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Abstract
Allee effect (i.e. sparse effect) is active when the population density is small. Our
purpose is to study such an effect of this phenomenon on population dynamics. We
investigate an impulsive state feedback control single-population model with Allee
effect and continuous delay. We first qualitatively analyze the singularity of this model.
Then we obtain sufficient conditions for the existence of an order-one periodic orbit
by the geometric theory of impulsive differential equations for the survival of
endangered populations and obtain the uniqueness of an order-one periodic orbit by
the monotonicity of the subsequent function. Furthermore, we prove the orbital
asymptotic stability of an order-one periodic orbit using the geometric properties of
successor functions to confirm the robustness of this control. Finally, we verify the
correctness of our theoretical results by using some numerical simulations. Our results
show that the release of artificial captive African wild dog (Lycaon pictus) can
effectively protect the African wild dog population with Allee effect.
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1 Introduction
The African wild dog is one of the endangered carnivorous species in South Africa. They
are mainly distributed in parts of eastern and southern Africa. In the past few decades
the habitat of African wild dog has been drastically reduced, and the population quan-
tity has declined significantly [1]. Research suggests that there are many reasons for the
sharp decline in the distribution and number of African wild dogs, which may include
conflicts with humans, habitat loss, persecution and competition with other predators,
genetic diversity of infectious diseases, and inbreeding depression [2]. The scholars ana-
lyzed the demographic data of endangered Lycaon pictus in Hluhluwe–Imfolozi Park in
South Africa from 1980 to 2004. They found that the African wild dog population has
an obvious Allee effect [3]. In 1931, W.C. Allee paid attention to the possibility of a posi-
tive relationship between individual aspects of fitness and population density [4]. In other
words, when the species has a small population density, the death rate increases, and the
birth rate decreases, then the risk of species extinction increases. There are many reasons
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for this phenomenon. For example, for an individual, it is difficult to seek spouses and dif-
ficult to resist enemies and inbreeding depression [5]. Therefore many researches focus
on the Allee effect (sparse effect) and have done a lot of work in this direction [6–9].

The Allee effect has been observed in many species, such as plants, marine inverte-
brates, and mammals [8]. For these species, there exists a minimum survival threshold,
which implies that it is not necessary to adopt any measure to intervene when the popula-
tion density is above this threshold [10]. But once the population density is lower than the
survival threshold, some corresponding control measures should be performed according
to the state of the target species. So the threshold strategy is also called the state feed-
back control strategy. This strategy can be precisely described by an impulsive differential
equation in mathematics [11].

In recent years, impulsive differential equations have been used in various fields [12–20],
such as disease control and pharmacology [21–29], integrated pest management [30–38],
microbial culture [38–43], and protection of endangered animals and plants [44–51]. For
example, Zhang et al. [10] focused on a predator–prey model with impulsive state feed-
back control and assuming that the spraying pesticide and releasing the natural enemies
are taken at different thresholds. Liang et al. [5] investigated a state-dependent impulsive
control model for computer virus propagation under media coverage, and the results show
that the media coverage can delay the spread of computer virus. Nie et al. [52] studied dif-
ferent types of chemostat ecosystems of microbial cultures. However, there are few studies
on the use of impulsive control strategies to protect the endangered species.

Assume that the model with Allee effect of African wild dog species is as follows:

dx
dt

= x
[

r
(

1 –
x
K

)
–

a
cax + 1

]
, (1)

where K is the maximum capacity of the environment, r is the intrinsic growth rate, and
a

cax+1 represents the Allee effect caused by mating restrictions. If a >
√

r
ck , then for sys-

tem (1), there exists the Allee effect [8]. However, the population number of African wild
dogs also depends on the population density at all times in the past. Therefore the investi-
gation of continuous time delay in population dynamics has a great significance. Therefore
we consider an African wild dog model with Allee effect and continuous time delay as fol-
lows:

dx
dt

= x
[

r
(

1 –
x
K

)
–

a
cax + 1

– ω

∫ t

–∞
e–b(t–s)x(s) ds

]
. (2)

We assume that y(t) =
∫ t

–∞ e–b(t–s)x(s) ds. We think that artificial breeding methods and
monitoring the population size can protect the African wild dog. When the population
number of African wild dogs reaches the minimum survival threshold h, the release of
artificial captivity in the African wild dog population is considered as an effective method
of protection. So we consider an African wild dog impulsive feedback control model with
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Allee effect and continuous time delay as follows:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

dx
dt = x[r(1 – x

K ) – a
cax+1 – ωy],

dy
dt = x – by,

⎫⎬
⎭ x > h,

�x(t) = p,

�y(t) = 0,

⎫⎬
⎭ x = h.

(3)

In this work, all the parameters are positive, and
∫ ∞

0 e(–s) ds = 1.
The paper is organized is as follows. In Sect. 2, we first analyze qualitatively the singular-

ity of system (3) without impulse effect by the Bendixson–Dulac theory. Then we use the
geometric theory of impulsive differential equations to prove the existence of a periodic
orbit. The uniqueness of the periodic orbit of model (3) is proved by the monotonicity of
subsequent functions. Meanwhile, the geometric properties of subsequent functions are
used to prove the stability of the periodic orbit of system (3) in Sect. 3. In Sect. 4, we il-
lustrate the correctness of the results obtained by some numerical simulations. Finally, we
conclude our work.

2 Dynamic analysis of system (3)
2.1 Qualitative analysis of system (3)
In this subsection, we first discuss system (3) without impulse. Thus we consider the fol-
lowing system:

⎧⎨
⎩

x′(t) = x(t)[r(1 – x(t)
K ) – a

cax(t)+1 – ωy(t)] � P(x, y),

y′(t) = x(t) – by(t) � Q(x, y).
(4)

Then, we solve the system

⎧⎨
⎩

x(t)[r(1 – x(t)
K ) – a

cax(t)+1 – ωy(t)] = 0,

x(t) – by(t) = 0.
(5)

Obviously, system (3) has the equilibrium point O(0, 0) and a positive equilibrium point
E∗(x∗, y∗), where

x∗ =
(rcabK – rb – ωK) +

√
�

2(rcab + ωcaK)
,

y∗ =
(rcabK – rb – ωK) +

√
�

2b(rcab + ωcaK)
,

and

� = (rcabK – rb – ωK)2 + 4(rK – aK)
(
rcab2 + ωKca

)
.

Let

(H1) : K < 2x∗
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and

(H2) :
√

r
cK

< a < 2b.

Theorem 2.1 If (H1) holds, then the point E∗(x∗, y∗) is locally asymptotically stable.

Proof The Jacobian matrix at the point E∗(x∗, y∗) is

J =

⎛
⎝ r –

2rx∗

K
–

a
(cax∗ + 1)2 – ωy∗ –ω

1 –b

⎞
⎠ .

Iif (H1) holds, then we have

tr
(
J
(
E∗)) = r –

2rx∗

K
–

a
(cax∗ + 1)2 – ωy – b < 0

and

Det
(
J
(
E∗)) = –b

[
r –

2rx∗

K
–

a
(cax∗ + 1)2 – ωy

]
+ ω > 0.

Thus the point E∗(x∗, y∗) is a locally asymptotically stable node or focus. �

Theorem 2.2 If (H1) and (H2) hold, then the point E∗(x∗, y∗) is globally asymptotically
stable.

Proof Let B = 1
x . Then

D =
∂(PB)

∂x
+

∂(QB)
∂y

= –
r
K

+
ca2

(cax + 1)2 –
b
x

=
Kca2x – r(cax + 1)2 – bK(cax + 1)2

(cax + 1)2

=
–rc2a2x3 – 2carx2 – rx – bKc2a2x2 – 2cabKx – bK + cKa2x

(cax + 1)2

=
caKx(a – 2b) – rc2a2x3 – 2carx2 – rx – bKc2a2x2 – bK

(cax + 1)2 .

Obviously, if (H2) holds, then the function

D =
∂(PB)

∂x
+

∂(QB)
∂y

< 0.

In other words, system (4) has no limit cycle in R+
2 = {(x, y)|x ≥ 0, y ≥ 0}, and every solu-

tion of system (4) is bounded in R+
2 . According to the method in [8], the point E∗(x∗, y∗) is

a globally asymptotically stable focus or node (see Fig. 1). �
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Figure 1 Phase diagram of system (3) with r = 1,
K = 5, b = 2, a = 0.5, ω = 0.1, c = 3

2.2 Dynamic analysis of an order-one periodic orbit of system (3)
2.2.1 System (3) has a unique periodic orbit
In this subsection, we study the existence and uniqueness of an order-one periodic orbit.
We assume that the impulsive set M = {(x, y) ∈ R+

2 |x = h, y ≥ 0} and phase set N = {(x, y) ∈
R+

2 |x = h + p, y ≥ 0} are straight lines. The trajectory that starts from any point A is denoted
by f (A, t). A positive equilibrium E∗(x∗, y∗) is globally asymptotically stable if conditions
(H1) and (H2) hold.

Theorem 2.3
(1) If 0 < h < h + p ≤ x∗, then system (3) has no order-one periodic orbit.
(2) If 0 < h < x∗ < h + p < K , then system (3) has no order-one periodic orbit.

Proof Case 1. 0 < h < h + p ≤ x∗.
If 0 < h < h + p ≤ x∗, then the impulsive set M and the phase set N are on the left of the

point E∗(x∗, y∗). The impulsive set M and the phase set N intersect the x-axis at the points
M′(h, 0) and N ′(h + p, 0), respectively. The isoclinic line ẋ = 0 intersects with the x-axis at
the point E′(τ , 0), where

τ =
(rKca – r) +

√
�

2rca

and

� = (rKca – r)2 + 4rca(rK – aK).

The intersection point of the isoclinic line ẋ = 0 and the impulsive set M is F1(h, yF1 ),
where

yF1 =
(ahc + 1)(rK – rh) – aK

ωK(ahc + 1)
.

According to the biological background, we only have to study the dynamic behavior of
such a system in the region � = {(x, y)|x ≥ h, 0 < y ≤ bM – Kx}, where bM is a sufficiently
large constant satisfying dχ

dt |χ=0 < 0.
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Let

χ : Kx + y – bM = 0.

Then we have

dχ

dt

∣∣∣
χ=0

=
Kdx
dt

+
dy
dt

= x – bMy + K
[

x
(

r –
rx
K

)
–

a
cax + 1

– ωy
]

= x + rKx – rx2 –
aK

cax + 1
– ωKy – bMy

= (1 + rK)x – rx2 –
aK

cax + 1
– (ωK + bM)y < 0.

This implies that there must exist an intersection point of the trajectory f (F1, t) and the
phase set N denoted by F(h + p, yF ). The point F1 jumps to the point F1 due to the impulse
effect. According to the definition of the subsequent function in [5] and the trajectory tend
of system (3), the subsequent function of the point F is

g(F) = yF1 – yF < 0.

The trajectory f (N ′, t) will have no intersection point with the impulsive set M. Thus,
the trajectory starting from any point located on the segment FN ′ ⊂ N is attractive to the
positive equilibrium point E∗ by impulse effect. The orbit starting from any point that is
above the point F is also attractive to the point E∗ by several impulsive effects at most.

In summary, system (3) has no order-one periodic orbit when 0 < h < h + p ≤ x∗ (see
Fig. 2).

Case 2. 0 < h < x∗ < h + p < K
If 0 < h < x∗ < h + p < K holds, then the point E∗(x∗, y∗) is between the impulsive set M

and the phase set N . The isoclinic line ẋ = 0 intersects the impulsive set M at the point

Figure 2 Existence of order-one periodic orbit if
0 < h < h + p ≤ x∗
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F1(h, yF1 ). The impulsive set M intersects the x-axis at the point M′(h, 0), and the intersec-
tion point of the phase set N and the x-axis is the point N ′(h + p, 0).

Thus the orbit f (N ′, t) tends to the point E∗(x∗, y∗), and the trajectory f (F1, t) surely has
an intersection point with the phase set N , denoted by F(h + p, yF ), where

yF > y∗ =
(rcabK – rb – ωK) +

√
�

2b(rcab + ωcaK)
.

Thus the point F1 will jump to the point F1 ∈ N by the impulse effect. So the subsequent
function of the point F is

g(F) = yF1 – yF < 0.

Similarly, the orbit that starts from any point on the segment FN ′ ⊂ N will tend to the
positive equilibrium point E∗(x∗, y∗), and the trajectory starting from any point above the
point F on the phase set N will also be attractive to the point E∗ by several impulse effects
at most.

Thus, system (3) has no order-one periodic orbit if 0 < h < x∗ < h + p < K (see Fig. 3). �

Theorem 2.4 If 0 < x∗ ≤ h < h + p < K , then system (3) has an order-one periodic orbit,
and when h + p >

√
	+(brkca–ωr–br)
2(brca+ωKca) , the order-one periodic orbit is unique.

Proof Let 0 < x∗ ≤ h < h + p < K . Then the positive equilibrium point E∗ is on the left of
the impulsive set M. The phase set N intersects the isoclinic line ẋ = 0 and ẏ = 0 at the
points P(h + p, yP) and H(h + p, h+p

b ), respectively, where

yP =
–rca(h + p)2 + (rKca – r)(h + p) + K(r – a)

ωKca(h + p) + ωK
.

By the asymptotic stability of the point E∗ the trajectory f (H , t) intersects the impulsive
set M at the point H1, then it hits the impulsive set M at the point H1(h + p, yH1 ) on the

Figure 3 Existence of order-one periodic orbit if
0 < h < x∗ < h + p < K
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phase set N . The successor point H1 of the point H is surely under the point H , so yH1 < yH .
Then the subsequent function of the point H is

g(H) = yH1 – yH < 0.

The trajectory f (P, t) hits the impulsive set M at the point P1, then jumps to the point
P1(h + p, yP1 ) by the impulsive effect. The successor point P1 of the point P must be above
the point P by the trajectory tend of system (3). Thus the subsequent function of the point
P is

g(P) = yP1 – yP > 0.

By [10] there must be a point S between the points H and F such that

g(S) = 0,

and thus the orbit f (S, t) is an order-one periodic orbit of system (3) when 0 < x∗ < h <
h + p < K (see Fig. 4).

Now, we prove the uniqueness of the order-one periodic orbit of system (3).
We choose any two points G(h + p, yG) and I(h + p, yI) such that

yG > yI .

The intersection point of the trajectory f (G, t) and the impulsive set M is the point G1.
Then the point G1 jumps to the point G1 by impulse effects. The subsequent function of
the point G is

g(G) = yG1 – yG.

The intersection point of the orbit f (I, t) and the impulsive set M is the point I1,.Then
the point I1 jumps to the point I1 by impulse effects. The subsequent function of the point

Figure 4 Existence and uniqueness of order-one
periodic orbit if 0 < x∗ ≤ h < h + p < K
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I is

g(I) = yI1 – yI .

Let the function y(x,Q0) be denoted by the coordinates of an arbitrary point on the tra-
jectory f (Q0, t), where Q0 is the starting point. According to

yG > yI ,

we define

yG(x) � y(x,G), yI(x) � y(x,I)

and

dGI = yG(x) – yI(x), x ∈ [h, h + p].

Hence we have

d′
GI(x) = y′

G(x) – y′
I(x)

=
K(cax + 1)

x

[
x – byG

(rK – rx – ωyGK)(cax + 1) – aK

–
x – byI

(rK – rx – ωyIK)(cax + 1) – aK

]

=
K(cax + 1)

x
φ′(ς )(yG – yI),

where

φ(y) =
x – by

(rK – rx – ωyK)(cax + 1) – aK

and

φ′(y) =
–b[(cax + 1)(rK – rx – ωKy)] + ωK(cax + 1)(x – by)

[(cax + 1)(rK – rx – ωKy) – aK]2

=
–brcaKx + brcax2 – brK + brx + ωKcax2 + ωKx

[(cax + 1)(rK – rx – ωKy) – aK]2

=
(brca + ωKca)x2 + (ωK + br – brkca)x – brk

[(cax + 1)(rK – rx – ωKy) – aK]2

when

h + p >
√

	 + (brkca – ωr – br)
2(brca + ωKca)

,

where

	 = (ωK + br – brKca)2 + 4brK(brKa + ωKca).
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Then

φ′(y) > 0,

and thus

d′
GI > 0

for x ∈ [h, h + p]. In summary, the function dGI(x) is an increasing function, and

dGI(h + p) > dGI(h).

Let

d1 = dGI(h + p) = yG – yI ,

d2 = dGI(h) = yG1 – yI1 .

Obviously,

d1 > d2.

Hence the subsequent function of the points G and I satisfies

g(G) – g(I) = (yG1 – yG) – yI1 = yI

= –(yG – yI) + (yG1 – yI1 )

= d2 – d1 < 0.

Thus, the successor function is decreasing monotonously on the phase set N . So there
must exist a unique point S such that g(S) = 0. This means that the order-one periodic
orbit of system (3) is unique. �

3 Stability of the order-one periodic solution
Theorem 3.1 The periodic orbit of system (3) is orbitally asymptotically stable.

Proof By Theorems 2.3 and 2.4 system (3) has a unique order-one periodic orbit between
the points H and F , and yF < yS < yH . Thus g(F) > 0 for any F ∈ N with yS > yF , g(H) < 0
for any H ∈ N with yH > yS , and g(F) = g(H) = 0 if and only if H = F = S.

Then we choose an arbitrary point F0 on the phase set N . If F0 ∈ N/FS, then after several
impulse effects, the orbit jumps to the segment FS. Hence we assume that F0 ∈ FS ⊂ N .
The orbit f (F0, t) hits the impulsive set M at the point F1, then the point F1 jumps to the
point F1 ∈ N after an impulse effect, and

yF < yF0 < yF1 = yF1 < yS.
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The orbit f (F1, t) intersects the impulsive set M at the point F2, then jumps to the point
F2 ∈ N , and

yF < yF0 < yF1 < yF2 < yS.

The orbit f (F2, t) hits the impulsive set M at the point F3, then jumps to the point F3 ∈ N ,
and

yF < yF0 < yF1 < yF2 < yF3 < yS.

Repeating this process, we get a point sequence {Fk}, where k = 0, 1, 2, . . . , such that

yF < yF0 < yF1 < · · · < yFk < · · · ≤ yS.

Then the sequence Fk ‖k=0,1,2,... is an increasing sequence with upper bound yS . Accord-
ing to the monotone bounded theorem, there exists the limit limk→∞ yFk = yS′ , which im-
plies that

g
(
S′) = g

(
lim

k→∞
yFk

)
= lim

k→∞
g(yFk ) = lim

k→∞
(yFk+1 – yFk ) = 0.

Since g(F) = 0 if and only if F = S, we get S′ = S, that is,

lim
k→∞

g(yFK ) = yS′ = yS.

Similarly, by the same method we obtain a point sequences Ik ‖k=0,1,2,... such that

yS ≤ · · · < yIk < · · · < yI2 < yI1 < yI0 < yI .

Since {Ik} is an decreasing sequence with lower bound yS , by the monotone bounded
theorem it has the limit limk→∞ yIk = yS′ , which means that

g
(
S′) = g

(
lim

k→∞
yIk

)
= lim

k→∞
g(yIK ) = lim

k→∞
(yIk+1 – yIk ) = 0.

Since g(I) = 0 if and only if I = S, we get S′ = S, that is, yIk = yS . Then we have

yF < yF0 < yF1 < · · · < yFk < · · · ≤ yS ≤ · · · < yIk < · · · < yI2 < yI1 < yI0 < yJ .

By the arbitrariness of the points I0 and F0 we have

lim
k→∞

yIk = lim
k→∞

yFk = yS.

In summary, all orbits of system (3) tend to the order-one periodic orbit (see [5]). So
the order-one periodic orbit of system (3) is orbitally asymptotically stable and globally
attractive (see Fig. 5). �
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Figure 5 Orbital asymptotically stability of the
order-one periodic orbit of system (1)

Thus our theoretical results show that releasing the African wild dogs in captivity to the
wild is effective for protecting African wild dog population with Allee effect and contin-
uous delay. Therefore, when protecting African wild dogs, we can determine the survival
threshold, have African wild dogs in captivity, and monitor the wild populations (the ini-
tial value). Then, according to the state feedback of wild white-headed langurs, a certain
amount of white-headed langurs in captivity will be released to the wild to increase the
number of white-headed langurs in the wild, making the population have a normal repro-
duction to survive. According to the survival threshold and initial value, we can choose
different grazing plans.

4 Numerical simulations and conclusion
4.1 Numerical simulations
In this section, we verify the correctness of the results by two examples.

Example 4.1 Let r = 1, K = 5, ω = 0.1, b = 2, c = 3, and a = 0.5. By calculations we obtain
the point E∗(3.694254177, 10847127088). Thus system (3) becomes

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

dx
dt = x[1(1 – x

5 ) – 0.5
1.5x+1 – 0.1y],

dy
dt = x – 2y,

⎫⎬
⎭ x > h,

�x(t) = 0.8,

�y(t) = 0,

⎫⎬
⎭ x = h.

(6)

Then we get the following cases.
Case I: Let h = 2.2, p = 0.8. Then 0 < h < h + p < x∗. See Fig. 6.
Case II: Let h = 3.39, p = 0.8. Then 0 < h < x∗ < h + p < K . See Fig. 7.
Case III: Let h = 4, p = 0.8. Then 0 < x∗ < h < h + p < K . See Fig. 8.

Example 4.2 We verify the feasibility of feedback control strategy by a real-life example.
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Figure 6 (a) Phase portrait of system (3) with h = 2.2, p = 0.8, and the initial point is �(3, 1.4611). (b) (c) Time
series of model (3)

Figure 7 (a) Phase portrait of system (3) with h = 3.39, p = 0.8, and the initial point is �(5, 3.35). (b) (c)Time
series of model (3)
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Figure 8 (a) Phase portrait of system (3) with h = 4, p = 0.8, and the initial point is �(0.45, 2.5). (b) (c) Time
series of model (3)

In [8], the authors studied the data from 1980–2004 on a small region population of
Lycaon pictus in Hluhluwe–Imfolozi Park (HIP) to analyze the pack and population den-
sity dynamics. According to these data in [8], the authors take the annual growth rate of
Lycaon pictus is 0–1.47, the carrying capacity K is 2.2–13.3, the parameter a is 0.6–1.3,
and c is 0.5–1.2. Thus, we assume that the initial value of the pack is 2. We determine the
minimum survival threshold by monitoring the population of Lycaon pictus in the wild;
when the population of Lycaon pictus decreases to 1.5, a certain amount of Lycaon pictus
in captivity is released to the wild. Let the parameters r = 1, K = 2.5, a = 0.7, c = 1, ω = 0.1,
and b = 1 (see Fig. 9). Numerical simulation shows that the feedback control strategy can
effectively protect the Lycaon pictus population.

4.2 Conclusion
In this paper, we studied the African wild dogs impulsive state feedback control model
with Allee effect and continuous time delay. By the feedback information of the density
of African wild dog population from the monitor we can protect the African wild dog
population.

First, we carried on the quantitative and qualitative analysis and obtained two condi-
tions (H1) and (H2). We proved the global asymptotic stability of the positive equilibrium
E∗(x∗, y∗) by the Bendixson–Dulac theory.

Then we proved that the existence of an order-one periodic orbit of system (3) by the
geometric theory of differential equations. We also proved the uniqueness of the order-
one periodic orbit of system (3) by the monotonicity of the successor functions and the
Lagrange mean value theorem.
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Figure 9 The parameter x denotes the density of
Lycaon pictus. The red line denotes the sample path
of species with Allee effect and feedback control,
and the blue star denotes the experimental data

Finally, we studied the orbital asymptotic stability of the order-one periodic orbit by the
geometric properties of successor functions. Then we proved that the limit exists by the
uniqueness of the order-one periodic orbit and the limit existence theorem.

All the results suggest that the release of artificial captive of African wild dogs can effec-
tively protect the African wild dog population with Allee effect. The determination of the
value of the survival threshold h involves analyzing the viability of the African wild dog
population, which will be our future work.
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