][
αA +

(dI + αA)μ3

(1 – ρ)δ

]
W ;

3
dcΠ2

μ0d2μ4M∗ <
1

27
min

{
μ0

μ2

[
αI +

(dI + αI)μ2

ρδ

]
,
μ0

μ2

[
αA +

(dI + αA)μ3

(1 – ρ)δ

]}
,

where W = [dIβ(I∗ + λ1I∗
D + λ2I∗

DA) + (2d + dI)(μ1 – Πβ

d )].
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For the proof of Theorems 3.2 and 3.3 see Appendices 1 and 2, respectively.

4 Optimal control strategy
In this section, we formulate an optimal control problem using Pontryagin minimum prin-
ciple [16] in order to obtain an optimal strategy for our epidemiological system (1). Gener-
ally we solve these types of problems by finding the time-dependent profiles of the control
variable to optimize a particular performance. It is apparent from our previous discussion
that to control the spread of HIV/AIDS, it is obligatory to propagate awareness amongst
individuals. In this section, we consider a control problem together with the mathematical
model described by equation (1) with the objective function given by

J
[
u1(t), u2(t)

]
=

∫ tf

t0

[
Pu2

1(t) + Qu2
2(t) – S2

+(t)
]

dt, (7)

where u1(t) and u2(t) are the control variables representing efficacy of drug-dosing and
implementation rate of awareness campaigns, respectively. The parameters P and Q are
weight constants for control inputs. The first term in (7) represents systemic cost of the
drug treatments and second term represents cost associated with the implementation of
awareness campaign. The objective function (7) expresses our goal to minimize costs for
both drug-dosing and successful media campaigns, while maximizing aware susceptible
individuals. Therefore, we seek an optimal control pair (u1, u2) such that

J
(
u∗

1, u∗
2
)

= min
{

J(u1, u2) : (u1, u2) ∈ U
}

, (8)

subject to the system of ODEs

dS
dt

= Π – β(I + λ1ID + λ2IDA)S – dS – cSM + ωS+,

dI
dt

= β(I + λ1ID + λ2IDA)S – μ1I,

dID

dt
= ρδI – ξ

[
1 – ηu1(t)

]
ID – (d + αI)ID,

dIDA

dt
= (1 – ρ)δI + ξ

{
1 – ηu1(t)

}
ID – μ3IDA,

dS+

dt
= cSM – μ4S+,

dM
dt

= u2(t)(ID + IDA) – μ0M,

(9)

where U = {(u1, u2) : ui measurable, 0 ≤ ui(t) ≤ 1, t ∈ [t0, tf ], for i = 1, 2}.

4.1 The optimality system
We begin this section by noting that the existence of an optimal control pair that can be
obtained using a result from Fleming et al. (2012) [17]. It is rather straightforward to show
that the right-hand sides of system (1) are bounded by a linear function of the state and
control variables, and the integrand of the objective function (7) is concave on U and is
bounded below. These bounds give one the compactness needed to establish the existence
of optimal controls using standard arguments (see [17]).
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The Pontryagin minimum principle [16] converts the problem of minimizing the cost
functional (8) subject to state variables into minimizing the Hamiltonian [18, 19] with
respect to the controls at each time t. From Hamiltonian H we have

H(S, I, ID, IDA, M, S+, u1, u2, ξ1, ξ2, ξ3, ξ4, ξ5, ξ6)

= Pu2
1(t) + Qu2

2(t) – S2
+

+ ξ1
{
Π – β(I + λ1ID + λ2IDA)S – dS – cSM + ωS+

}

+ ξ2
{
β(I + λ1ID + λ2IDA)S – μ1I

}

+ ξ3
{
ρδI – ξ

[
1 – ηu1(t)

]
ID – (d + αI)ID

}

+ ξ4
{

(1 – ρ)δI + ξ
[
1 – ηu1(t)

]
ID – μ3IDA

}

+ ξ5{cSM – μ4S+} + ξ6
{

u2(t)(ID + IDA) – μ0M
}

,

where ξi (i = 1, 2, . . . , 6) are the adjoint variables.
Given an optimal control and corresponding states, there exists adjoint variable ξi sat-

isfying the following equations:

dξ1

dt
= –

∂H
∂S

= ξ1
[
β(I + λ1ID + λ2IDA) + d – cM

]
– ξ2β(I + λ1ID + λ2IDA) – ξ5cM,

dξ2

dt
= –

∂H
∂I

= (ξ1 – ξ2)βS + μ1 – ξ3ρδ – ξ4(1 – ρ)δ,

dξ3

dt
= –

∂H
∂ID

= λ1β(ξ1 – ξ2)S + ξ3
(
ξ
[
1 – ηu1(t)

]
+ d + αI

)
– ξ4ξ

[
1 – ηu1(t)

]
– ξ6u2(t),

dξ4

dt
= –

∂H
∂IDA

= λ2β(ξ1 – ξ2)S + ξ4μ3 – ξ6u2(t),

dξ5

dt
= –

∂H
∂S+

= 2S+ – ξ1ω + ξ5μ4,

dξ6

dt
= –

∂H
∂M

= ξ1cS – ξ5cS + ξ6μ0,

(10)

with transversality conditions ξi(tf ) = 0 for i = 1, 2, . . . , 6.
The Hamiltonian is minimized with respect to u1 and u2 at the optimal value (u∗

1, u∗
2),

so the derivative of the H with respect to u1 and u2 at (u∗
1, u∗

2) must be zero. Now, using
the fact that

H = Pu2
1(t) + Qu2

2(t) + ξ3ξηu1(t)ID – ξ4ξηu1(t)ID + ξ6u2I

+ other terms without u1 and u2, (11)

and differentiating the expression for H with respect to u1 and u2 give

∂H
∂u∗

1
= 2Pu∗

1(t) + ξη(ξ3 – ξ4)ID = 0, (12)

∂H
∂u∗

2
= 2Qu∗

2(t) + ξ6(ID + IDA) = 0. (13)
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According to Pontryagin’s Minimum Principle, the unrestricted optimal control u∗
1 and u∗

2

satisfies ∂H
∂u = 0 at (u∗

1, u∗
2). So we have

u∗
1(t) =

ξη(ξ4 – ξ3)ID

2P
, (14)

u∗
2(t) = –

ξ6(ID + IDA)
2Q

. (15)

Since the standard control is bounded, we conclude for the control u1 that

u∗
1(t) =

⎧
⎪⎪⎨

⎪⎪⎩

0, if ξη(ξ4–ξ3)ID
2P ≤ 0;

ξη(ξ4–ξ3)ID
2P , if 0 < ξη(ξ4–ξ3)ID

2P < 1;

1, if ξη(ξ4–ξ3)ID
2P ≥ 1.

(16)

Hence the compact form of u∗
1 is

u∗
1 = max

[
min

[
1,

ξη(ξ4 – ξ3)ID

2P

]
, 0

]
. (17)

In a similar manner we can get the compact form of u∗
2

u∗
2 = max

[
min

[
1, –

ξ6(ID + IDA)
2Q

]
, 0

]
. (18)

Therefore, we have the following theorem.

Theorem 4.1 If the objective cost function J(u1, u2) over U attains its minimum for the op-
timal control u∗ = (u∗

1, u∗
2) corresponding to the endemic equilibrium (S∗, I∗, I∗

D, I∗
DA, S∗

+, M∗),
then there exist adjoint functions ξ1, ξ2, ξ3, ξ4, ξ5, ξ6 satisfying equations (10) along with
the transversality condition ξi(tf ) = 0 (i = 1, 2, . . . , 6).

5 Numerical simulation
To study the dynamical behavior of our model (1), we perform numerical computations
with initial values S(0) = 200, I(0) = 15, ID(0) = 10, IDA = 5, S+(0) = 50, and M(0) = 5. The
set of parameter values is given in Table 1. These values are cumulated from different
journals and the rest are hypothetical parameters relevant to HIV/AIDS. Numerical sim-
ulations are done using MATLAB (version 7.6.0).

Initially, to confirm the feasibility of our analysis regarding existence and its stability
conditions for system (1), we have carried out some numerical simulations by selecting the
following parametric set as described in Table 1. For the set of parameter values given in
Table 1, it may be checked that the condition of existence of an endemic equilibrium E∗ and
the stability conditions are satisfied. The eigenvalues of the Jacobian matrix corresponding
to the equilibrium E∗ of the model system (1) are obtained as –0.8689, –0.7432, –0.3938±
0.1232i, and –0.07094 ± 0.0383i. We note that all eigenvalues of the Jacobian matrix are
either negative or have negative real parts. Hence, the endemic equilibrium E∗ is locally
asymptotically stable for the above set of parameter values.

From our analytical results, it is observed that when β = 0.002, R0 becomes 0.85 < 1
and when β = 0.005, R0 = 2.125 > 1. We have plotted the observed population trajectories
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Table 1 List of parameters used for system (1)

Parameter Definition Value/year References

Π Constant recruitment rate in the susceptible population 15 [6]
β Contact rate between susceptible and infected individuals 0.002–0.2 [6]
λ1 Modification factor 0.01 Estimated
λ2 Modification factor 0.01–0.8 Estimated
μ The proportionality constant which governs the implementation

of awareness programs
0.025 [9]

d Natural death rate of susceptible 0.01–0.025 [6, 9]
dI Natural death rate of infected individuals 0.005–0.01 [9]
c Transfer rate of susceptible from unaware to aware class 0.00002–0.02 [9]
ω Transfer rate from aware susceptible to unaware susceptible class 0.4 [6, 9]
ρ The proportion of diagnosed individuals who have not yet

developed to AIDS
0.75 Estimated

δ Diagnosis rate 0.304 [9]
αI Additional death rates for the diagnosed HIV-positive individuals 0.0172 [6]
αA Additional death rates for those who are AIDS infected 0.0138 [6]
μ0 Depletion rate of ineffective media programs 0.06 [9]
ξ Rate of progression from HIV diagnosis to the AIDS class 0.4 Estimated
η Effectiveness of the drug input 0.6 Estimated
u1, u2 Control variables 0.0–1.0 Estimated

Figure 1 Trajectories showing the time-dependent changes in concentration of the model variables when
R0 < 1

in the graphs depicting their respective individual trends for β = 0.002 and β = 0.005 in
Figs. 1 and 2, respectively. These figures clearly illustrate the change in equilibrium level
from disease-free state to endemic state. Hence, it is clear that the state of the system
depends on the disease progression rate and for high transmission rate, the system attains
its endemic state. In Figs. 3 and 4 respectively, we show the nonlinear stability behaviors
of (S∗, I∗) and (I∗

D, I∗
DA) in S – I and ID – IDA spaces. These two figures convey that both the

trajectories are initiating inside the region of attraction approach towards the equilibrium
values (S∗, I∗) and (I∗

D, I∗
DA), respectively.

The variations of human population and awareness programs with respect to time t for
different values of u1 and u2 are shown in Fig. 5. For this we took initial values S(0) =
35,000, I(0) = 20,000, ID(0) = 500, IDA = 200, S+(0) = 500, M(0) = 25, constant recruitment
rate as Π = 10,000/year and other parameters are fixed as in Table 1. It can be concluded
from this figure that with proper inputs in control parameters u1 and u2, it yields more
trustworthy results in increasing the awareness within susceptible populations (S(t) and
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Figure 2 Trajectories showing the time-dependent changes in concentration of the model variables when
R0 > 1

Figure 3 Nonlinear stability of (S∗ , I∗) in S–I plane

Figure 4 Nonlinear stability of (I∗D , I
∗
DA) in ID–IDA plane

S+(t)) and decreasing infection incidences among the infected populations (I(t), ID(t), and
IDA(t)). Here, red trajectories indicate the graphs for control inputs (u1, u2) = (0.0, 0.2),
whereas black and blue trajectories indicate the graphs for (u1, u2) = (0.5, 0.4) and (u1, u2) =
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Figure 5 Population graphs are plotted here for different values of (u1,u2). Red trajectories are drawn for the
pair of control input values (u1,u2 = (0.0, 0.2)), whereas black and blue trajectories indicate the graphs for
(u1,u2) = (0.5, 0.4) and (u1,u2) = (0.5, 0.6), respectively

(0.5, 0.6), respectively. Noteworthily, when u2 has greater value than u1 (blue lines), the
graph reflects more significant results rather than the case when u1 > u2 (black lines).
This indicates that people need to be more vigilant and aware about their personal health
behavior, instead of being reluctant during therapeutic regime or engaging in sexual acts.

Lastly, we use sensitivity analysis method to investigate the impact of various interven-
tion measures on HIV transmission. We hope that these results obtained here could im-
prove the knowledge of the effect of different interventions. Here we derive sensitivity
index by using partial rank correlation coefficients (PRCC) of the basic reproductive ra-
tio with respect to the parameters. The normalized forward sensitivity index of R0 with
respect to a parameter ‘a’ is defined as follows Abiodun et al. (2013) [20]:

ΠR0
a =

∂R0

∂a
× a

R0
. (19)

It follows from Fig. 6 that the basic reproductive ratio R0 for system (1) is most neg-
atively correlated with δ and ξ ′, which implies that increasing the values of factors can
lead to a decrease in disease prevalence. Thus, disease prevalence is sensitive to diagnosis
rate and drug efficacy. Increasing the drug efficacy and diagnosis rate can greatly reduce
new cases and prevalence. We also considered how the values of δ and ξ ′ jointly influence
the reproduction number R0. Figure 7 shows a three-dimensional contour plot of δ, ξ ′,
and R0. We simultaneously plot the R0 = 1 plane and show the intersections of the two
planes. The points where these two planes intersect are the threshold values of diagno-
sis rate δ and drug efficacy ξ ′ at necessary for the control of the epidemic. The contour
shows that δ does not play a significant role in mitigating the disease when compared to
ξ ′. This can be interpreted in the context of the epidemic to mean that regular treatment
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Figure 6 Tornado plots of sensitivity ofR0 for each of the parameters

Figure 7 A three-dimensional plot

and drug effectiveness are highly prevailing to make a meaningful impact on the current
HIV epidemic.

6 Conclusion
In this paper, we have established an epidemic model to investigate the likely impact of
awareness campaigning driven by media along with screening and treatment on the dy-
namics of HIV/AIDS. This model looks at the recently launched HIV counseling and test-
ing (HCT) campaign followed by awareness campaigning, to model its feasible impact on
the dynamics of the disease. HIV awareness and prevalence of the disease are inversely cor-
related with each other and depend upon human behavior. The model analysis shows how
the inclusion of awareness modifies the contact structure and thereby affects the disease
states. The model exhibits two equilibria, namely disease-free equilibrium and endemic
equilibrium. We have studied the existence and stability of the disease-free and endemic
equilibria. We obtain the basic reproduction number (R0) which determines the persis-
tence of the disease. For R0 below the unity, disease cannot persist in the system, whereas
for R0 above the unity, disease coexists in the system. We have also observed that the basic
reproduction number R0 contains terms like δ, ξ ′ etc., but does not contain any aware-
ness related terms. However, HCT itself has very little impact on reducing the prevalence
of HIV unless the efficacy of the campaigns exceeds an evaluated threshold. We prove
the local and global asymptotic stability of the disease-free equilibrium. Also, for R0 > 1,
the global stability of the endemic equilibrium is also derived by constructing a Lyapunov
function.
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Developing an optimal strategy that minimizes the total number of infected individuals
and the costs associated, drug-dosing and the implementation of awareness campaigns,
we have extended our proposed model, where we consider that drug-dosing and imple-
mentation of awareness campaigns are not constants but vary with time. The obtained op-
timality system (8) subject to (9) measures a cost effective way of controlling the disease by
expanding the number of effective awareness campaigning. Also, drug-dosing through an-
tiviral therapy is equally important, which decelerates the AIDS progression significantly
due to reduction in viral load. However, we should keep in mind that we should always
run awareness campaigning in a cabalistic way so that people always keep receiving the
latest information about the disease. Since it is observed that if the awareness of the lo-
cal prevalence of a disease is not addressed by the media or local health authorities, it
is more likely to be raised by the acts of informal information spread. If the information
about infectious disease is disseminated in the population, people regulate their behavior
according to their awareness level.

Appendix 1: Proof of Theorem 3.2
We consider the following positive definite function:

L =
1
2

s2 +
ψ1

2
i2 +

ψ2

2
i2
d +

ψ3

2
i2
da +

ψ4

2
s2

+ +
ψ5

2
m2, (20)

where ψj (j = 1, 2, . . . , 5) are some positive constants and will be defined later. Here s, i,
id , ida, s+, and m are small perturbations in S, I , ID, IDA, S+, and M around equilibrium
E∗, respectively, i.e., S = S∗ + s, I = I∗ + i, ID = I∗

D + id , IDA = I∗
DA + ida, S+ = S∗

+ + s+, and
M = M∗ + m. Now, differentiating L with respect to ‘t′ and using the linearized system of
(1) around E∗, we get

L′ = –
(

Π + ωS∗
+

S∗

)
s2 – ψ1

[
μ1 – βS∗]i2 – ψ2μ2i2

d – ψ3μ3i2
da – ψ4μ4s2

+ – ψ5μ0m2

–
[
βS∗ – ψ1

(
I∗ + λ1I∗

D + λ2I∗
DA

)]
is +

[
ψ1βλ1S∗ + ψ2ρδ

]
iid +

[
ψ1βλ2S∗

+ ψ3(1 – ρ)δ
]
iida + ψ3ξ

′idida + ψ5μidm + ψ5μidam + ψ4cS∗s+m – βλ1S∗sid

+
(
ω + ψ4cM∗)ss+ – cS∗sm – βλ2S∗sida.

Now, we choose ψ1 = βS∗
(I∗+λ1I∗D+λ2I∗DA) , so that we get

L′ = –
(

Π + ωS∗
+

S∗

)
s2 –

βS∗[μ1 – βS∗]
(I∗ + λ1I∗

D + λ2I∗
DA)

i2 – ψ2μ2i2
d – ψ3μ3i2

da – ψ4μ4s2
+ – ψ5μ0m2

+
[

β2λ1S∗2

(I∗ + λ1I∗
D + λ2I∗

DA)
+ ψ2ρδ

]
iid +

[
β2λ2S∗2

(I∗ + λ1I∗
D + λ2I∗

DA)
+ ψ3(1 – ρ)δ

]
iida

+ ψ3ξ
′idida + ψ5μidm + ψ5μidam + ψ4cS∗s+m – βλ1S∗sid +

(
ω + ψ4cM∗)ss+

– βλ2S∗sm – βλ2S∗sida. (21)
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It is evident from equation (21) that L′ will be negative definite if the following inequalities
are satisfied:

β2λ2
1S∗2 <

4
25

ψ2

(
Π + ωS∗

+
S∗

)
μ2, (22)

β2λ2
2S∗2 <

4
25

ψ3

(
Π + ωS∗

+
S∗

)
μ3, (23)

ω2 <
4

15
ψ4

(
Π + ωS∗

+
S∗

)
μ4, (24)

ψ4c2M∗2 <
4

15

(
Π + ωS∗

+
S∗

)
μ4, (25)

c2S∗2 <
1
5
ψ5μ0

(
Π + ωS∗

+
S∗

)
, (26)

β3λ2
1S∗3

(I∗ + λ1I∗
D + λ2I∗

DA)
<

1
5
ψ2

[
μ1 – βS∗]μ2, (27)

ψ2ρ
2δ2 <

1
5

βS∗[μ1 – βS∗]
(I∗ + λ1I∗

D + λ2I∗
DA)

μ2, (28)

β3λ2
2S∗3

(I∗ + λ1I∗
D + λ2I∗

DA)
<

1
5
ψ3

[
μ1 – βS∗]μ3, (29)

ψ3(1 – ρ)2δ2 <
1
5

βS∗[μ1 – βS∗]
(I∗ + λ1I∗

D + λ2I∗
DA)

μ3, (30)

ψ3ξ
′2 <

4
25

ψ2μ2μ3, (31)

ψ5μ
2 <

1
5
ψ2μ0μ2, (32)

ψ5μ
2 <

1
5
ψ3μ0μ3, (33)

ψ4c2S∗2 <
1
3
ψ5μ0μ4. (34)

Now, from inequalities (22)–(30), we can choose positive values of ψ2, ψ3, ψ4, and ψ5,
provided the following conditions hold properly:

Condition 1: max

{
5β3S∗3λ2

1
(I∗ + λ1I∗

D + λ2IDA∗ )[μ1 – βS∗]μ2
,

25β2λ2
1S∗3

4(Π + ωS∗
+)μ2

}

< ψ2 <
1
5

βS∗[μ1 – βS∗]μ2

ρ2δ2(I∗ + λ1I∗
D + λ2IDA∗ )

, (35)

Condition 2: max

{
5β3λ2

1S∗3

(I∗ + λ1I∗
D + λ2IDA∗ )[μ1 – βS∗]μ3

,
25β2λ2

2S∗3

4(Π + ωS∗
+)μ3

}

< ψ3 <
1
5

βS∗[μ1 – βS∗]μ3

(1 – ρ)2δ2(I∗ + λ1I∗
D + λ2IDA∗ )

, (36)

Condition 3:
15S∗ω2

4μ4(Π + ωS∗
+)

< ψ4 <
4(Π + ωS∗

+)μ4

15c2S∗M∗2 , (37)

Condition 4: ψ5 >
5c2S∗3

μ0(Π + ωS∗
+)

. (38)
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We can assert from inequalities (31)–(38) that L′ is negative definite, and hence the
theorem follows.

Appendix 2: Proof of Theorem 3.3
To study the global stability of the endemic equilibrium, we construct the following posi-
tive definite Lyapunov function:

V =
1
2
[(

S – S∗) +
(
I – I∗) +

(
ID – I∗

D
)

+
(
IDA – I∗

DA
)

+
(
S+ – S∗

+
)]2 +

φ1

2
(
I – I∗)2

+
φ2

2
(
ID – I∗

D
)2 +

φ3

2
(
IDA – I∗

DA
)2 +

φ4

2
(
S+ – S∗

+
)2 +

φ5

2
(
M – M∗)2, (39)

where the coefficients φj (j = 1, 2, . . . , 5) are positive constants to be chosen suitably later.
The corresponding derivative of the Lyapunov function is given as

V ′ =
[(

S – S∗) +
(
I – I∗) +

(
ID – I∗

D
)

+
(
IDA – I∗

DA
)

+
(
S+ – S∗

+
)] ×

(
dS
dt

+
dI
dt

+
dID

dt

+
dIDA

dt
+

dS+

dt

)
+ φ1

(
I – I∗)dI

dt
+ φ2

(
ID – I∗

D
)dID

dt
+ φ3

(
IDA – I∗

DA
)dIDA

dt

+ φ4
(
S+ – S∗

+
)dS+

dt
+ φ5

(
M – M∗)dM

dt
. (40)

Using equation (1) and doing some algebraic manipulations, we get the above equation as
follows:

V ′ = –d
[(

I – I∗) +
(
ID – I∗

D
)

+
(
IDA – I∗

DA
)

+
(
S+ – S∗

+
)]2 – d

(
S – S∗)2 – [dI + φ1μ1

– φ1βS]
(
I – I∗)2 – [αI + φ2μ2]

(
ID – I∗

D
)2 – [αA + φ3μ3]

(
IDA – I∗

DA
)2 – φ4μ4

(
S+

– S∗
+
)2 – φ5μ0

(
M – M∗)2 –

[
2d + dI – φ1β

(
I∗ + λ1I∗

D + λ2I∗
DA

)](
S – S∗)

× (
I – I∗) – [2d + αI]

(
S – S∗)(ID – I∗

D
)

– (d + μ3)
(
S – S∗)(IDA – I∗

DA
)

–
[
2d – φ4cM∗](S – S∗)(S+ – S∗

+
)

– dI
(
I – I∗)(S+ – S∗

+
)

–
[
(dI + αI) – φ1λ1βS

– φ2ρδ
](

I – I∗)(ID – I∗
D
)

– αA
(
IDA – I∗

DA
)(

S+ – S∗
+
)

–
[
(dI + αA) – φ1λβS

– φ3(1 – ρ)δ
](

I – I∗)(IDA – I∗
DA

)
–

[
(αA + αI) – φ3ξ

′](ID – I∗
D
)(

IDA – I∗
DA

)

– αI
(
ID – I∗

D
)(

S+ – S∗
+
)

+ φ5μ
(
ID – I∗

D
)(

M – M∗) + φ5μ
(
IDA – I∗

DA
)(

M – M∗)

+ φ4cS
(
S+ – S∗

+
)(

M – M∗). (41)

Now we pick φ1 = (2d+dI )
β(I∗+λ1I∗D+λ2I∗DA) , φ2 = (dI +αI )

ρδ
, φ3 = (dI +αA)

(1–ρ)δ , φ4 = 2d
cM∗ so that some non-

linear terms become vanished. Note that, the coefficient of (I – I∗)2 is

dI + φ1μ1 – φ1βS ≥ dI + φ1μ1 – φ1β
Π

d
> 0

in presence of infection. Hence, we have

dI +
(2d + dI)

β(I∗ + λ1I∗
D + λ2I∗

DA)

[
μ1 –

βΠ

d

]
> 0 (42)
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and V ′ turns to this form

V ′ < –d
[(

I – I∗) +
(
ID – I∗

D
)

+
(
IDA – I∗

DA
)

+
(
S+ – S∗

+
)]2 – d

(
S – S∗)2 –

[
dI

+
(2d + dI)

β(I∗ + λ1I∗
D + λ2I∗

DA)

(
μ1 –

βΠ

d

)](
I – I∗)2 –

[
αI +

(dI + αI)μ2

ρδ

](
ID – I∗

D
)2

–
[
αA +

(dI + αA)μ3

(1 – ρ)δ

]
(
IDA – I∗

DA
)2 –

2dμ4

cM∗
(
S+ – S∗

+
)2 – φ5μ0

(
M – M∗)2

– [2d + αI]
(
S – S∗)(ID – I∗

D
)

– [d + μ3]
(
S – S∗)(IDA – I∗

DA
)

+
λ1(2d + dI)S

(I∗ + λ1I∗
D + λ2I∗

DA)
(
I – I∗)(ID – I∗

D
)

+
λ2(2d + dI)S

(I∗ + λ1I∗
D + λ2I∗

DA)
(
I – I∗)(IDA – I∗

DA
)

– dI
(
I – I∗)(S+ – S∗

+
)

–
[

(αI + αA) –
(dI + αA)ξ ′

(1 – ρ)δ

](
ID – I∗

D
)(

IDA – I∗
DA

)

– αI
(
ID – I∗

D
)(

S+ – S∗
+
)

+ φ5μ
(
ID – I∗

D
)(

M – M∗) – αA
(
IDA – I∗

DA
)(

S+ – S∗
+
)

+ φ5μ
(
IDA – I∗

DA
)(

M – M∗) +
2dS
M∗

(
S+ – S∗

+
)(

M – M∗). (43)

Now V ′ will be negative definite if the following conditions hold:

(2d + αI)2 <
1
3

d
[
αI +

(dI + αI)μ2

ρδ

]
, (44)

(d + μ3)2 <
2
3

d2μ4

cM∗ , (45)

λ2
1(2d + dI)2S2

R
(I∗ + λ1I∗

D + λ2I∗
DA)2 <

2
9
[
dIβ

(
I∗ + λ1I∗

D + λ2I∗
DA

)
+ (2d + dI)(μ1 – βSR)

]

×
[
αI +

(dI + αI)μ2

ρδ

]
, (46)

d2
I <

1
3

dμ4

cM∗
[
dIβ

(
I∗ + λ1I∗

D + λ2I∗
DA

)
+ (2d + dI)(μ1 – βSR)

]
, (47)

λ2
2(2d + dI)2S2

R
(I∗ + λ1I∗

D + λ2I∗
DA)2 <

2
9
[
dIβ

(
I∗ + λ1I∗

D + λ2I∗
DA

)
+ (2d + dI)(μ1 – βSR)

]

×
[
αA +

(dI + αA)μ3

(1 – ρ)δ

]
, (48)

(αI + αA)2 <
1
9

[
αI +

(dI + αI)μ2

ρδ

][
αA +

(dI + αA)μ3

(1 – ρ)δ

]
, (49)

(dI + αA)2ξ ′2

(1 – ρ)2δ2 <
1
9

[
αI +

(dI + αI)μ2

ρδ

][
αA +

(dI + αA)μ3

(1 – ρ)δ

]
, (50)

α2
I <

1
6

dμ4

cM∗

[
αI +

(dI + αI)μ2

ρδ

]
, (51)

φ5μ
2 <

2
9
μ0

[
αI +

(dI + αI)μ2

ρδ

]
, (52)

α2
A <

1
6

μ4

cM∗

[
αA +

(dI + αA)μ3

(1 – ρ)δ

]
, (53)



Roy and Saha Advances in Difference Equations        (2018) 2018:451 Page 19 of 20

φ5μ
2 <

2
9
μ0

[
αA +

(dI + αA)μ3

(1 – ρ)δ

]
, (54)

dcS2
R

M∗ <
1
6
φ5μ0μ4. (55)

Now, from inequalities (52), (54), and (55), we may choose a positive value of φ5 if

dcS2
R

μ0μ4M∗ <
1

27
min

{
μ0

μ2

[
αI +

(dI + αI)μ2

ρδ

]
,
μ0

μ2

[
αA +

(dI + αA)μ3

(1 – ρ)δ

]}
, (56)

and from the rest of inequalities (except (45)), we get

max

{
1

11

[(
(2d + αI)2

d
+

cα2
I M∗

dμ4

)
cα2

AM∗

μ4
+

(
(αI + αA)2 +

(dI + αA)2ξ ′2

(1 – ρ)2δ2

)]
W ,

1
8

λ2
1(2d + dI)2S2

R
(I∗ + λ1I∗

D + λ2I∗
DA)2

[
αA +

(dI + αA)μ3

(1 – ρ)δ

]
,

1
8

λ2
2(2d + dI)2S2

R
(I∗ + λ1I∗

D + λ2I∗
DA)2

[
αI

+
(dI + αI)μ2

ρδ

]
,

1
12

[
αI +

(dI + αI)μ2

ρδ

][
αA +

(dI + αA)μ3

(1 – ρ)δ

]}

<
1

36

[
αI +

(dI + αI)μ2

ρδ

][
αA +

(dI + αA)μ3

(1 – ρ)δ

]
W , (57)

where W = [dIβ(I∗ + λ1I∗
D + λ2I∗

DA) + (2d + dI)(μ1 – βSR)].
Finally, using the region of attractionD, the above inequalities (56) and (57) reduce to the

third and second conditions, respectively, in Theorem (3.3), which gives sufficient condi-
tions for the stability of the endemic equilibrium point E∗, and hence the theorem follows.
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