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Abstract
In this paper, we solve a system of fractional differential equations within a fractional
derivative involving the Mittag-Leffler kernel by using the spectral methods. We apply
the Chebyshev polynomials as a base and obtain the necessary operational matrix of
fractional integral using the Clenshaw–Curtis formula. By applying the operational
matrix, we obtain a system of linear algebraic equations. The approximate solution is
computed by solving this system. The regularity of the solution investigated and a
convergence analysis is provided. Numerical examples are provided to show the
effectiveness and efficiency of the method.
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1 Introduction
Despite the long history of fractional calculus in the field of mathematics, a large amount of
real world applications of this field has appeared mainly during the last decades. This type
of calculus has become so wide that almost no branch of science and engineering cannot be
found without fractional calculus and a lot of books have been written in these regards (see
for example Refs. [1–4] and the references therein). Increasing the use of fractional calcu-
lations has increased the variety of questions and resulted in various basic definitions for
fractional integral and derivative. We recall that the Riemann–Liouville definition entails
physically unacceptable initial conditions [1]; conversely for the Liouville–Caputo frac-
tional derivative, the initial conditions are expressed in terms of integer-order derivatives
having direct physical significance [1, 5]. A few years ago Caputo and Fabrizio [6] have
opened the following subject of debate within the mathematical community: is it possi-
ble to describe all nonlocal phenomena within the same basic kernels, namely the power
kernel involved within the definition of Riemann–Liouville derivative and some other few
basic fractional derivatives. If we analyze, step by step, the way Caputo has introduced his
classical fractional derivative [5], we will realize that during the last step he generalized
the classical integral to the fractional Riemann–Liouville integral (see for more details
[5]). After that, about almost 50 years later, he kindly asked the mathematical community
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how the Gamma function appears into the description of real phenomena, and why only
some existing fractional operators are required by experiments [6]. Immediately, Nieto
and Losada found, by using the Laplace transform, the associated integral of the so-called
Caputo–Fabrizio fractional derivative [7].

Also, regarding the extension of the Liouville–Caputo derivative reported recently in [8,
9], it was suggested a new fractional-order integral and derivative involving the Mittag-
Leffler function with nonlocal property in [10]. This concept was tested with success in
many fields including chaotic behavior, epidemiology, thermal science, hydrology, me-
chanical engineering and biology [11–23].

The dynamics of many applied physical or biological problem can be modeled by a sys-
tem of fractional differential equations (FDEs) (for example see [24] for a relaxation sys-
tem). A system of Mittag-Leffler non-singular FDEs can be described by

ABC
0 Dα

t y(t) = Ay(t) + f(t), t ∈ I := [0, T],

y(0) = y0,
(1)

where A is a constant matrix of dimension ν × ν , ν ∈N is the dimension of the system, f :
R→Rν is a known vector-valued function, ABC

0 Dα
t y(t) is a fractional derivative involving

Mittag-Leffler functions (also known as AB type [10]) and y : R → Rν is the unknown
function. Recently, it was observed that the system (1) is more successful for modeling of
suspension concentration distribution in turbulent flows than other models [25].

The conditions for the existence and uniqueness of the solution to exponential non-
singular system can be found in [26]. The consistency condition

Ay0 + f(0) = 0,

is one of them. It seems that this condition is also important for system (1) with Mittag-
Leffler non-singular kernels and as mentioned in [27], we should consider the initial condi-
tion carefully. This imposes some restriction on system (1). However, due to the important
dynamics of the solutions of system (1), it is significant to solve the system (1) analytically
or numerically [28]. Because of the novelty and the newness of this topic there are a few
articles on this subject. We found only, a linear piecewise polynomial base method for
solving this system numerically [29]. However, solving this system with Chebyshev base
polynomials has not been studied yet.

The spectral methods using Chebyshev polynomials are well known for differential and
partial differential equations [30–33]. For smooth problems in simple geometries, they of-
fer exponential rates of convergence or spectral accuracy. An important advantage of these
methods over finite-difference methods is that computing the coefficient of the approxi-
mation, completely determines the solution at any point of the desired interval. Therefore,
numerical solution of the system (1) using operational matrix spectral methods based on
Chebyshev polynomials is very important.

The discrete orthogonality properties of the Chebyshev polynomials are the advan-
tages over other orthogonal polynomials like Legendre polynomials. Also, the zeros of the
Chebyshev polynomials are known analytically. These properties lead to the Clenshaw–
Curtis formula which makes integration easy. We use this formula to obtain the opera-
tional matrix of the fractional integration.
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The aim of this paper is to obtain an efficient numerical method to solve the system (1)
using the operational matrix based on Chebyshev polynomials. For this purpose, we ob-
tain the operational matrix approximation for fractional integral operator. We transform
the system (1) to a system of weak singular integral equation and then using an operational
matrix we obtain a system of linear algebraic equations. Solving the obtained algebraic sys-
tem, we get the numerical approximation. We investigate the existence and convergence
of the numerical solution. To this end, we also study the regularity of the exact solutions.

The structure of this paper is as follows. In Sect. 2, we review new definition of the
fractional calculus and related results and the Chebyshev polynomials. In Sect. 3, we re-
view the approximations of multi-variable functions in terms of the shifted Chebyshev
polynomials and we obtain the operational matrix approximation for fractional integral
operator. In Sect. 4, we propose a spectral method based on the operational matrix for
solving system of Mittag-Leffler, non-singular FDEs. In Sect. 5, we obtain the regularity
of the solutions. In Sect. 6, we study a convergence analysis for proposed method without
discretization. In Sect. 7, we obtain the convergence results for discretized version. Finally,
in Sect. 8, we provide some numerical examples to show the efficiency of the introduced
method, and we present a comparison between the solution of the AB type FDEs and the
Liouville–Caputo type FDEs.

2 Definitions and preliminaries
In this section, we first recall some basic definitions related and results to the Mittag-
Leffler function [34]. Then we recall some basic definitions and results related to the new
non-singular fractional derivative and integral formulas [10].

2.1 The Mittag-Leffler function
The Mittag-Leffler function is the cornerstone of fractional calculus. Several books and
excellent papers [34–37] describe the importance of these types of operators. The concept
of Mittag-Leffler calculus was introduced in [10] and the integral associated to the non-
singular fractional operator with Mittag-Leffler kernel was found by using the Laplace
transform [38].

Throughout the paper, the symbol Eα shows the one parameter Mittag-Leffler function
[39] defined by

Eα(z) =
∞∑

k=0

zk

�(αk + 1)
, Re(α) > 0.

The two-parameter Mittag-Leffler function is defined as

Eα,β (z) =
∞∑

k=0

zk

�(αk + β)
(
α,β ∈ C, Re(α) > 0

)
.

Here, the notation � denotes the gamma function. An interesting book containing the
history, applications and the effect of the gamma functions on the progress in mathematics
and the progress in describing the real phenomena can be found in [40].



Baleanu et al. Advances in Difference Equations  (2018) 2018:353 Page 4 of 23

Theorem 2.1 ([35]) Let ρ,μ,υ,ω ∈ C (Re(ρ), Re(μ), Re(υ) > 0).Then

∫ x

0
(x – t)μ–1Eρ,μ

(
ω(x – t)ρ

)
tυ–1 dt = �(υ)xμ+υ–1Eρ,μ+υ

(
ωxρ

)
. (2)

2.2 The non-singular fractional derivative and integral involving Mittag-Leffler
kernel

We use a Sobolev space defined by

H1[t0, tf ] :=
{

u ∈ L2[t0, tf ] :
du
dt

∈ L2[t0, tf ]
}

to define the fractional derivative as follows.

Definition 2.2 For f ∈ H1[t0, tf ] and 0 < α < 1, the (left) fractional derivative involving the
Mittag-Leffler kernel in the Liouville–Caputo sense is defined by [10]

ABC
t0 Dα

t f (t) =
B(α)
1 – α

∫ t

t0

df (τ )
dτ

Eα

(
–α

(t – τ )α

1 – α

)
dτ , (3)

where B(α) is a normalization function obeying B(0) = B(1) = 1.

The associated fractional integral is also defined by [10]

AB
t0 Iα

t f (t) =
1 – α

B(α)
f (t) +

α

B(α)�(α)

∫ t

t0

f (τ )(t – τ )α–1 dτ

=
1 – α

B(α)
f (t) +

α

B(α) t0 Iα
t f (t). (4)

The fractional integral of (t – t0)β (β > –1) for α > 0 is

t0 Iα
t (t – t0)β =

�(β + 1)
�(α + β + 1)

(t – t0)β+α

and

AB
t0 Iα

t (t – t0)β =
(t – t0)β

B(α)

(
1 – α +

α�(β + 1)
�(α + β + 1)

(t – t0)α
)

.

The Newton–Leibniz formula for this fractional derivative and integral is obtained in
[38, 41].

Proposition 2.3 For 0 < α < 1, we have [38]

(AB
t0 Iα

t
ABC

t0 Dα
t
)
f (t) = f (t) – f (t0). (5)

From Theorem 2.1, the fractional derivative of a monomial tβ (β > 0) is

ABC
0 Dα

t tβ =
B(α)�(β + 1)

1 – α
tβEα,1+β

(
–

α

1 – α
tα

)
, β > 0,α > 0. (6)
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2.3 Chebyshev polynomials
Here, we review some basic definitions and results related to the Chebyshev polynomials
[30, 42].

Definition 2.4 Let x = cos(θ ). Then the Chebyshev polynomial Tn(x), n ∈ N ∪ {0}, over
the interval [–1, 1], is defined by the relation

Tn(x) = cos(nθ ). (7)

The Chebyshev polynomials are orthogonal with respect to the weight function w(x) =
1√

1–x2 and the corresponding inner product is

〈f , g〉 =
∫ 1

–1
w(x)g(x)f (x) dx, for f , g ∈L2[–1, 1]. (8)

The well-known recursive formula

Tn+1(x) = 2xTn(x) – Tn–1(x), n ∈N , (9)

with T0(x) = 1 and T1(x) = x is important for numerical computing of these polynomials,
whereas we may use

Tn(x) =
[n/2]∑

k=0

(–1)k2n–2k–1 n
n – k

(
n – k

k

)
xn–2k (10)

to compute Chebyshev polynomials in analysis. Since the range of interest of the problem
(1) is [0, T], we can define the shifted Chebyshev polynomials T∗

n (x) by

T∗
n (x) = Tn

(
2
T

x – 1
)

with corresponding weight function w∗(x) = w( 2
T x – 1). Using Tn(2x – 1) = T2n(

√
x) (see

[30], Sect. 1.3) we could compute the shifted Chebyshev polynomials by

Tn(2x – 1) =
n∑

k=0

(–1)k22n–2k–1 2n
2n – k

(
2n – k

k

)
xn–k , n > 0. (11)

The discrete orthogonality of Chebyshev polynomials leads to the Clenshaw–Curtis for-
mula:

∫ 1

–1
w(x)f (x) dx 
 π

N + 1

N+1∑

k=1

f (xk), (12)

where xk for k = 1, . . . , N + 1 are zeros of TN+1(x). Therefore, we have

∫ T

0
w∗(x)f (x) dx =

∫ 1

–1
w(x)f

(
T
2

(x + 1)
)

dx 
 Tπ

2(N + 1)

N+1∑

k=1

f
(

T
2

(xk + 1)
)

.
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Also, the norm of T∗
n (x),

γn :=
∥∥T∗

n (x)
∥∥2 =

∫ T

0
w∗(x)

(
T∗

n
)2(x) dx =

T
2

⎧
⎨

⎩

π
2 , n > 0,

π , n = 0,

will be of importance later.

3 Function approximation
A function f (t) defined over the interval [0, T], may be expanded as

f (t) 
 pN f (t) :=
N∑

m=0

cmT∗
m(t) = CT
(t), N ∈N, (13)

where pN : C[0, T] �→ πN (N ∈N ), is an orthogonal projection, πN is the space of polyno-
mials with degree not exceeding N , C and 
 are the matrices of size (N + 1) × 1

CT = [c0, . . . , cN ],


T (t) =
[
T∗

0 (t), . . . , T∗
N (t)

]
,

(14)

and

ci =
1
γi

∫ T

0
w∗(x)f (x)T∗

i (x) dx

=
1
γi

∫ T

0
w

(
2
T

x – 1
)

f (x)Ti

(
2
T

x – 1
)

dx

=
T

2γi

∫ 1

–1
w(t)f

(
T
2

(t + 1)
)

Ti(t) dt


 Tπ

2γi(N + 1)

N+1∑

k=1

f
(

T
2

(xk + 1)
)

Ti(xk), i = 0, . . . , N . (15)

The following error estimate for the Dini–Lipschitz continuous function f provides the
convergence of approximation by Chebyshev polynomials.

Theorem 3.1 ([30] (Theorem 5.7)) Let g ∈C[0, T] and g satisfy the Dini–Lipschitz condi-
tion, i.e.,

ω(δ) log(δ) → 0 as δ → 0,

where ω is the modulus of continuity. Then ‖g – png‖∞ → 0 as n → ∞.

Theorem 3.2 Let 0 < α < 1 and N , M ∈N. Then

1
�(α)

∫ x

0


(τ )
(x – τ )1–α

dτ 
 Pα,M
(x), (16)
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where Pα,M = (pn,r) is the operational matrix of dimension N × N and its elements can be
computed using

p0,r 
 π

γr�(1 + α)(M + 1)

(
T
2

)α+1 M+1∑

k=1

(
(xk + 1)

)αTr(xk)

for r = 1, . . . , N , and

pn,r 

n∑

k=0

p̂n,k

M+1∑

j=1

(xj + 1)n–k+αTr(xj),

where

p̂n,k =
(–1)kTα+1π

γr(M + 1)
2n–k–1–αn

2n – k

(
2n – k

k

)
�(n – k + 1)

�(n – k + α + 1)

for n = 1, . . . , N and r = 0, . . . , N .

Proof Taking the fractional integral on both sides of (11), we get

IαT∗
n (x) =

1
�(α)

∫ x

0

T∗
n (τ )

(x – τ )1–α
dτ =

1
�(α)

∫ x

0

Tn( 2
T τ – 1)

(x – τ )1–α
dτ , z =

τ

T

= Tα 1
�(α)

∫ x
T

0

Tn(2z – 1)
( x

T – z)1–α
dz

= Tαhn

(
x
T

)
,

where

hn(x) :=
1

�(α)

∫ x

0

Tn(2z – 1)
(x – z)1–α

dz

=
n∑

k=0

(–1)k22n–2k–1 2n
2n – k

(
2n – k

k

)
1

�(α)

∫ x

0

zn–k

(x – z)1–α
dz

=
n∑

k=0

(–1)k22n–2k–1 2n
2n – k

(
2n – k

k

)
Iαxn–k

=
n∑

k=0

(–1)k22n–2k–1 2n
2n – k

(
2n – k

k

)
�(n – k + 1)

�(n – k + α + 1)
xn–k+α

for n > 0, and

IαT∗
n (x) =

n∑

k=0

(–1)k 22n–2k–1

Tn–k
2n

2n – k

(
2n – k

k

)
�(n – k + 1)

�(n – k + α + 1)
xn–k+α . (17)

For n = 0, it can easily be checked that

IαT∗
0 (x) =

xα

�(1 + α)
. (18)
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Now, applying (15) to the f (x) = xn–k+α , we obtain

xn–k+α 

N∑

r=0

Tπ

2γr(M + 1)

M+1∑

j=1

(
T
2

(xj + 1)
)n–k+α

Tr(xj)T∗
r (x). (19)

By substituting the coefficients of T∗
r (x) from (19) into (17) and (18) we obtain the desired

result. �

Remark 3.3 For f ∈ C[–1, 1], the maximum error of Clenshaw–Curtis formula is less than
4‖f – pN f ‖∞ [43]. Hence, the Clenshaw–Curtis formula for xn–k+α in the proof of 3.2 is
convergent and we conclude that

pN
(
Iα


)
= Pα
(x), (20)

where Pα = limM→∞ Pα,M .

4 Constructing the method
Taking fractional integration from both sides of system (1) and using (5), the system (1)
can be written in the following form:

(
I –

1 – α

B(α)
A

)
y(t) =

α

B(α)
AIαy(t) + y0 +

1
B(α)

(
(1 – α)f(t) + αIαf(t)

)
. (21)

Let E = I – 1–α
B(α) A. Then, using the following lemma, one can guarantee the invertibility

of E.

Lemma 4.1 Let A be a constant matrix, 0 < α < 1, be such that 1 – B(α)
‖A‖ < α, and I denotes

the identity matrix. Then the matrix

E =: I –
1 – α

B(α)
A

is invertible.

Proof The proof is a direct result of the geometric series theorem. �

Now, multiplying by E–1 both sides of (21), we obtain the second kind of weakly singular
integral equations of the form

y(t) =
α

B(α)
E–1AIαy(t) + E–1y0

+
1

B(α)
E–1((1 – α)f(t) + αIαf(t)

)
. (22)

In order to obtain a numerical method, we suppose

yN (t) = Y T
(t) (23)
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to be the approximate solution, f(t) = FT
(t) and Y0 = [y0, 0, . . . , 0]T . Substituting them
into (22) and using the operational matrix of Theorem 3.2, we obtain

(
Y T –

α

B(α)
E–1AY T Pα

)
= H , (24)

where

H := E–1Y0 +
1

B(α)
E–1((1 – α)FT + αFT Pα

)
.

Solving the linear system (24), we obtain Y T , and finally we obtain the approximate solu-
tion using (23).

To solve (24), we can use the vectorization operators to obtain system of linear algebraic
equations in the standard form. We denote by vec the vectorization of a matrix

vec(A) := (a1,1 . . . , am,1, . . . , a1,n, . . . , am,n)T .

We note that

vec(ABC) =
(
CT ⊗ A

)
vec(B);

Iν×ν is the identity matrix and the notation ⊗ is for the Kronecker product. By the vec

notation, the system (24) can be transformed to the standard form

(
I ⊗ I – PT

α ⊗ α

B(α)
E–1A

)
vec

(
Y T)

= vec(H),

which it can be solved by mathematic software like MATLAB.

5 Regularity of the solution
For the simplicity of notation and analysis, we may write the system (22) as follows:

y = T y + f̃ , (25)

where

T y =
α

B(α)
E–1AIαy

and

f̃(t) = E–1y0 +
1

B(α)
E–1((1 – α)f(t) + αIαf(t)

)
.

The system (25) is a system of second kind Volterra integral equations with weakly singular
kernel. But the regularity of its solution is different due to the presence of the Iαf(t). There-
fore, we introduce the space Cm,λ(0, T], 0 < λ, with m ∈ N0 := N ∪ {0}. The set of all con-
tinuously differentiable functions g : (0, T] �→R is in Cm,λ(0, T], if there exists gi ∈ C[0, T],



Baleanu et al. Advances in Difference Equations  (2018) 2018:353 Page 10 of 23

for i = 0, . . . , m and a real number c ∈R such that g = tλg0(t) + c and

g(i)(t) = tλ–igi(t), i = 1, . . . , m.

It is straightforward to show that the space Cm,λ(0, T] equipped with the norm

‖g‖m,λ = c +
m∑

i=0

sup
t∈(0,T]

ti–λ
∣∣g(i)(t)

∣∣

is a Banach space. We note that, for 0 < λ1 < λ2 ≤ 1, we have

Cm[0, T] ⊂ Cm,1(0, T] ⊂ Cm,λ2 (0, T] ⊂ Cm,λ1 (0, T] ⊂ C[0, T].

Remark 5.1 We note that, for f ∈ Cm,λ(0, T] there exists a positive constant c > 0 such that

‖f ‖∞ < c‖f ‖m,λ (26)

and for f ∈ C0,λ(0, T] the norms ‖f ‖∞ and ‖f ‖0,λ are equivalent.

Lemma 5.2 Suppose 0 < α ≤ 1.
• Let f ∈C

m[0, T], for m ∈N. Then Iαf ∈ Cm,α(0, T].
• Let f ∈C

m,λ(0, T], for m ∈N. Then Iαf ∈ Cm,α+λ(0, T] ⊂ Cm,min(α,λ)(0, T].

Proof By integral substitution (τ = tz), we obtain

Iαf (t) =
1

�(α)

∫ t

0
f (τ )(t – τ )α–1 dτ = tαg(t),

where

g(t) =
1

�(α)

∫ 1

0
f (tz)(1 – z)α–1 dz.

It is obvious that g ∈ C
m[0, T] if f ∈ C

m[0, T] and g ∈ C
m,α[0, T] if f ∈ C

m,α[0, T], which
completes the proof. �

Here, we should be concerned that the systems we investigated are of dimension ν ≥ 1
and we use the norm

‖f‖m,λ,ν = max
i=1,...,ν

‖fi‖m,λ

with f = [f1, . . . , fν]T ∈ (Cm,λ[0, T])ν λ > 0, and m ∈N0.

Theorem 5.3 Assume that f ∈ (Cm[0, T])ν or f ∈ (Cm,α(0, T])ν , for α ∈ (0, 1). Then the
system (25) has a unique solution y ∈ (Cm,α(0, T])ν . Furthermore, (I – T )–1 is a bounded
operator.
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Proof By using Lemma 5.2, f̃(t) ∈ (Cm,α(0, T])ν . Consider a Picard iteration corresponding
to the system (25)

yn+1 = f̃ +
αE–1A

B(α)�(α)

∫ t

0

yn(s)
(t – s)1–α

ds (27)

with y0 = f̃ . The first iteration can be written in the form

y1 = f̃ +
∫ t

0

Q1(t, s;α)f̃(s)
(t – s)1–α

ds, Q1(t, s;α) :=
αE–1A

B(α)�(α)
,

and the second iteration can be written in the form

y2 = f̃ +
∫ t

0

Q1(t, s;α)f̃(s)
(t – s)1–α

ds +
αE–1A

B(α)�(α)

∫ t

0

∫ s

0

Q1(s, τ ;α)f̃(τ )
(s – τ )1–α(t – s)1–α

dτ ds

= f̃ +
∫ t

0

Q1(t, s;α)f̃(s)
(t – s)1–α

ds +
αE–1A

B(α)�(α)

∫ t

0

∫ t

τ

Q1(s, τ ;α)f̃(τ )
(s – τ )1–α(t – s)1–α

ds dτ .

Using the variable transformation s = τ + (t – τ )z, we obtain

y2 = f̃ +
∫ t

0

Q1(t, s;α)f̃(s)
(t – s)1–α

ds +
αE–1A

B(α)�(α)

∫ t

0

(t – τ )αQ2(t, τ ;α)
(t – τ )1–α

dτ , (28)

where

Q2(t, τ ;α) :=
∫ 1

0

Q1(τ + (t – τ )z, τ ;α)f̃(τ )
z1–α(1 – z)1–α

dz.

Proceeding by this procedure and by an argument similar to [44], Chap. 6 (note that we
have used 1 – α instead of α), one can show that

(I – T )–1 f̃(t) = f̃(t) +
∫ t

0

Q(t, s;α)f̃(s)
(t – s)1–α

ds,

where

Q(t, s;α) =
∞∑

n=1

(t – s)α(n–1)Qn(t, s;α)

and

Qn(t, s;α) :=
αE–1A

B(α)�(α)

∫ 1

0
(1 – z)α–1z(n–1)(α)–1Qn–1

(
s + (t – s)z, s;α

)
dz.

Therefore, (I – T )–1 is a bounded operator in (Cm,α(0, T])ν . Other parts of the proof are
straightforward. �
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6 Convergence analysis
The orthogonal projection pN : (C[0, T])ν �→ (πN )ν (m, N ∈N ) can be defined by

pN
(
[f1, . . . , fν]T)

:=
[
pN (f1), . . . , pN (fν)

]T ,

where pN is defined by (13). The introduced method can be written in the form

yN = pNT yN + pN f̃N , (29)

where f̃N = E–1y0 + 1
B(α) E–1((1 – α)f(t) + αIαpN f(t)) and yN ∈ (πN )ν .

It is well known that the operator Iα is compact on C[0, T] (see [45]) and hence is
compact on (Cm,α[0, T])ν ⊂ (C[0, T])ν . Briefly, consider a bounded sequence (fn), fn =
[fn1, . . . , fnν]T in (Cm,α[0, T])ν where each of its elements is bounded on C[0, T], using
(26). By compactness of Iα on C[0, T], the sequence Iαfnj (j = 1, . . . ,ν) contains a con-
vergent subsequence in C[0, T]. This subsequence is in the space C

m,α[0, T] since fnj ∈
C

m,α[0, T] and converges to an element of Cm,α[0, T] since it is a compact space. That
means Iαfn = [Iαfn1, . . . , Iαfnν]T contains a convergent subsequence in (Cm,α[0, T])ν . There-
fore, Iα is compact on (Cm,α[0, T])ν .

Lemma 6.1 Let f ∈ (C0,α[0, T])ν , 0 < α < 1, m ∈ N0, then ‖f – pN f‖∞ → 0 and
‖f – pN f‖0,α,ν → 0 as N → ∞.

Proof Since tα satisfies the Dini–Lipschitz condition, f satisfies the Dini–Lipschitz con-
dition and, by Theorem 3.1, ‖f – pnf‖∞ → 0, as N → ∞. The latter can be obtained by
equivalency of the norms. �

Theorem 6.2 ([46]) Let X be a Banach space, and let {pN } be a family of bounded pro-
jections on X with pN x → x, as N → ∞, for x ∈ X. Let T : X �→ X be compact. Then
‖T – pN T‖ → 0, as N → ∞.

Setting X = (C0,α[0, T])ν , T = T and using Theorem 6.2, we have

‖T – pNT ‖L((C0,α [0,T])ν ) → 0,

as N → ∞. Here, the notation L((C0,α[0, T])ν) shows the space of linear operators on
(C0,α[0, T])ν , and the operator norm is induced norm. The operator T is compact and
due to the fact that compact linear operators are bounded (see [45]), the operator T is
also bounded. In order to obtain the convergence of the proposed method, we can use
the following lemma to show that the operator (I – pNT )–1 exists and is bounded for all
sufficiently large N .

Theorem 6.3 ([46], Theorem 3.1.1 with λ = 1) Assume T : X �→ X is bounded, with X a
Banach space, and assume I – T : X �→ X to be a bijective operator. Further assume

‖T – pNT ‖ → 0, as N → ∞.
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Then, for all sufficiently large N , say N > N0, the operator (I – pNT )–1 exists as a bounded
operator from X to X. Moreover, it is uniformly bounded:

sup
N>N0

∥∥(I – pNT )–1∥∥ < ∞.

Remark 6.4 By Theorem 6.3, the operator (I – pNT )–1 exists for sufficiently large N . This
fact guarantees the existence of a numerical method for sufficiently large N , since

yN = (I – pNT )–1pN f̃N

by using (29).

Taking into account

(I – pNT )(y – yN ) = y – pNT y – pN f̃N

= y – pNT y – pN f̃ + pN f̃ – pN f̃N

= y – pN y + pN (̃f – f̃N ), (30)

we can write

(y – yN ) = (I – pNT )–1(y – pN y + pN f̃ – pN f̃N ). (31)

Now, taking the norm from both sides of Eq. (31), we obtain

∥∥(y – yN )
∥∥

0,α,ν ≤ ∥∥(I – pNT )–1∥∥
L((C0,α [0,T])ν )

(‖y – pN y‖0,α,ν + ‖pN f̃ – pN f̃N‖0,α,ν
)
. (32)

Finally, we note that

‖pN f̃ – pN f̃N‖0,α,ν ≤ c‖f – pN f‖0,α,ν ,

where c is a constant number, and we can state the following theorem.

Theorem 6.5 Assume that f ∈ (C0,α(0, T])ν , for α ∈ (0, 1). Then, for sufficiently large N , the
approximated solution of system (1), say yN , obtained by (23) and (24) exists and converges
to the exact solution y. Furthermore, we have

‖y – yN‖0,α,ν ≤ c
(‖y – pN y‖0,α,ν + ‖f – pN f‖0,α,ν

)
, (33)

where c is a constant number.

Also, the result of Theorem 6.5 is true with the norm ‖ · ‖∞. This holds by considering
the equivalency of the norms ‖ · ‖0,α,ν and ‖ · ‖∞.
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7 Existence and convergence results for discretized version
Often, we cannot compute the infinite series of Pα , and instead we use Pα,M M ∈N. We call
the obtained method the discretized version, because we discretized the corresponding
integral by the Clenshaw–Curtis formula. For yN (t) = Y T
(t), we can define TMyN by

TMyN :=
α

B(α)
E–1AY T Pα,M
 ,

and we have

pNTMyN =
α

B(α)
E–1AY T Pα,M
 .

The numerical approximation by the discretized version can now be obtained by solving

yN ,M = pNTMyN ,M + pN f̃N , (34)

where yN ,M(t) = Y T
M
(t). According to Remark 3.3, we have

∥∥(pNTM – pNT )yN
∥∥∞ =

∥∥∥∥
α

B(α)
E–1AY T (Pα,M – Pα)


∥∥∥∥∞
→ 0

as M → ∞ on C
0,λ with λ > 0. Hence, by Theorem 6.2,

‖pNTM – pNT ‖∞ → 0

as M → ∞ on Banach space C
0,λ. In order to show that I – pNTM is invertible, we note

that

I – pNTM = (I – pNT )
(
I + (I – pNT )–1(pNT yN – pNTM)

)
.

Regarding the arguments of previous section, (I – pNT ) is invertible for sufficiently
large N . Also, (I + (I – pNT )–1(pNT yN – pNTM)) is invertible by geometric series theorem
for sufficiently large M, since ‖(I – pNT )–1(pNT yN – pNTM)‖∞ → 0 as M → ∞. Thus,
we conclude that, for all sufficiently large M and N , say M > M0 and N > N0, the operator
I – pNTM is invertible. This fact guarantees the existence of the numerical solution and we
can write

yN ,M = (I – pNTM)–1pN f̃N .

In order to provide the convergence analysis, we note that

‖yN ,M – y‖∞ ≤ ‖yN ,M – yN‖∞ + ‖yN – y‖∞.

Therefore, it remains to provide the convergence for ‖yN ,M – yN‖∞. Since

yN ,M – yN = pNTMyN ,M – pNT yN = pNTM(yN ,M – yN ) + pN (TM – T )yN ,



Baleanu et al. Advances in Difference Equations  (2018) 2018:353 Page 15 of 23

we conclude that, for sufficiently large M and N , we have

yN ,M – yN = (I – pNTM)–1pN (T – TM)yN

and hence

‖yN ,M – yN‖∞ → 0

as M, N → ∞.

8 Numerical examples
To show the effectiveness and efficiency of the method some examples are presented for
illustration. In the rest of the paper, we assume that B(α) = 1, and we obtain the maximum
error by

Ei(N) = max

{∣∣yiN (t) – yi(t)
∣∣ : t = jh, h =

T
100

, j = 0, . . . , 100
}

,

for i = 1, . . . , n. Here, yiN and yi (i = 1, . . . , n) show the ith component of the approximate
and the exact solution, respectively. In all the following numerical experiments, we set
M = N , unless otherwise stated.

Example 8.1 ([29]) Let us consider the initial value problem described by (1) with A = 0,
f (t) = t and y0 = 0. The exact solution of this system is

y(t) = y0 +
1 – α

B(α)
t +

α

�(α + 2)B(α)
t1+α .

Table 1 shows the results of the approximation and the exact solution on t = 0, 0.2, . . . , 1, for
different values of N . This table shows that with increasing N , the approximate solution
converges to the exact solution.

Example 8.2 Consider a non-homogeneous systems (1), with constant vector-valued
functions A = I, y0 = [1, 0, . . . , 0]T , and

f(t) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

–1
B(α)
1–α

tEα,2(– α
1–α

tα) – t
B(α)2!
1–α

t2Eα,3(– α
1–α

tα) – t2

...
B(α)(n–1)!

1–α
tn–1Eα,n(– α

1–α
tα) – tn–1

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

,

Table 1 The approximation and exact solution of Example 8.1 for α = 0.5

t y1(t) y2(t) y3(t) y4(t) y(t)

0 0.9640 0.9941 0.9978 0.9990 1.0000
0.2 1.1419 1.1369 1.1344 1.1337 1.1336
0.4 1.3199 1.2967 1.2947 1.2950 1.2952
0.6 1.4978 1.4735 1.4744 1.4750 1.4748
0.8 1.6757 1.6672 1.6695 1.6691 1.6691
1 1.8537 1.8779 1.8757 1.8762 1.8761
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Table 2 The max error for Example 8.2 for α = 0.5

N E1(N) E2(N) E3(N) E4(N)

1 0.000000000000000 0.032501466868232 0.199783785140225 0.326981105312188
2 0.000000000000002 0.005532877102538 0.004755914362358 0.045225534230613
3 0.000000000000000 0.001648563626364 0.000624735212548 0.000768356206406
4 0.000000000000001 0.000520359872234 0.000110339609934 0.000062991248880
5 0.000000000000002 0.000244911629967 0.000032175396605 0.000010886039795
6 0.000000000000006 0.000129849042607 0.000011652840979 0.000002650968892
7 0.000000000000002 0.000075079326877 0.000004900959384 0.000000809104333
8 0.000000000000002 0.000046367322489 0.000002328227246 0.000000289378519

Table 3 The max error for Example 8.2 for α = 0.9

N E1(N) E2(N) E3(N) E4(N)

1 0.000000000000000 0.061074192439252 0.146845089928912 0.326263268166152
2 0.000000000000000 0.039112041827281 0.010173021708001 0.034865625110056
3 0.000000000000000 0.021387954293600 0.004169262482318 0.001531241742255
4 0.000000000000000 0.006784494793070 0.001123394201916 0.000331566801008
5 0.000000000000000 0.002404030712710 0.000345827725081 0.000088706432762
6 0.000000000000001 0.000841965585382 0.000109703039800 0.000025481270240
7 0.000000000000000 0.000326295043297 0.000036252408984 0.000007436800593
8 0.000000000000000 0.000133661138147 0.000012266138988 0.000002207934952

Figure 1 The natural logarithm of the ‖y – yN‖∞ versus N, in Example 8.2

with exact solution yod(t) = [1, t, t2, . . . , tn–1]T , on [0, 1]. Tables 2 and 3 show the maximum
error for α = 0.5 and α = 0.9 and various N . As these tables show, with increasing N the
maximum error decreases rapidly and the proposed method converges to the exact solu-
tion.

By Theorem 6.5, ‖y – yN‖∞ is less than c(‖y – pN y‖∞ + ‖f – pN f‖∞), Therefore, we
set c = e3 by experiment and plot the natural logarithm of them versus N . Figs. 1 and 2
show that ‖y – yN‖∞ and c(‖y – pN y‖∞ + ‖f – pN f‖∞) are similar, which confirms the
theoretical analysis. This numerical experiments are obtained by setting M = N + 30 and
α = 0.9. For the first component, the two functions f and y are polynomials and we expect
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Figure 2 The natural logarithm of the e3(‖y – pNy‖∞ + ‖f – pNf‖∞) versus N, in Example 8.2

the approximate solution to be exact up to the floating point error. Tables 2 and 3 confirm
this fact.

Example 8.3 Consider the system 1, with

A =

(
–0.09 0.038
0.66 –0.038

)
,

y0 = [0, 1]T , and f(t) = f1 + f2t with

f1 =

(
–0.038
0.038

)
, f2 =

(
1

–1

)
.

We can obtain the exact solution using the Laplace transform as follows:

yAB(t) = Eα

(
α

B(α)
E–1Atα

)
E–1y0

+
1 – α

B(α)
Eα,1

(
α

B(α)
E–1Atα

)
E–1f1

+
1 – α

B(α)
tEα,2

(
α

B(α)
E–1Atα

)
E–1f2

+
α

B(α)
tαEα,1+α

(
α

B(α)
E–1Atα

)
E–1f1

+
α

B(α)
tα+1Eα,2+α

(
α

B(α)
E–1Atα

)
E–1f2. (35)

Table 4 shows the maximum error for α = 0.9 and various N . Figures 3 and 4 show the nu-
merical solution for various α on [0, 15]. We observe that, as α approaches 0, the solution
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Table 4 The max error for Example 8.3 for α = 0.9, on [0, 15]

N E1(N) E2(N)

1 8.830427856072024 33.044280663485864
2 0.339880165694801 4.388476643959649
3 0.175423683612391 0.212086890251001
4 0.041763752396060 0.093768718373529
5 0.017013565196105 0.026782029971228
6 0.008281794204362 0.011177714406546
7 0.004657673997910 0.005627790480779
8 0.002861872428139 0.003223452532411

Figure 3 Numerical solution of Example 8.3 for the first component with N = 10

of this system approaches the algebraic linear system

y – y0 = Ay + f(t). (36)

Figure 5 shows the error behavior of this example, for α = 0.5. Theoretically, we expect
‖y – yN‖∞ is less than c(‖y – pN y‖∞ + ‖f – pN f ‖∞) up to a constant multiplier c. We ob-
serve a similar behavior for both components of the error with c = e0.5. This is in complete
agrement with the error analysis.

8.1 Application
Since dynamical systems with ordinary or fractional differential equations are abundant in
natural phenomenon, we expect that, like other type of FDEs, the AB type FDEs will also
be successful in modeling of natural phenomenon. This was confirmed with the compar-
ison in the previous section. Beside the fact that the AB type derivative has been recently
introduced, many applications in this field can be found in the literature we talked about
in the introduction section. One of many examples for modeling of natural phenomenon
using AB type FDEs is the amount of drug lidocaine in the bloodstream and body tissue
[47]. The human disease of ventricular arrythmia or irregular heartbeat is treated clini-
cally using the drug lidocaine. Let X(t) be the amount of lidocaine in the bloodstream and
Y (t) be the amount of lidocaine in body tissue. Then the dynamics of the drug therapy
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Figure 4 Numerical solution of Example 8.3 for the second component with N = 10

Figure 5 The natural logarithm of the e0.5(‖y – pNy‖∞ + ‖f – pNf‖∞) and ‖y – yN‖∞ versus N, in Example 8.3

obeys the following system:

0Dα
t X(t) = –0.09X(t) + 0.038Y (t),

0Dα
t Y (t) = 0.66X(t) – 0.038Y (t),

(37)

This system is equivalent to the system of Example 8.3, with f = [0, 0]T , and was solved
by ordinary and Liouville–Caputo fractional derivatives in the literature. The solution of
this system with AB type fractional derivative is illustrated in Figs. 6 and 7 for various
value of α.

8.2 A comparison of the proposed method with other methods
Due to the novelty of the subject, there are few numerical methods available in the litera-
ture for solving the system (1). We found only a type of predictor–corrector method intro-
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Figure 6 Amount of drug lidocaine in the bloodstream for various value of α

Figure 7 Amount of drug lidocaine in the body tissue for various values of α

duced in [29] for solving such systems numerically. We use the numerical values reported
in that paper to compare our proposed method with that one. Consider Example 4.1 of
[29]. It corresponds to A = 0, and f (t) = 0, with the notations of this paper. As we see in
Table 5, the result of our method, even with small N = 1, 2, 3, is much better than the result
of [29].

9 Conclusion
We used the Clenshaw–Curtis quadrature to obtain an operational matrix of a fractional
integral based on Chebyshev polynomials. Then, by taking the fractional integral from
both sides of the system of FDEs involving the Mittag-Leffler kernel, we obtained a sys-
tem of second kind weakly singular equations involving the fractional integral of the non-
homogeneous part. This system was transformed to a system of linear algebraic equations,
and using vectorization operator we obtained the system of standard linear algebraic equa-
tions. Solving it we obtained an approximate solution of the system of AB type FDEs.
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Table 5 A comparison between the proposed method of this paper and the method proposed in
[29], (Method 1), with N = 1, 2, 3 for α = 0.5

t y(t) Method 1 y1(t) y2(t) y3(t)

0.2 0.1336 0.0639 0.1447 0.1370 0.1342
0.4 0.2952 0.2469 0.3213 0.2961 0.2944
0.6 0.4748 0.4599 0.4979 0.4728 0.4745
0.8 0.6691 0.8189 0.6746 0.6669 0.6698
1.0 0.8761 1.0797 0.8512 0.8786 0.8755

E1(N) – 0.2036 0.0319 0.0046 0.0015

Numerical examples showed that the proposed method effectively and accurately solves
the system of FDEs. The successfulness of the new definition of the fractional derivative
and integral, involving the Mittag-Leffler kernel, makes it important to improve numeri-
cal methods for nonlinear system of FDEs and to implement numerical methods in other
bases. Therefore, future studies with this new type of calculus are to find more experimen-
tal data and to compare the related results to the Liouville–Caputo and Riemann–Liouville
derivatives. Also, the stability of the related fractional differential equations needs more
investigation.
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