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Abstract
In this paper, we deal with the exact controllability of a class of fractional evolution
equations with time-varying delay. Under the nonlocal condition, the exact
controllability of this system is established by applying a Leray–Schauder alternative
theorem and the theory of propagation families in a Banach space. As an application,
the controllability of a fractional partial differential equation is examined to show the
effectiveness of our result.
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1 Introduction and main results
It is well known that the fractional differential equations (FDE) are regarded as a more
precise description of real life phenomena. There are many papers in the literature inves-
tigating various fractional dynamical systems; see, for example, [1–5]. Controllability of
linear and nonlinear fractional dynamical systems, which plays a vital role in various ar-
eas of science and engineering, was established in finite dimensional spaces, see [6–15]. In
[16] the authors consider the Cauchy problem of a class of semilinear fractional evolution
systems in a Banach space. It is noteworthy that a nonlocal Cauchy condition initiated
in [17] is related to the diffusion phenomenon of a little amount of gas in a transparent
container. Moreover, this nonlocal condition usually covers four classical cases: the ini-
tial valued problem, the periodic and antiperiodic problem, and mean valued problems,
see [18]. However very little is known about nonlocal problems of fractional control sys-
tems. For research on nonlocal problems of evolution equations, we refer the reader to the
papers of [19–24] and the references therein.

Fractional differential equations with delay features are present in areas such as physi-
cal and medical ones with non-constant delay. Recently, several researchers have been in-
creasingly interested in the issues of controllability results of mild solutions for these prob-
lems. Subsequently, a few papers on the existence of fractional order integro-differential
equations and impulsive differential equations with delay have been published, see [25–
31]. For research on approximate controllability of fractional order systems with delay, we
refer the reader to the papers of [32–36] and the references therein. In [37] the authors
prove the controllability of fractional functional evolution equations of Sobolev type with
constant delay. Some of the works on fractional partial differential equations (PDEs) and
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on the controllability of fractional PDEs are investigated in [38–42]. As we shall see, the
fractional derivative may bring some memory effect which has a great impact on the con-
trol properties of these systems. In [41], Lü and Zuazua defined a new notion of control-
lability which does not only control the value of the state at the final time, but also the
memory accumulated by the long-tail effects that the fractional derivative introduces. In
this setting, they proved the controllability properties for fractional in time ODEs and
PDEs, the analysis of the problem of controllability of fractional (in time) ordinary and
partial differential equations is failure. In this sense, for fractional in time derivatives, due
to memory effects induced by the integral term, the fact that the solution reaches the fi-
nal state at time t = T does not guarantee that the solution stays at rest for t ≥ T when
the control action stops. Consequently, in order to gain the controllability properties for a
fractional in time system, we only consider the controllability in the classical control sense,
which means that we do not ask for the state of the system to remain for t ≥ T without
control. Furthermore, the fractional order control system with time-varying delay and the
nonlocal condition considered in this paper is different from these problems mentioned
above.

Let X and Y be two real Banach spaces with norms ‖ · ‖ and ‖ · ‖Y , respectively. The
aim of this paper is to discuss the controllability of the following fractional order control
system with time-varying delay:

⎧
⎨

⎩

Dα
t (Lx(t)) + Ax(t) = f (t, x(t – v(t)) + Bu(t), t ∈ I := [0, T],

Lx(t) = φ(t) + b(x)(t), t ∈ [–τ , 0].
(1.1)

Here Dα
t , 0 < α < 1, is the regularized Caputo fractional derivative of order α (see Def-

inition 1.2); A : D(A) ⊂ X → Y is a linear closed operator; L : D(L) ⊂ X → Y is a linear
operator where the domain D(L) of L becomes a Banach space with norm ‖x‖D(L) := ‖Lx‖,
x ∈ D(L). Also, the control function u(·) is given in a Banach space L∞(I, U) where U is
also a Banach space; B : U → Y is a bounded linear operator; the functions v : I → (0, τ ]
and φ : [–τ , 0] → Y are continuous; b : C([–τ , T], X) → C([–τ , 0], Y ) is a continuous func-
tion and f : I × C([–τ , 0], X) → Y is a given function to be specified later. In this paper,
we will not assume that the linear operator A generates a compact continuous semigroup
(see [43]) and the Lipschitz continuity on f and b which is essential in [44].

Let J ⊂ R be a compact set, we denote by C(J , X) a Banach space with norm given by
‖y‖C = supt∈J ‖y(t)‖ for y ∈ C(J , X). Let �(X, Y ) be a Banach space of all bounded linear
operators from X into Y endowed with the norm ‖ · ‖�(X,Y ) in the uniform operator topol-
ogy. The aim of this paper is to establish sufficient conditions for the controllability of
system (1.1) via a Leray–Schauder alternative theorem and the theory of propagation fam-
ilies. Also, an example of a fractional feedback control system is discussed to illustrate our
theory.

Let us recall some basic definitions and facts which are essential throughout the work.
In particular, we introduce some properties of fractional calculus [45], some facts in semi-
group theory [2, 4, 46].
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Definition 1.1 The fractional integral of order β with the lower limit zero for a function
x : [0,∞) → R is defined as

D–β
t x(t) =

1
�(β)

∫ t

0
(t – s)β–1x(s) ds, t > 0,β > 0

provided the right-hand side is point-wise defined on [0,∞), where � is the gamma func-
tion.

Definition 1.2 The Caputo fractional derivative of order β ∈ (0, 1) of a function x(t) is
defined by

Dβ
t x(t) =

1
�(1 – β)

∫ t

0
(t – s)–βx′(s) ds.

Lemma 1.1 If x(t) ∈ Cn[0, T], then

D–β
t Dβ

t x(t) = x(t) –
n–1∑

k=0

xk(0)
k!

tk ,

where β ∈ [n – 1, n), n ∈ N . In particular, if x(t) ∈ C1[0, T] and β ∈ (0, 1), then D–β
t Dβ

t x(t) =
x(t) – x(0).

We need the following assumptions on the operators A and L.
(H1) A is a closed linear operator, L is also a linear operator and bijective, and D(L) ⊂

D(A).
(H2) The linear operator L–1 : Y → X is compact (which implies that L–1 is bounded).

Remark 1.1 From (H1), we know that L is closed due to the fact that L–1 is injective and
closed. It follows from (H1)–(H2) and the closed graph theorem that the linear operator
–AL–1 : Y → Y is bounded. Thus, –AL–1 generates a semigroup {WL(t), t ≥ 0}, WL(t) :=
e–AL–1t .

Now, let

ψα(s) =
1
π

∞∑

n=1

(–1)n–1s–αn–1 �(1 + αn)
n!

sin(nπα), s ∈ [0,∞),

be one-sided stable probability density whose Laplace transform is provided by

∫ ∞

0
e–λθψα(s) dθ = eλα

, (1.2)

where α ∈ (0, 1). We state families of operators P(t), t ≥ 0, on Y as follows:

P(t) =
∫ ∞

0
αsηα(s)WL

(
stα

)
ds,

where ηα(s) := 1
α

s–(1+ 1
α )ψα(s– 1

α ) is the function of Wright type where ηα(s) ≥ 0, s ∈ (0,∞),
and

∫ ∞
0 ηα(s) ds = 1. Note that P(t) is a bounded linear operator on Y and continuous for
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t > 0 in the means of uniform operator topology. Moreover, for all x ∈ Y , then

∥
∥P(t)x

∥
∥

Y ≤ αM1‖x‖Y

�(1 + α)
, (1.3)

where ‖W‖�(Y ) := supt≥0 ‖WL(t)‖ ≤ M1 for t > 0 (see Remark 2.1.3, [47]). For details, we
refer the reader to [2, 4].

In view of Lemma 1.1, we can rewrite system (1.1) in the equivalent fractional integral
equation

⎧
⎨

⎩

Lx(t) = φ(0) + b(x)(0) + 1
�(α)

∫ t
0 (t – s)α–1g(s) ds, t ∈ I,

Lx(t) = φ(t) + b(x)(t), t ∈ [–τ , 0],
(1.4)

provided that the integral in (1.4) exists, where g(t) := –Ax(t) + f (t, x(t – v(t))) + Bu(t) for
t ∈ I .

For x ∈ Y , we define two families AL(t), t ≥ 0, and BL(t), t ≥ 0, of operators given by

AL(t)x =
∫ ∞

0
L–1ηα(s)WL

(
stα

)
x ds,

BL(t)x =
∫ ∞

0
L–1αsηα(s)WL

(
stα

)
x ds.

Lemma 1.2 If

Lx(t) = Lx(0) +
1

�(α)

∫ t

0
(t – s)α–1(–Ax(s) + f

(
s, x

(
s – v(s)

))
+ Bu(s)

)
ds (1.5)

for t ∈ I holds, then we obtain

Lx(t) = AL(t)
(
Lx(0)

)
+

∫ t

0
(t – s)α–1BL(t – s)

(
f
(
s, x

(
s – v(s)

))
+ Bu(s)

)
ds, t ∈ I.

Proof Using the Laplace transforms with respect to t on (1.5), one has that

Ly(λ) =
1
λ

Lx(0) –
1
λα

AL–1Ly(λ) +
1
λα

w(λ)

= λα–1(λαI + AL–1)–1(Lx(0)
)

+
(
λαI + AL–1)–1w(λ)

= λα–1
∫ ∞

0
e–λαsWL(s)

(
Lx(0)

)
ds +

∫ ∞

0
e–λα sWL(s)

(
Lx(0)

)
ds, (1.6)

provided that the integrals in (1.5) exist, where I is the identity operator defined on Y , the
Laplace transform of x, f (t, x), and u are defined by

y(λ) =
∫ ∞

0
e–λsx(s) ds

and

w(λ) =
∫ ∞

0
e–λs(f

(
s, xv(s)

)
+ Bu(s)

)
ds, λ > 0.
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From (1.2) and (1.6), we get

λα–1
∫ ∞

0
e–λαsWL(s)

(
Lx(0)

)
ds

=
∫ ∞

0
α(λt)α–1e–(λt)α WL

(
tα

)(
Lx(0)

)
dt

= –
∫ ∞

0

1
λ

d
dt

[
e–(λt)α ]

WL
(
tα

)(
Lx(0)

)
dt

=
∫ ∞

0

∫ ∞

0
θψα(θ )e–λtθ WL

(
tα

)(
Lx(0)

)
dθ dt

=
∫ ∞

0
e–λt

[∫ ∞

0
ψα(θ )WL

(
tα

θα

)
(
Lx(0)

)
dθ

]

dt, (1.7)

and
∫ ∞

0
e–λαsWL(s)w(λ) ds

=
∫ ∞

0

∫ ∞

0
αtα–1e–(λt)α WL

(
tα

)
e–λs(f

(
s, xv(s)

)
+ Bu(s)

)
ds dt

=
∫ ∞

0

∫ ∞

0

∫ ∞

0
αψα(θ )e–λtθ tα–1WL

(
tα

)
e–λs(f

(
s, xv(s)

)
+ Bu(s)

)
dθ ds dt

=
∫ ∞

0

∫ ∞

0

∫ ∞

0
αψα(θ )e–λ(t+s) tα–1

θα
WL

(
tα

θα

)

e–λs(f
(
s, xv(s)

)
+ Bu(s)

)
dθ ds dt

=
∫ ∞

0
e–λt

[

α

∫ t

0

∫ ∞

0
ψα(θ )WL

(
(t – s)α

θα

)

× (
f
(
s, xv(s)

)
+ Bu(s)

) (t – s)α–1

θα
dθ ds

]

dt. (1.8)

In view of (1.7) and (1.8), we have

Ly(λ) =
∫ ∞

0
e–λt

[∫ ∞

0
ψα(θ )WL

(
tα

θα

)
(
Lx(0)

)
dθ

+ α

∫ t

0

∫ ∞

0
ψα(θ )WL

(
(t – s)α

θα

)
(
f
(
s, xv(s)

)
+ Bu(s)

) (t – s)α–1

θα
dθ ds

]

dt. (1.9)

Now we take the invert Laplace transform on (1.9) to get

x(t) =
∫ ∞

0
L–1ψα(θ )WL

(
tα

θα

)
(
Lx(0)

)
dθ

+ α

∫ t

0

∫ ∞

0
L–1ψα(θ )WL

(
(t – s)α

θα

)
(t – s)α–1

θα

(
f
(
s, xv(s)

)
+ Bu(s)

)
dθ ds

=
∫ ∞

0
L–1ηα(θ )WL

(
tαθ

)(
Lx(0)

)
dθ

+
∫ t

0

∫ ∞

0
L–1αθηα(θ )WL

(
(t – s)αθ

)
(t – s)α–1(f

(
s, xv(s)

)
+ Bu(s)

)
dθ ds

= AL(t)
(
Lx(0)

)
+

∫ t

0
(t – s)α–1BL(t – s)

(
f
(
s, xv(s)

)
+ Bu(s)

)
ds, t ∈ I. (1.10)

The proof is completed. �



Cheng et al. Advances in Difference Equations  (2018) 2018:332 Page 6 of 16

The following lemma comes from the results with minor modifications in [37].

Lemma 1.3 The following properties on AL(t) and BL(t) are valid.
(1) For every t ≥ 0, AL(t) and BL(t) are linear and bounded operators, i.e.,

‖AL(t)x‖ ≤ M1‖L–1‖�(Y ,X)‖x‖Y , ‖BL(t)x‖ ≤ ‖L–1‖�(Y ,X)M1
�(α) ‖x‖Y for all x ∈ Y , and

t ∈ (0,∞).
(2) For every x ∈ Y , t →AL(t)x, t → BL(t)x are continuous functions from [0,∞) into Y .
(3) AL(t) and BL(t) are compact operators on X for t > 0.

Definition 1.3 For given u ∈ L∞(I, U), x ∈ C([–τ , T], X) will be said to be a mild solution
of the fractional system (1.1) if and only if it satisfies the following integral equation:

⎧
⎪⎪⎨

⎪⎪⎩

x(t) = AL(t)(φ(0) + b(x)(0)) +
∫ t

0 (t – s)α–1BL(t – s)f (s, x(s – v(s))) ds

+
∫ t

0 (t – s)α–1BL(t – s)Bu(s) ds, t ∈ I,

x(t) = L–1(φ(t) + b(x)(t)), t ∈ [–τ , 0].

(1.11)

Definition 1.4 The fractional system (1.1) is said to be controllable on the interval I if
and only if, for every x1 ∈ X, there exists a control u ∈ L∞(I, U) such that the mild solution
x of system (1.1) satisfies x(T) = x1.

Remark 1.2 In order to gain the excellent controllability properties, Lü and Zuazua [41]
give a new definition of controllability that system is null controllable at time T if, for any
x0 ∈ H , there is a control u ∈ L2(I, U) such that the corresponding solution x(·) satisfies
that x(t) = 0 for all t ≥ T . In this setting, they are interested in the problem of controllabil-
ity. More precisely, they resolve the problem of null controllability in which the objective
is to drive the solution to rest, in other words, to the trivial null state, in finite time. Nev-
ertheless, in the work of Lü and Zuazua this controllability property cannot be achieved
in this case for the fractional in time differential system. This negative result holds even
for finite-dimensional systems in which the control is of full dimension. Consequently, the
same negative results hold also for fractional in time PDE and memory PDEs, regardless
of whether they are of hyperbolic or parabolic nature. This negative result exhibits a com-
pletely opposite behavior with respect to the existing literature on classical ODE and PDE
control.

Remark 1.3 When L = I , I : Y → Y is the identity operator, we have AI(t)x =
∫ ∞

0 ηα(s)WL(stα)x ds, BI(t)x =
∫ ∞

0 αsηα(s)WL(stα)x ds.

Let r := {y ∈ C([–τ , T], X) : ‖y‖C < r} for r ∈ R+. Obviously, r is an open, bounded,
convex subset of C([–τ , T], X). In addition to (H1) and (H2), we still need the following
hypotheses:

(H3) The function f : I × C([–τ , 0], X) → Y satisfies the following two conditions:
(i) for every y ∈ C([–τ , 0], X), t → f (t, y) is strongly measurable, and for each

t ∈ I , y → f (t, y) is continuous;
(ii) there are a measurable function h ∈ L∞

+ (I) and a nondecreasing continuous
function ψ such that ‖f (t, y)‖Y ≤ h(t)ψ(‖y‖C) for almost all t ∈ I , every
y ∈ C([–τ , 0], X).
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(H4) The operator b : C([–τ , T], X) → C([–τ , 0], Y ) is continuous, and there exists a
nondecreasing function g : R+ → R+ such that ‖b(y)‖C ≤ g(r), ∀y ∈ r .

(H5) B : U → Y is a linear bounded operator and the linear operator
K : L∞(I, U) → D(L) defined by

Ku =
∫ T

0
(T – s)α–1BL(T – s)Bu(s) ds (1.12)

has an invertible operator K–1 which takes values in L∞(I, U) \ KerK , and there
exist positive constants M3, M4 such that ‖K–1‖�(D(L),L∞(I,U)) ≤ M3 and
‖B‖�(U ,Y ) ≤ M4.

(H6) Let M2 = Tα‖L–1‖�(Y ,X)M1
�(α) , x1 ∈ X , there exists r > 0 such that

D1g(r) + D2ψ(r) + D3 < r,

where D1 = (1 + M2M3M4)M1‖L–1‖�(Y ,X), D2 = (1 + M2M3M4)M2‖h‖∞,

D3 = M1
∥
∥L–1∥∥

�(Y ,X)‖φ‖C + M2M3M4
(‖x1‖ + M1

∥
∥L–1∥∥

�(Y ,X)‖φ‖C
)
,

and M1, M3, M4 are constants stated in (1.3) and (H5).
It is evident that K is well defined on D(L), since

‖LKu‖Y =
∥
∥
∥
∥

∫ T

0
(T – s)α–1LBL(T – s)Bu(s) ds

∥
∥
∥
∥

Y

≤ αM1TαM4

�(1 + α)
‖u‖L∞(I,U). (1.13)

Now we state a Leray–Schauder alternative theorem and our main result.

Lemma 1.4 (see [44]) Let C be a bounded convex subset of a Banach space X, Q be an
open subset of C and 0 ∈ Q. Let � : Q → C be a continuous, compact (that is, �(Q) is a
precompact subset of C) map. Then either there exist x ∈ ∂Q (the boundary of Q in C) and
λ ∈ (0, 1) with x = λ�(x) or � has a fixed point x ∈ Q.

Theorem 1.1 Assume that (H1)–(H6) are satisfied, then system (1.1) is exactly control-
lable on I .

2 Proof of Theorem 1.1
The controllability of system (1.1) is equivalent to showing that for x1 ∈ X, there exists
u ∈ L∞(I, U) such that the solution x of system (1.1) satisfies x(T) = x1. We observe that
for arbitrary x ∈ C([–τ , T], X) the control ux can be defined by

ux(t) = K–1
(

x1 – AL(T)
(
φ(0) + b(x)(0)

)

–
∫ T

0
(T – s)α–1BL(t – s)f

(
s, x

(
s – v(s)

))
ds

)

(2.1)
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t ∈ I . Using this control, we show that the operator � : C([–τ , T], X) → C([–τ , T], X), de-
fined by

⎧
⎪⎪⎨

⎪⎪⎩

�(x)(t) = AL(t)(φ(0) + b(x)) +
∫ t

0 (t – s)α–1BL(t – s)f (s, x(s – v(s))) ds

+
∫ t

0 (t – s)α–1BL(t – s)Bux(s) ds, t ∈ I,

�(x)(t) = L–1(φ(t) + b(x)(t)), t ∈ [–τ , 0],

(2.2)

has a fixed point x, which is a solution of system (1.1). Putting (2.1) into (2.2), we note that
x1 = �(x)(T), which means that ux operates system (1.1) from x0 to x1 in time T , i.e., (1.1)
is exactly controllable on I . In view of Lemma 1.3 and (H3)–(H5), we derive that for every
x ∈ r ,

‖ux‖L∞(I,U)

≤ M3
(‖x1‖ +

∥
∥AL(T)

∥
∥

�(X)

(‖φ‖C +
∥
∥b(x)

∥
∥

C

))

+ M3

∫ T

0
(T – s)α–1‖BL‖�(X)

∥
∥f

(
s, x

(
s – v(s)

))∥
∥

Y ds

≤ M3

(

‖x1‖ + M1
∥
∥L–1∥∥

(‖φ‖C + g(r)
)

+
‖h‖∞ψ(r)M1Tα

�(α)

)

. (2.3)

We proceed in the following four steps.
Step 1. We show that the set {�(x)(t) : x ∈ r , t ∈ [–τ , T]} is relatively compact in X.
Fix t ∈ [–τ , T]. First, we define

�1(x)(t) = AI(t)
(
φ(0) + b(x)(0)

)
+

∫ t

0
(t – s)α–1BI(t – s)f

(
s, x

(
s – v(s)

))
ds

+
∫ t

0
(t – s)α–1BI(t – s)Bux(s) ds, t ∈ I, (2.4)

�1(x)(t) = φ(t) + b(x)(t), t ∈ [–τ , 0].

Then �(x)(t) = L–1�1(x)(t), x ∈ r . Next, for x ∈ r , one has that

∥
∥�1(x)

∥
∥

Y ≤ ‖φ‖Y +
∣
∣g(r)

∣
∣

if t ∈ [–τ , 0] and

∥
∥�1(x)

∥
∥

Y =
∥
∥AI(t)

(
φ(0) + b(x)(0)

)∥
∥

Y +
∥
∥
∥
∥

∫ t

0
(t – s)α–1BI(t – s)f

(
s, x

(
s – v(s)

))
ds

∥
∥
∥
∥

Y

+
∥
∥
∥
∥

∫ t

0
(t – s)α–1BI(t – s)Bux(s) ds

∥
∥
∥
∥

Y

≤ ‖AI‖�(X,Y )
(∥
∥φ(0)

∥
∥

Y +
∣
∣g(r)

∣
∣
)

+
Tα

�(α)
‖BI‖�(X,Y )M1‖h‖∞ψ

(‖x‖C
)

+
Tα

�(α)
‖BI‖�(X,Y )M1‖B‖�(U ,Y )‖u‖L∞(I,U)
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if t ∈ I , and so {�1(x)(t) : x ∈ r , t ∈ [–τ , T]} is bounded in Y by (2.3). Since L–1 : Y → X
is compact, then {�(x)(t) : x ∈ r , t ∈ [–τ , T]} = L–1{�1(x)(t) : x ∈ r , t ∈ [–τ , T]} is rela-
tively compact in X.

Step 2. We show that the set {�(x)(t) : x ∈ C([–τ , T], X)} is equicontinuous on [–τ , T].
From the strong continuity of (AL(t))t≥0 and (BL(t))t≥0 , for any fixed t ∈ I , we can choose

–τ < δ < T – t such that

∥
∥AL(t + δ)x – AL(t)x

∥
∥ → 0 for x ∈ X as δ → 0;

∥
∥BL(t + δ)x – BL(t)x

∥
∥ → 0 for x ∈ X as δ → 0.

For every t ∈ [–τ , 0], from (H4) it is clear that �(x)(t) = L–1(φ(t) + b(x)(t)) is continuous
with respect to t. For every t ∈ I , δ ∈ (0, T – t) and x ∈ C([–τ , T], X), from (H3) and (2.2),
it follows that

∥
∥�(x)(t + δ) – �(x)(t)

∥
∥

≤ ∥
∥AL(t + δ)

(
φ(0) + b(x)

)
– AL(t)

(
φ(0) + b(x)

)∥
∥

+
∥
∥
∥
∥

∫ t+δ

t
(t + δ – s)α–1BL(t + δ – s)

[
f
(
s, x

(
s – v(s)

))
+ Bux(s)

]
ds

∥
∥
∥
∥

+
∥
∥
∥
∥

∫ t

0

[
(t + δ – s)α–1BL(t + δ – s) – (t – s)α–1BL(t – s)

]

× (
f
(
s, x

(
s – v(s)

))
+ Bux(s)

)
ds

∥
∥
∥
∥

≤ ∥
∥AL(t + δ)

(
φ(0) + b(x)

)
– AL(t)

(
φ(0) + b(x)

)∥
∥

+
∫ t+δ

t
(t + δ – s)α–1‖BL‖�(X)

[∥
∥f

(
s, x(s)

)∥
∥

Y + ‖B‖�(U ,Y )‖ux‖L∞(I,U)
]

ds

+
∥
∥
∥
∥

∫ t

0

[
(t + δ – s)α–1BL(t + δ – s) – (t – s)α–1BL(t + δ – s)

+ (t – s)α–1BL(t + δ – s) – (t – s)α–1BL(t – s)
](

f
(
s, x(s)

)
+ Bux(s)

)
ds

∥
∥
∥
∥

≤ q1 + q2 + q3 + q4, (2.5)

where

q1 =
∥
∥AL(t + δ)

(
φ(0) + b(x)

)
– AL(t)

(
φ(0) + b(x)

)∥
∥,

q2 =
∫ t+δ

t
(t + δ – s)α–1‖BL‖�(X)

[
ψ

(‖x‖C
)‖h‖∞ + ‖B‖�(U ,Y )‖ux‖L∞(I,U)

]
ds,

q3 =
∣
∣
∣
∣

∫ t

0

[
(t + δ – s)α–1 – (t – s)α–1]‖BL‖�(X)

[∥
∥f

(
s, x(s)

)∥
∥

+ ‖B‖�(U ,Y )‖ux‖L∞(I,U)
]

ds
∣
∣
∣
∣,

q4 =
∫ t

0
(t – s)α–1∥∥BL(t + δ – s) – BL(t – s)

∥
∥
[∥
∥f

(
s, x(s)

)∥
∥ +

∥
∥Bux(s)

∥
∥
]

ds.
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Obviously, q1 → 0 as δ → 0. From Lemma 1.3 and (H1), BL(t) is continuous in the uniform
operator topology for t ≥ 0 and u is bounded by (2.3). From (H5) and Lemma 1.3, we can
derive that q2, q3 → 0 as δ → 0. Moreover, by applying Lebesgue’s dominated convergence
theorem, we have q4 → 0 as δ → 0. Therefore, ‖�(x)(t + δ) – �(x)(t)‖ → 0 for each t ∈
I as δ → 0. Thus, the operator � maps C([–τ , T], X) into an equicontinuous family of
functions.

Step 3. We show that � : C([–τ , T], X) → C([–τ , T], X) is continuous.
Let xn → x on C([–τ , T], X) as n → ∞. From (H3) and (H4), it follows that for almost

all t ∈ [–τ , T],

∥
∥f (t, xn) – f (t, x)

∥
∥

Y → 0 (2.6)

and

∥
∥b(xn) – b(x)

∥
∥

C → 0, (2.7)

as n → 0, which, together with (2.1) and (2.2), yields

∥
∥�(xn)(t) – �(x)(t)

∥
∥

C

≤ ∥
∥ALb(xn) – ALb(x)

∥
∥

C

+
∫ t

0
(t – s)α–1BL(t – s)

[
f
(
s, xn

(
s – v(s)

))
– f

(
s, x

(
s – v(s)

))]
ds‖C

+
∫ t

0
(t – s)α–1BL(t – s)B

[
uxn (s) – ux(s)

]
ds‖C

≤ p1 + p2 + p3, (2.8)

where

p1 = ‖AL‖�(X)
∥
∥b(xn) – b(x)

∥
∥

C

p2 =
∫ T

0
(T – s)α–1‖BL‖�(X)

∥
∥f

(
s, xn

(
s – v(s)

))
– f

(
s, x

(
s – v(s)

))∥
∥

Y ds

p3 =
∫ T

0
(T – s)α–1‖BL‖�(X)‖B‖�(U ,Y )

∥
∥K–1∥∥

�(D(L),L∞(I,U)) (2.9)

×
[

‖AL‖�(X)
∥
∥b(xn) – b(x)

∥
∥

C

+
∫ T

0
(T – s)α–1‖BL‖�(X)

∥
∥f

(
s, xn

(
s – v(s)

))
– f

(
s, x(s)

)∥
∥

Y ds
]

ds.

Clearly, p1 → 0 as xn → x in C([–τ , T], X). From (2.6), (2.7) and applying Lebesgue’s dom-
inated convergence theorem, we have p2, p3 → 0 as xn → x in C([–τ , T], X). Hence, the
mapping � is continuous. As a consequence of the Arzela–Ascoli theorem, we can con-
clude that the operator � : r → C(I, X) is continuous and compact.

Step 4. We prove that the operator � has a fixed point x ∈ r .
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Suppose x ∈ ∂r , λ ∈ (0, 1) such that x = λ�(x); from (H3)–(H5) and (2.1) we have

r = ‖x‖C = λ
∥
∥�(x)

∥
∥

C

≤ λ‖AL‖�(X)
(‖φ‖C +

∥
∥b(x)

∥
∥

C

)
+ λ

∥
∥
∥
∥

∫ t

0
(t – s)α–1BL(t – s)f

(
s, x

(
s – v(s)

))
ds

∥
∥
∥
∥

C

+ λ

∥
∥
∥
∥

∫ t

0
(t – s)α–1BL(t – s)Bux(s) ds

∥
∥
∥
∥

C

≤ λ‖AL‖�(X)
(‖φ‖C + g

(‖x‖C
))

+ λ

∫ T

0
(T – s)α–1∥∥BL(t – s)

∥
∥

�(X)

(
ψ

(‖x‖C
)‖h‖∞

)
ds

+ λ

∫ T

0
(T – s)α–1∥∥BL(t – s)

∥
∥

�(X)‖B‖�(U ,Y )
∥
∥ux(s)

∥
∥ds

≤ λ‖AL‖�(X)
(‖φ‖C + g

(‖x‖C
))

+ λM2‖h‖∞ψ
(‖x‖C

)
+ λM2‖B‖�(U ,Y )‖ux‖L∞(I,U)

≤ λ
(
1 + M2‖B‖�(U ,Y )

∥
∥K–1∥∥

�(D(L),L∞(I,U))

)‖AL‖�(X)g(r)

+ λ
(
1 + M2‖B‖�(U ,Y )

∥
∥K–1∥∥

�(D(L),L∞(I,U))

)
M2‖h‖∞ψ(r)

+ λ‖AL‖�(X)‖φ‖C + λM2‖B‖�(U ,Y )
∥
∥K–1∥∥

�(D(L),L∞(I,U))

(‖x1‖ + ‖AL‖�(X)‖φ‖C
)

≤ λ
(
D1g(r) + D2ψ(r) + D3

)
, (2.10)

where

D1 = (1 + M2M3M4)M1
∥
∥L–1∥∥

�(Y ,X),

D2 = (1 + M2M3M4)M2‖h‖∞,

D3 = M1
∥
∥L–1∥∥

�(Y ,X)‖φ‖C + M2M3M4
(‖x1‖ + M1

∥
∥L–1∥∥

�(Y ,X)‖φ‖C
)
,

M2 =
Tα‖L–1‖�(Y ,X)M1

�(α)
.

Thus, by (H6) and (2.10),

r ≤ λ
(
D1g(r) + D2ψ(r) + D3

)
< D1g(r) + D2ψ(r) + D3 < r,

a contradiction. Applying Lemma 1.4, the operator � has a fixed point x ∈ r , i.e., x is the
solution of (1.1). Therefore system (1.1) is exactly controllable on I .

3 Example
In this section, we present an example of a fractional feedback control system as an appli-
cation of our theory. Let X = Y = U = L2[0,π ], I = [0, 1], and J = [0,π ], consider a fractional
control system represented by the following fractional partial differential equation:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Dα
t (x(t,η) – λ1xηη(t,η))

= λ2xηη + f (t, x(t – v(t),η)) + Bu(t,η), t ∈ I,η ∈ J ,

x(t, 0) = x(t,π ) = 0, t ∈ I,

x(t,η) = λ1xηη(t,η) + φ(t,η) +
∫ 1

0 K̂(s, t) sin x(s,η) ds, –τ ≤ t ≤ 0, 0 ≤ η ≤ π ,

(3.1)
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where Dα
t , 0 < α < 1 is the regularized Caputo fractional derivative of order α; λ1,λ2 ∈ R+;

v : [0, 1] → (0, τ ] is a continuous function; the function f and map B are given below; φ ∈
C(I × J , R) and K̂ ∈ C(I × [–τ , 0], R).

Define the operator A : D(A) ⊂ X → X by Ax = –λ2xηη , and L : D(L) ⊂ X → X by Lx = x–
λ1xηη , where each domain D(A), D(L) is given by {x ∈ X, x, xη, are absolutely continuous,
xηη ∈ X, x(0) = x(π ) = 0}. From [48], A and L can be written as

Ax :=
∞∑

n=1

λ2n2〈x, en〉en, x ∈ D(A),

Lx :=
∞∑

n=1

(
1 + λ1n2)〈x, en〉en, x ∈ D(L),

where en(η) =
√

2
π

sin nη, n = 1, 2, . . . , is the orthogonal eigenfunctions set of A. Moreover,
for any x ∈ X, we obtain

L–1x =
∞∑

n=1

1
1 + λ1n2 〈x, en〉en.

–AL–1x =
∞∑

n=1

–λ2n2

1 + λ1n2 〈x, en〉en,

and a semigroup WL(t) is given by

WL(t)x =
∞∑

n=1

e
–λ2n2

1+λ1n2 t〈x, en〉en.

It is easy to see that L–1 is compact and ‖L–1‖ ≤ 1, and –AL–1 generates a strongly con-
tinuous semigroup WL(t) on X and ‖WL(t)‖ ≤ 1 for each t > 0. Then, the characterized
operators AL(t)x and BL(t)x can be written as

AL(t)x =
∫ ∞

0
L–1δα(ε)

∞∑

n=1

e
– λ2n2

1+λ1n2 tαε〈x, xn〉xn dε,

BL(t)x =
∫ ∞

0
L–1αεδα(ε)

∞∑

n=1

e
– λ2n2

1+λ1n2 tαε〈x, xn〉xn dε,

where

δα(ε) =
1

πα

∞∑

n=1

(–ε)n–1 �(1 + αn)
n!

sin(nπα), ε ∈ (0,∞).

Note ‖AL(t)‖ ≤ 1, ‖BL(t)‖ ≤ 1
�(α) for t ≥ 0. Now, B : U → U is defined by B := μI , μ > 0,

where I denotes the identity operator, and K : L∞[I, U] → X is defined by

Ku := μ

∫ 1

0
(1 – z)α–1BL(1 – z)u(z,η) dz.
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It is easy to show that K is surjective. Further, if u(t,η) := x(η) ∈ X, then

Ku = μ

∫ 1

0
(1 – z)α–1

∫ ∞

0
L–1αεδα(ε)

∞∑

n=1

e
– λ2n2

1+λ1n2 (1–z)αε〈x, en〉en dε dz

= μ

∫ ∞

0
L–1δα(ε)

∞∑

n=1

∫ 1

0
αε(1 – z)α–1e

– λ2n2

1+λ1n2 (1–z)αε
dz〈x, en〉en dε

= μ

∫ ∞

0
δα(ε)

∞∑

n=1

∫ 1

0

1
1 + λ1n2 αε(1 – z)α–1e

– λ2n2

1+λ1n2 (1–z)αε
dz〈x, en〉en dε

= μ

∫ ∞

0
δα(ε)

∞∑

n=1

∫ 1

0

1
λ2n2

d
dz

(
e

– λ2n2

1+λ1n2 (1–z)αε)〈x, en〉en dz dε

= μ

∞∑

n=1

1
λ2n2

(

1 –
∫ ∞

0
δα(ε)e

– λ2n2

1+λ1n2 ε
dε

)

〈x, xn〉xn

= μ

∞∑

n=1

[1 – Eα(– λ2n2

1+λ1n2 )]
λ2n2 〈x, xn〉xn, (3.2)

where

Eα

(

–
λ2n2

1 + λ1n2

)

:=
∫ ∞

0
e

– λ2n2

1+λ1n2 ε
δα(ε) dε

is a Mittag-Leffler function (for details, see formulas (24)–(27) in [49]). Note that 0 < 1 –

e
– λ2n2

1+λ1n2 ε
< 1 – e– λ2

λ1
ε < 1 for any ε > 0. So we have

0 < 1 – Eα

(

–
λ2n2

1 + λ1n2

)

< 1 – Eα

(

–
λ2

λ1

)

< 1.

Thus, an inverse operator K–1 : X → L∞[I, U] can be defined by

(
K–1x

)
(t, z) :=

1
μ

∞∑

n=1

λ2n2

[1 – Eα(– λ2n2

1+λ1n2 )]
〈x, xn〉xn

for x =
∑∞

n=1〈x, xn〉xn. Since

‖x‖D(L) :=

√
√
√
√

∞∑

n=1

(
1 + λ1n2

)2〈x, xn〉2,

for x ∈ X, we can deduce

∥
∥
(
K–1x

)
(t,η)

∥
∥ ≤ 1

μ

√
√
√
√

∞∑

n=1

λ2
2n4

[1 – Eα(– λ2n2

1+λ1n2 )]2
〈x, xn〉2
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≤ λ2

μλ1[1 – Eα(– λ2
1+λ1

)]

√
√
√
√

∞∑

n=1

(
1 + λ1n2

)2〈x, xn〉2

=
λ2

μλ1[1 – Eα(– λ2
1+λ1

)]
‖x‖D(L). (3.3)

Consequently, we obtain ‖K–1‖ ≤ M := λ2
λ1μ[1–Eα (– λ2

1+λ1
)]

. So, (H1),(H2), and (H5) hold.

We also need the following assumptions:
(i) f : I × R → R is a Carathéodory function, i.e., for each x ∈ R, t → f (t, x) is

measurable and for each ∈ I , x → f (t, x) is continuous. Moreover, for every t ∈ I
and x ∈ R, there exists a function h ∈ L∞

+ (I) such that |f (t, x)| ≤ h(t)|x|.
(ii) The function K̂ (s, t) : I × [–τ , 0] → R is continuous, and let

M∗ := sups∈I,t∈[–τ ,0] |K̂(s, t)|.
(iii) The following inequality

‖h‖∞(�(α) + Mμ)
�2(α)

< 1

is satisfied.
Define x(t)(η) = x(t,η), f (t, x(t))(η), φ(t)(η) = φ(t,η), and b(x)(t)(η) =

∫ 1
0 K̂(s, t) sin x(s,

η) ds. Therefore, the above control system (3.1) driven by nonlocal fractional partial dif-
ferential equations with time-varying delay can be written as the abstract form (1.1). Note
‖b(x)‖C ≤ M∗, by calculation, we can get that there exists a constant

r >
Mμ(M∗ + ‖x1‖) + (�(α) + Mμ)‖φ‖C + M∗�(α)

�(α) – (1 + Mμ

�(α) )‖h‖∞

such that
(

1 +
Mμ

�(α)

)

M∗ +
‖h‖∞(�(α) + μM)

�2(α)
r + ‖φ‖C +

Mμ(‖x1‖ + ‖φ‖C)
�(α)

< r,

where x1 ∈ X and ‖φ‖C = supt∈I,η∈[0,π ] |φ(t,η)|. Thus, (H6) holds. We can also easily see that
the functions f (t, ·) : C([–τ , 1], X) → X for each t ∈ I and b : C([–τ , 1], X) → C([–τ , 0], X)
are continuous and satisfy assumptions (H3) and (H4), respectively.

If the above conditions are given, it is easy to see that all the assumptions of Theorem 1.1
are satisfied. Then system (3.1) is controllable on I , that is, for given x1 ∈ X, we can find
suitable u ∈ L∞(I, U) which steers the solution x of system (3.1) to satisfy x(1) = x1.
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