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Abstract
We have employed a modified form of the F-expansion technique on four nonlinear
waves models and obtained numerous exact and soliton wave solutions in a different
form. New constructed solutions showed the significance of these models. The
constructed results have plenty applications in nonlinear research.
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1 Introduction
The exact solutions to NLEEs lead to basic knowledge of the structure of physical phenom-
ena. Therefore researchers have been interested in studying and seeking the derived exact
solutions and made a great effort in it due to the great importance in nonlinear science.
It is a fact that there is no unique method which is fruitful to solve all kinds of nonlinear
wave problems. Exact traveling wave solutions to nonlinear systems of PDEs are essential
for analyzing natural phenomena in wide areas of the physical sciences [1–15].

The exploitation of a symbolic computation package will make it realistic to pro-
pose a number of direct analytical methods. The research of traveling wave solutions of
some nonlinear evolution equations derived from such fields played an important role
in the analysis of some phenomena such as the exp(–ϕ(ξ ) method, Bernoulli’s sub-ODE
method, the homogeneous balance method, the modified simple equation method, the
modified extended direct algebraic method, the modified extended mapping method, the
Kudryashov method, the extended sinh–cosh and sin–cos methods, the Lie symmetry
method, the soliton ansatz method and many more methods [15–40].

Previous authors in [24] applied a new auxiliary technique on the complex fractional
Kundu–Eckhaus equation and in [23] applied six methods on the van der Waals normal
form for fluidized granular matter wave equations. Further the authors in [26] derived
results on a Benney-like equation with the help of a modified simple equation method.
Similarly, in [28] one employed an auxiliary equation method for the (3 + 1)-dimensional
modified Korteweg–de Vries–Zakharov–Kuznetsov equation. But here our decision is to
investigate a novel soliton of models in Eq. (1), Eq. (23), Eq. (58) and Eq. (100) by employing
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the modified F-expansion method. Our obtained solutions are more powerful than those
in the previous existing literature. These solutions have potential applications to handle
nonlinear problems in mathematics and physics.

This article is organized as follows: Applications of the modified F-expansion method
are described in Sect. 2, Discussion of our results with other results is in Sect. 3. Our
conclusion is in Sect. 4.

2 Applications
2.1 The nonlinear integer order Kundu–Eckhaus equation
Consider the general form of the complex fractional Kundu–Eckhaus equation [24],

i
∂αv
∂tα

+ vxx – 2β|v|2v + γ 2|v|4v + 2iγ
(|v|2)xv = 0, 0 < α < 1. (1)

The above model having applications in optical fiber, quantum field theory and in dis-
persive water waves. Let a wave transformation be v(x, t) = u(ξ )eiη and, moreover, ξ =
ik(x – 2μtα

α
), η = (μx + εtα

α
) in Eq. (1) for conversion of the complex fractional Kundu–

Eckhaus equation to integer order; for further details about the conformable fractional
derivative see [20–22]. We have

∂αv
∂tα

= i
(
εu – 2μku′)eiη,

∂2v
∂x2 = –

(
μ2u + 2μku′ + k2u′′)eiη,

∂

∂x
(|v|2v

)
= 2iku2u′eiη.

(2)

Substituting (2) in (1), this action gives an ODE such that

–
(
ε + μ2)u – k2u′′ – 2βu3 + γ 2u5 – 4γ ku2u′ = 0. (3)

Balancing between u′′ and u5 in (3), we obtain N = 1
2 . Now using another transformation

u(ξ ) = 

1
2 ) on (3), we obtain

–4
(
ε + μ2)
2 + k2
 ′2 – 2k2

 ′′ – 8β
3 + 4γ 2
4 – 8k
2
 ′ = 0. (4)

Balancing between the highest derivative and nonlinear term in (4), we obtain N=1. As-
suming (4) has a solution [25],


(ξ ) = a0 + a1F(ξ ) + b1F–1(ξ ), (5)

where F satisfies the Ricatti equation [25]

F ′(ξ ) = B1 + B2F + B3F2. (6)

Put (5) with (6) in (4), we obtain numerous equations involving these parameters, a0, a1,
b1, B1, B2, B3, β , γ , k, μ and ε, after solving this equation system, we have the following
solution possibilities.
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2.1.1 The soliton-like solutions of Eq. (1)
If B1 = 0, B2 = 1, B3 = –1, then we have the following results:

k =
√

7β + β

2γ
, μ = ±

√
–

√
7β2

γ 2 – 4β2

γ 2 – 8ε

2
√

2
,

‘a1 =
5β –

√
7β

4γ 2 , a0 = 0, b1 = 0.

(7)

Put (7) in (5), then the solution of (1) becomes


1(ξ ) =
(

5β –
√

7β

8γ 2

(
1 + tanh

(
1
2
ξ

))) 1
2

eiη. (8)

If B1 = 0, B2 = –1, B3 = 1, then we have the following results:

k =
–
√

7β – β

2γ
, μ = ±

√
–

√
7β2

γ 2 – 4β2

γ 2 – 8ε

2
√

2
,

a1 =
5β –

√
7β

4γ 2 , a0 = 0, b1 = 0.

(9)

Substitute (9) in (5)


2(ξ ) =
(

5β –
√

7β

8γ 2

(
1 – coth

(
1
2
ξ

))) 1
2

eiη. (10)

If B1 = 1
2 , B2 = 0, B3 = – 1

2 , then we have the following results:

k =
3(

√
7β – 2β)

(
√

7 – 5)γ
, μ = ±

√
8(5

√
7 – 16)γ 2ε + 9(4

√
7 – 11)β2

2(
√

7 – 5)γ
,

a1 = –
9β

4(
√

7 – 5)γ 2
, a0 =

√
7β + 5β

8γ 2 , b1 = 0.

(11)

Put (11) in (5), we obtain


3(ξ ) =
(√

7β + 5β

8γ 2 –
9β

4(
√

7 – 5)γ 2

(
coth(ξ ) ± csch(ξ )

))
1
2

eiη. (12)

If B1 = 1, B2 = 0, B3 = –1, then we have the following results:

k = –
3(

√
7β – 2β)

(
√

7 – 5)γ
, μ = ±

√
8(5

√
7 – 16)γ 2ε + 9(4

√
7 – 11)β2

2(
√

7 – 5)γ
,

a1 =
9β

4(
√

7 – 5)γ 2
, a0 =

√
7β + 5β

8γ 2 , b1 = 0.

(13)
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Put (13) in (5),


4 =
(√

7β + 5β

8γ 2 +
9β

4(
√

7 – 5)γ 2

(
tanh(ξ )

)
) 1

2
eiη. (14)

2.1.2 The trigonometric function solutions of Eq. (1)
If B1 = 1

2 , B2 = 0, B3 = 1
2 , then we have the following results:

k =
(
√

7 – 2)
√

32 + 10
√

7
√

–β2

6γ
, μ = ±

√
–8γ 2ε +

√
7β2 – 4β2

2
√

2γ
,

a1 =

√
–5

√
7β2 – 16β2

4
√

2γ 2
, a0 =

√
7β + 5β

8γ 2 , b1 = 0.

(15)

Putting (15) in (5), then solution (1) is


5(ξ ) =
(√

7β + 5β

8γ 2 +

√
–5

√
7β2 – 16β2

4
√

2γ 2

(
sec(ξ ) + tan(ξ )

)
) 1

2
eiη. (16)

If B1 = – 1
2 , B2 = 0, B3 = – 1

2 , then we have the following results:

k = –
(
√

7 – 2)
√

32 + 10
√

7
√

–β2

6γ
, μ = ±

√
–8γ 2ε +

√
7β2 – 4β2

2
√

2γ
,

a1 =

√
–5

√
7β2 – 16β2

4
√

2γ 2
, a0 =

√
7β + 5β

8γ 2 , b1 = 0.

(17)

Put (17) in Eq. (5),


6(ξ ) =
(√

7β + 5β

8γ 2 +

√
–5

√
7β2 – 16β2

4
√

2γ 2

(
sec(ξ ) – tan(ξ )

))
1
2

eiη. (18)

If B1 = 1(–1), B2 = 0, B3 = 1(–1), then we have the following results:

k = –
(
√

7 – 2)
√

8 + 5
√

7
2

√
–β2

6γ
, μ = ±

√
–8γ 2ε +

√
7β2 – 4β2

2
√

2γ
,

a1 =

√
–5

√
7β2 – 16β2

4
√

2γ 2
, a0 =

√
7β + 5β

8γ 2 , b1 = 0.

(19)

Replace (19) in (5),


7(ξ ) =
(√

7β + 5β

8γ 2 +

√
–5

√
7β2 – 16β2

4
√

2γ 2

(
tan(ξ )

(
cot(ξ )

))
) 1

2
eiη. (20)
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2.1.3 The rational function solutions of Eq. (1)
If B3 = 0, then we have the following results:

k =
√

7β – β

2B2γ
, μ ±

√√
7β2

γ 2 – 4β2

γ 2 – 8ε

2
√

2
,

a1 = 0, a0 = 0, b1 =
–
√

7B1β – 5B1β

4B2γ 2 .

(21)

Transfer (21) in (5),


8(ξ ) =
(

–
√

7B1β – 5B1β

4γ 2

(
1

(exp(B2ξ ) – B1)

)) 1
2

eiη. (22)

2.2 The van der Waals normal form for fluidized granular matter wave equation
Consider the generalized form of the nonlinear the van der Waals normal form for flu-
idized granular matter wave model [23] given by

∂2v
∂t2 +

∂2

∂x2

(
∂2v
∂x2 – η

∂v
∂t

– v3 – εv
)

= 0, (23)

where η is the bulk viscosity, ε is for the bifurcation parameter. The extreme advantage of
this model is that it is used to explain the basic physical phase phenomenon in nonlinear
science.

Let us make a traveling wave transformation for (23),

v(x, t) = 
(ξ ), ξ = kx + ωt. (24)

Substituting (24) in (23) and twice integrating with zero constant, we obtain


 + k4 1
ω2(1 – kε

ω2 )

 ′′ +

ηk2
 ′

ω(1 – kε

ω2 )
+

k2
3

ω2(1 – kε

ω2 )
= 0. (25)

Suppose that (25) has the same solution form (5), we obtain collections of equations in-
volving these parameters, a0, a1, b1, B1, B2, B3, k and ω. After solving we have the following
results.

2.2.1 The soliton-like solutions of Eq. (23)
If B1 = 0, B2 = 1, B3 = –1, then we have the following results:

k =
(–1)2/3η2/3 3√ε

3
√

9 – 2η2
, ω =

3 3√–1 3√ηε2/3

(9 – 2η2)2/3 ,

a1 = ±
6√–1

√
2η2/3 3√ε

3
√

9 – 2η2
, a0 = ±

6√–1
√

2η2/3 3√ε

3
√

9 – 2η2
, b1 = 0.

(26)

Put (26) in (5),


9(ξ ) =
6√–1

√
2η2/3 3√ε

3
√

9 – 2η2

(
±1 ± 1

2

(
1 + tanh

(
1
2
ξ

)))
. (27)
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If B1 = 0, B2 = –1, B3 = 1, then we have the following results:

k =
(–1)2/3η2/3 3√ε

3
√

9 – 2η2
, ω =

3 3√–1 3√ηε2/3

(9 – 2η2)2/3 , a1 = ±
6√–1

√
2η2/3 3√ε

3
√

9 – 2η2
,

a0 = ±
6√–1

√
2η2/3 3√ε

3
√

9 – 2η2
, b1 = 0.

(28)

Put (28) in (5), then the solution of (23) becomes


10(ξ ) =
6√–1

√
2η2/3 3√ε

3
√

9 – 2η2

(
±1 ± 1

2

(
1 – coth

(
1
2
ξ

)))
. (29)

If B1 = 1
2 , B2 = 0, B3 = – 1

2 , then we have the following results:

k = ± (–1)2/3η2/3 3√ε

22/3 3
√

9 – 2η2
, ω ± 3(–1)5/6 3√ηε2/3

3√2 6
√

9 – 2η2
√

2η2 – 9
,

a1 = ± (–1)2/3η2/3 6
√

9 – 2η2 3√ε

2 6√2
√

2η2 – 9
,

a0 = ±
6
√

– 1
2η2/3 3√ε

3
√

9 – 2η2
, b1 = ± (–1)2/3η2/3 6

√
9 – 2η2 3√ε

2 6√2
√

2η2 – 9
.

(30)

Replace (30) in Eq. (5),


11(ξ ) =
6
√

– 1
2η2/3 3√ε

3
√

9 – 2η2

± (–1)2/3η2/3 6
√

9 – 2η2 3√ε

2 6√2
√

2η2 – 9

(
coth(ξ ) ± csch(ξ ) +

1
coth(ξ ) ± csch(ξ )

)
. (31)

If B1 = 1, B2 = 0, B3 = –1, then we have the following results:
Family I

k =
(–1)2/3η2/3 3√ε

22/3 3
√

9 – 2η2
, ω = ± 3(–1)5/6 3√ηε2/3

3√2 6
√

9 – 2η2
√

2η2 – 9
, a1 = 0,

a0 = –
6
√

– 1
2η2/3 3√ε

3
√

9 – 2η2
, b1 = ± (–1)2/3η2/3 6

√
9 – 2η2 3√ε

6√2
√

2η2 – 9
.

(32)

Substitute (32) in (5),


12(ξ ) = –
6
√

– 1
2η2/3 3√ε

3
√

9 – 2η2
± (–1)2/3η2/3 6

√
9 – 2η2 3√ε

6√2
√

2η2 – 9

(
1

tanh(ξ )

)
. (33)
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Family II

k =
(–1)2/3η2/3 3√ε

22/3 3
√

9 – 2η2
, ω ± 3(–1)5/6 3√ηε2/3

3√2 6
√

9 – 2η2
√

2η2 – 9
,

a1 = ± (–1)2/3η2/3 6
√

9 – 2η2 3√ε
6√2

√
2η2 – 9

, a0 =
6
√

– 1
2η2/3 3√ε

3
√

9 – 2η2
, b1 = 0.

(34)

Put (34) in (5),


13 =
6
√

– 1
2η2/3 3√ε

3
√

9 – 2η2
± (–1)2/3η2/3 6

√
9 – 2η2 3√ε

6√2
√

2η2 – 9

(
tanh(ξ )

)
. (35)

Family III

k =
(–1)2/3η2/3 3√ε

2 3√2 3
√

9 – 2η2
, ω = ± 3(–1)5/6 3√ηε2/3

22/3 6
√

9 – 2η2
√

2η2 – 9
,

a1 = ± (–1)2/3η2/3 6
√

9 – 2η2 3√ε

25/6
√

2η2 – 9
,

a0 =
6√–2η2/3 3√ε

3
√

9 – 2η2
, ‘b1 = ± (–1)2/3η2/3 6

√
9 – 2η2 3√ε

25/6
√

2η2 – 9
.

(36)

Transfer (36) in Eq. (5),


14 =
6√–2η2/3 3√ε

3
√

9 – 2η2
± (–1)2/3η2/3 6

√
9 – 2η2 3√ε

25/6
√

2η2 – 9

(
tanh(ξ ) +

1
tanh(ξ )

)
. (37)

2.2.2 The trigonometric function solutions of Eq. (23)
If B1 = 1

2 , B2 = 0, B3 = 1
2 , then we have the following results:

Family I

k = –
3√–1η2/3 3√ε

3
√

2η2 – 9
, ω = ±3 6√–1 3√ηε2/3

(2η2 – 9)2/3 , a1 = ± (–1)5/6η2/3 3√ε√
2 3
√

2η2 – 9
,

a0 = –
3√–1η2/3 3√ε√
2 3
√

2η2 – 9
, b1 = 0.

(38)

Substitute (38) in (5),


15 = –
3√–1η2/3 3√ε√
2 3
√

2η2 – 9
± (–1)5/6η2/3 3√ε√

2 3
√

2η2 – 9

(
sec(ξ ) + tan(ξ )

)
. (39)

Family II

k =
(–1)2/3η2/3 3√ε

3
√

2η2 – 9
, ω = ±3(–1)5/6 3√ηε2/3

(2η2 – 9)2/3 , a1 = 0,

a0 = ± (–1)2/3η2/3 3√ε√
2 3
√

2η2 – 9
, b1 = –

6√–1η2/3 3√ε√
2 3
√

2η2 – 9
.

(40)
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Put (40) in (5),


16 = ± (–1)2/3η2/3 3√ε√
2 3
√

2η2 – 9
–

6√–1η2/3 3√ε√
2 3
√

2η2 – 9

(
1

sec(ξ ) + tan(ξ )

)
. (41)

Family III

k = –
η2/3 3√ε

3
√

36 – 8η2
, ω = ± 3 3√ηε2/3

6
√

36 – 8η2
√

2η2 – 9
, a1 =

η2/3 6
√

36 – 8η2 3√ε

2
√

2
√

2η2 – 9
,

a0 = ±
√

2η2/3 3√ε

3
√

36 – 8η2
, b1 = –

η2/3 6
√

9 – 2η2 3√ε

2 6√2
√

2η2 – 9
.

(42)

Replace (42) in (5),


17 = ±
√

2η2/3 3√ε

3
√

36 – 8η2
+

η2/3 6
√

36 – 8η2 3√ε

2
√

2
√

2η2 – 9

(
sec(ξ ) + tan(ξ )

)

–
η2/3 6

√
9 – 2η2 3√ε

2 6√2
√

2η2 – 9

(
1

sec(ξ ) + tan(ξ )

)
. (43)

If B1 = – 1
2 , B2 = 0, B3 = – 1

2 , then we have the following results:
Family I

k =
(–1)2/3η2/3 3√ε

3
√

2η2 – 9
, ‘ω = ±3(–1)5/6 3√ηε2/3

(2η2 – 9)2/3 , a1 =
6√–1η2/3 3√ε√
2 3
√

2η2 – 9
,

a0 =
(–1)2/3η2/3 3√ε√

2 3
√

2η2 – 9
, b1 = 0.

(44)

Put (44) in (5),


18 =
(–1)2/3η2/3 3√ε√

2 3
√

2η2 – 9
+

6√–1η2/3 3√ε√
2 3
√

2η2 – 9

(
sec(ξ ) – tan(ξ )

)
. (45)

Family II

k =
(–1)2/3η2/3 3√ε

3
√

2η2 – 9
, ω = ±3(–1)5/6 3√ηε2/3

(2η2 – 9)2/3 , a1 = 0,

a0 = ± (–1)2/3η2/3 3√ε√
2 3
√

2η2 – 9
, b1 =

6√–1η2/3 3√ε√
2 3
√

2η2 – 9
.

(46)

Substitute (46) in Eq. (5),


19(ξ ) = ± (–1)2/3η2/3 3√ε√
2 3
√

2η2 – 9
+

6√–1η2/3 3√ε√
2 3
√

2η2 – 9

(
1

sec(ξ ) – tan(ξ )

)
. (47)
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Family III

k = –
η2/3 3√ε

3
√

36 – 8η2
, ω = ± 3 3√ηε2/3

6
√

36 – 8η2
√

2η2 – 9
, a1 = ±η2/3 6

√
9 – 2η2 3√ε

2 6√2
√

2η2 – 9
,

a0 = ±
√

2η2/3 3√ε

3
√

36 – 8η2
, b1 =

η2/3 6
√

36 – 8η2 3√ε

2
√

2
√

2η2 – 9
.

(48)

Put (48) in (5),


20(ξ ) = ±
√

2η2/3 3√ε

3
√

36 – 8η2
+

η2/3 6
√

36 – 8η2 3√ε

2
√

2
√

2η2 – 9

(
1

sec(ξ ) – tan(ξ )

)

± η2/3 6
√

9 – 2η2 3√ε

2 6√2
√

2η2 – 9

(
sec(ξ ) – tan(ξ )

)
. (49)

If B1 = 1(–1), B2 = 0, B3 = 1(–1), then we have the following results:
Family I

k = –
(–1)2/3η2/3 3√ε

3
√

36 – 8η2
, ω = ± 3 3√–1 3√ηε2/3

6
√

36 – 8η2
√

2η2 – 9
,

a1 = ± (–1)2/3η2/3 6
√

9 – 2η2 3√ε
6√2

√
2η2 – 9

, a0 = –
(–1)2/3η2/3 3√ε

6√2 3
√

9 – 2η2
, b1 = 0.

(50)

Replace (50) in (5),


21(ξ ) = –
(–1)2/3η2/3 3√ε

6√2 3
√

9 – 2η2
± (–1)2/3η2/3 6

√
9 – 2η2 3√ε

6√2
√

2η2 – 9

(
tan(ξ )

(
cot(ξ )

))
. (51)

Family II

k = –
(–1)2/3η2/3 3√ε

3
√

36 – 8η2
, ω ± 3 3√–1 3√ηε2/3

6
√

36 – 8η2
√

2η2 – 9
, a1 = 0,

a0 ± (–1)2/3η2/3 3√ε
6√2 3

√
9 – 2η2

, b1 = –
(–1)2/3η2/3 6

√
9 – 2η2 3√ε

6√2
√

2η2 – 9
.

(52)

Substituting (52) in (5),


22(ξ ) = ± (–1)2/3η2/3 3√ε
6√2 3

√
9 – 2η2

–
(–1)2/3η2/3 6

√
9 – 2η2 3√ε

6√2
√

2η2 – 9

(
1

tan(ξ )(cot(ξ ))

)
. (53)

Family III

k = –
η2/3 3√ε

3
√

144 – 32η2
, ω = ± 3 3√ηε2/3

6
√

144 – 32η2
√

2η2 – 9
,

a1 = –
η2/3 6

√
9 – 2η2 3√ε

25/6
√

2η2 – 9
,

a0 = ± 2
√

2η2/3 3√ε

3
√

144 – 32η2
, b1 = ±η2/3 6

√
9 – 2η2 3√ε

25/6
√

2η2 – 9
.

(54)
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Put (54) in (5),


23(ξ ) = ± 2
√

2η2/3 3√ε

3
√

144 – 32η2
–

η2/3 6
√

9 – 2η2 3√ε

25/6
√

2η2 – 9

(
tan(ξ )

(
cot(ξ )

)
+

1
tan(ξ )(cot(ξ ))

)
. (55)

2.2.3 The rational function solutions of Eq. (23)
If B3 = 0, then we have the following results:

k =
(–1)2/3η2/3 3√ε

3
√

9B2
2 – 2B2

2η
2

, ω =
3 3√–1B2 3√ηε2/3

(–B2
2(2η2 – 9))2/3 , a1 = 0,

a0 = ±
6√–1

√
2B2η

2/3 3√ε

3
√

–B2
2(2η2 – 9)

, b1 = ±
6√–1

√
2B1η

2/3 3√ε

3
√

–B2
2(2η2 – 9)

.

(56)

Put (56) in (5),


24(ξ ) = ±
6√–1

√
2B2η

2/3 3√ε

3
√

–B2
2(2η2 – 9)

±
6√–1

√
2B1η

2/3 3√ε

3
√

–B2
2(2η2 – 9)

(
B2

(exp(B2ξ ) – B1)

)
. (57)

2.3 The Benney–Luke equation
Let us consider the general form of the Benney–Luke equation in [26],

utt – uxx + βuxxxx – γ uxxtt + utuxx + 2uxuxt = 0. (58)

This equation is also called a water wave equation, it is used to describe two-way water
wave propagation. Let u(x, t) = 
(ξ ), ξ = x – kt; substituting in (58), integrating and by
removal of the constant of integration,

(
k2 – 1

)

 ′ + 


′′′(
β – γ k2) –

3
2

k

′2 = 0. (59)

We assumed that (5) is the solution of (59). Substitute Eq. (5) with (6) in (59), After
solving these equations system, we have following solution cases.

2.3.1 The soliton-like solutions of Eq. (58)
If B1 = 0, B2 = 1, B3 = –1, then we have the following results:

k = ±
√

β – 1√
γ – 1

, a1 =
4(γ – β)

√
(β – 1)(γ – 1)

, b1 = 0. (60)

Put (60) in (5),


25 = a0 +
2(γ – β)

√
(β – 1)(γ – 1)

(
1 + tanh

(
1
2
ξ

))
, β > 1,γ > 0. (61)

If B1 = 0, B2 = –1, B3 = 1, then we have the following results:

k = ±
√

β – 1√
γ – 1

, a1 =
4(β – γ )

√
(β – 1)(γ – 1)

, b1 = 0. (62)
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Replace (62) in (5),


26 = a0 +
2(β – γ )

√
(β – 1)(γ – 1)

(
1 – coth

(
1
2
ξ

))
, β > 1,γ > 0. (63)

If B1 = 1
2 , B2 = 0, B3 = – 1

2 , then we have the following results:
Family I

k = ±
√

β – 1√
γ – 1

, a1 = 0, b1 =
2(β – γ )

√
(β – 1)(γ – 1)

. (64)

Put (64) in (5),


27 = a0 –
2(β – γ )

√
(β – 1)(γ – 1)

(
1

coth(ξ ) ± csch(ξ )

)
, β > 1,γ > 0. (65)

Family II

k = ±
√

α – 1√
β – 1

, b1 = 0, a1 =
2(β – γ )

√
(β – 1)(γ – 1)

. (66)

Transfer (66) in (5),


28 = a0 +
2(β – γ )

√
(β – 1)(γ – 1)

(
coth(ξ ) ± csch(ξ )

)
, β > 1,γ > 1. (67)

Family III

k = ±
√

1 – 4β√
1 – 4γ

, a1 =
2(β – γ )√

1 – 4β
√

1 – 4γ
, b1 =

2(β – γ )√
1 – 4β

√
1 – 4γ

. (68)

Replace (68) in (5),


29 = a0 +
2(β – γ )√

1 – 4β
√

1 – 4γ

(
(
coth(ξ ) ± csch(ξ )

)
+

1
coth(ξ ) ± csch(ξ )

)
,

β <
1
4

,γ <
1
4

. (69)

If B1 = 1, B2 = 0, B3 = –1, then we have the following results:
Family I

k = ±
√

1 – 4β√
1 – 4γ

, a1 = 0, b1 = –
4(β – γ )√

1 – 4β
√

1 – 4γ
. (70)

Put (70) in (5),


30 = a0 –
4(β – γ )√

1 – 4β
√

1 – 4γ

(
1

tanh(ξ )

)
, β <

1
4

,γ <
1
4

. (71)

Family II

k =
√

1 – 4β√
1 – 4γ

, b1 = 0, a1 = –
4(β – γ )√

1 – 4β
√

1 – 4γ
. (72)
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Replace (72) in (5),


31 = a0 –
4(β – γ )√

1 – 4β
√

1 – 4γ

(
tanh(ξ )

)
, β <

1
4

,γ <
1
4

. (73)

Family III

k = ±
√

1 – 16β√
1 – 16γ

, a1 =
4(β – γ )√

1 – 16β
√

1 – 16γ
, b1 =

4(β – γ )√
1 – 16β

√
1 – 16γ

. (74)

Put (60) in (5),


32 = a0 +
4(β – γ )√

1 – 16β
√

1 – 16γ

(
tanh(ξ ) +

1
tanh(ξ )

)
, β <

1
16

,γ <
1

16
. (75)

2.3.2 The trigonometric function solutions of Eq. (58)
If B1 = 1

2 , B2 = 0, B3 = 1
2 , then we have the following results:

Family I

k = ±
√

β + 1√
γ + 1

, a1 =
2(β – γ )√

β + 1
√

γ + 1
, b1 = 0, (76)

Substitute (76) in (5),


33(ξ ) = a0 +
2(β – γ )√

β + 1
√

γ + 1
(
sec(ξ ) + tan(ξ )

)
, β > –1,γ > –1. (77)

Family II

k = ±
√

β + 1√
γ + 1

, b1 =
2(γ – β)√

β + 1
√

γ + 1
, a1 = 0. (78)

Put (78) in (6),


34(ξ ) = a0 +
2(γ – β)√

β + 1
√

γ + 1

(
1

sec(ξ ) + tan(ξ )

)
, β > –1,γ > –1. (79)

Family III

k = ±
√

–4β – 1√
–4γ – 1

, a1 =
2(β – γ )√

4β + 1
√

4γ + 1
, b1 = –

2(β – γ )√
4β + 1

√
4γ + 1

. (80)

Put (80) in (5),


35 = a0 +
2(β – γ )√

4β + 1
√

4γ + 1

(
sec(ξ ) + tan(ξ ) –

1
sec(ξ ) + tan(ξ )

)
,

β >
–1
4

,γ >
–1
4

. (81)

If B1 = – 1
2 , B2 = 0, B3 = – 1

2 , then we have the following results:
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Family I

k = ±
√

β + 1√
γ + 1

, a1 =
2(γ – β)√

β + 1
√

γ + 1
, b1 = 0. (82)

Put (82) in(6),


(ξ ) = a0 +
2(γ – β)√

β + 1
√

γ + 1
(
sec(ξ ) – tan(ξ )

)
, β > –1,γ – 1. (83)

Family II

k = ±
√

β + 1√
γ + 1

, b1 =
2(β – γ )√

β + 1
√

γ + 1
, a1 = 0. (84)

Put (84) in (5),


37 = a0 +
2(β – γ )√

β + 1
√

γ + 1

(
1

sec(ξ ) – tan(ξ )

)
, β > –1,γ – 1. (85)

Family III

k = ±
√

–4β – 1√
–4γ – 1

, a1 = –
2(β – γ )√

4β + 1
√

4γ + 1
, b1 =

2(β – γ )√
4β + 1

√
4γ + 1

. (86)

Replace (86) in (5),


38 = a0 –
2(β – γ )√

4β + 1
√

4γ + 1

(
(
sec(ξ ) – tan(ξ )

)
–

1
sec(ξ ) – tan(ξ )

)
,

β > –
1
4

,γ > –
1
4

. (87)

If B1 = 1(–1), B2 = 0, B3 = 1(–1), then we have the following results:
Family I

k ±
√

4β + 1√
4γ + 1

, a1 =
4(β – γ )√

4β + 1
√

4γ + 1
, b1 = 0, (88)

Put (88) in (5),


39 = a0 +
4(β – γ )√

4β + 1
√

4γ + 1
(
tan(ξ )

(
cot(ξ )

))
, β > –

1
4

,γ > –
1
4

. (89)

Family II

k = ±
√

4β + 1√
4γ + 1

, b1 = –
4(β – γ )√

4β + 1
√

4γ + 1
, a1 = 0. (90)

Replace (90) in (5),


40(ξ ) = a0 –
4(β – γ )√

4β + 1
√

4γ + 1

(
1

tan(ξ )(cot(ξ )

)
, β > –

1
4

,γ > –
1
4

. (91)
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Family III

k = ±
√

16β + 1√
16γ + 1

, a1 = –
4(β – γ )√

16β + 1
√

16γ + 1
, b1 =

4(β – γ )√
16β + 1

√
16γ + 1

. (92)

Transfer (92) in (5),


41 = a0 –
4(β – γ )√

16β + 1
√

16γ + 1
(tan(ξ )

(
cot(ξ ) –

1
tan(ξ )(cot(ξ )

)
,

β > –
1

16
,γ > –

1
16

. (93)

2.3.3 The rational function solutions of Eq. (58)
If B1 = 0, B2 = 0, then we have the following results:

k = ±1, a1 = ±4B3(β – γ ), b1 = 0, (94)

Substitute (94) in (5),


42 = a0 + 4B3

(
(β – γ )
A3ξ + ε

)
. (95)

If B2 = 0, B3 = 0, then we have the following results:

k = ±1, b1 = ±4B1(β – γ ), a1 = 0. (96)

Put (96) in (5),


43 = a0 ± 4
(

(β – γ )
ξ

)
. (97)

If B1 �= 0, B2 �= 0, B3 = 0, then we have the following results:

k =
√

βB2
2 – 1

√
γ B2

2 – 1
, b1 =

4B1(β – γ )
√

βB2
2 – 1

√
γ B2

2 – 1
, a1 = 0. (98)

Replace (98) in (5),


44 = a0 +
4B1(β – γ )

√
βB2

2 – 1
√

γ B2
2 – 1

(
B2

(exp(B2ξ ) – B1)

)
. (99)

2.4 The (3 + 1)-dimensional modified Korteweg–de Vries–Zakharov–Kuznetsov
equation

Let us consider the general form in [28],

ut + αu2ux + βuxxx + γ (uyy + uzz)x = 0. (100)

Consider the wave transformation for Eq. (100),

u(x, y, z, t) = 
(ξ ), ξ = x + y + z – ηt. (101)
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Put Eq. (101) in Eq. (100) and after integrating we have the following ODE form:

–η
 + α

3

3
+ (β + 2γ )
 ′′ = 0. (102)

Let (5) be a solution of (102). Substitute (5) with (6) in (102); after solving we have the
following solution possibilities.

2.4.1 The soliton-like solutions of Eq. (100)
If B1 = 0, B2 = 1, B3 = –1, then we have the following results:

a1 = ±
√

–6β – 12γ√
α

, η =
1
2

(–β – 2γ ), a0 = ±
√

–3β – 6γ√
2α

, b1 = 0. (103)

Put (103) in (5), we have


45 = ±
√

–3β – 6γ√
2α

±
√

–6β – 12γ

2
√

α

(
1 + tanh

(
1
2
ξ

))
. (104)

If B1 = 0, B2 = –1, B3 = 1, then we have the following results:

a1 = ±
√

–6(β + 2γ )√
α

, η =
1
2

(–β – 2γ ),

a0 = ±
√

–3(β + 2γ )√
2α

, b1 = 0.

(105)

Replace (105) in (5),


46 = ±
√

–3(β + 2γ )√
2α

±
√

–6(β + 2γ )
2
√

α

(
1 – coth

(
1
2
ξ

))
. (106)

If B1 = 1
2 , B2 = 0, B3 = – 1

2 , then we have the following results:
Family I

a1 = 0, η = –
1
2

(β + 2γ ), a0 = 0, b1 = ±
√

–3β – 6γ√
2α

. (107)

Substitute (107) in (5),


47 = ±
√

–3β – 6γ√
2α

(
1

coth(ξ ) ± csch(ξ )

)
. (108)

Family II

b1 = 0, η = –
1
2

(β + 2γ ), a0 = 0, a1 = ±
√

–3β – 6γ√
2α

. (109)

Put (109) in (5),


48 = ±
√

–3β – 6γ√
2α

(
coth(ξ ) ± csch(ξ )

)
. (110)
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Family III

b1 = ±
√

–3β – 6γ√
2α

, η = (β + 2γ ), a0 = 0, a1 = ±
√

–3β – 6γ√
2α

. (111)

Putting (111) in (5),


49 = ±
√

–3β – 6γ√
2α

(
(
coth(ξ ) ± csch(ξ )

)
+

1
coth(ξ ) ± csch(ξ )

)
. (112)

If B1 = 1, B2 = 0, B3 = –1, then we have the following results:
Family I

a1 = 0, η = –2(β + 2γ ), a0 = 0, b1 = ±
√

–6β – 12γ√
α

. (113)

Replacing (113) in (5),


50 = ±
√

–6β – 12γ√
α

(
1

tanh(ξ )

)
. (114)

Family II

b1 = 0, η = –2(β + 2γ ), a0 = 0, a1 = ±
√

–6β – 12γ√
α

. (115)

Put (115) in (5),


51 = ±
√

–6β – 12γ√
α

(
tanh(ξ )

)
. (116)

Family III

b1 = ±
√

–6β – 12γ√
α

, η = –8(β + 2γ ), a0 = 0, a1 = ±
√

–6β – 12γ√
α

. (117)

Substitute (117) in (5),


52 = ±
√

–6β – 12γ√
α

(
tanh(ξ ) +

1
tanh(ξ )

)
. (118)

2.4.2 The trigonometric function solutions of Eq. (100)
If B1 = 1

2 , B2 = 0, B3 = 1
2 , then we have the following results:

Family I

a1 = ±
√

–3β – 6γ√
2α

, η =
1
2

(β + 2γ ), a0 = 0, b1 = 0. (119)

Put (119) in (5),


53 = ±
√

–3β – 6γ√
2α

(
sec(ξ ) + tan(ξ )

)
. (120)
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Family II

b1 = ±
√

–3β – 6γ√
2α

, η =
1
2

(β + 2γ ), a0 = 0, a1 = 0. (121)

Put (121) in (5),


54 = ±
√

–3β – 6γ√
2α

(
1

sec(ξ ) + tan(ξ )

)
. (122)

Family III

b1 = ±
√

–3β – 6γ√
2α

, η = (2β + 4γ ), a0 = 0, a1 = ±
√

–3β – 6γ√
2α

. (123)

Replace (123) in Eq. (5),


55 = ±
√

–3β – 6γ√
2α

(
(
sec(ξ ) + tan(ξ )

)
+

1
sec(ξ ) + tan(ξ )

)
. (124)

If B1 = – 1
2 , B2 = 0, B3 = – 1

2 , then we have the following results:
Family I

a1 = ±
√

–3β – 6γ√
2α

, η =
1
2

(β + 2γ ), a0 = 0, b1 = 0. (125)

Substitute (125) in (5),


56 = ±
√

–3β – 6γ√
2α

(
sec(ξ ) – tan(ξ )

)
. (126)

Family II

b1 = ±
√

–3β – 6γ√
2α

, η =
1
2

(β + 2γ ), a0 = 0, a1 = 0. (127)

Put (127) in (5),


57 = ±
√

–3β – 6γ√
2α

(
1

sec(ξ ) – tan(ξ )

)
. (128)

Family III

b1 = ±
√

–3β – 6γ√
2α

, η = (–β – 2γ ), a0 = 0, a1 = ±
√

–3β – 6γ√
2α

. (129)

Put (129) in (5),


58 = ±
√

–3β – 6γ√
2α

(
(
sec(ξ ) – tan(ξ )

)
+

1
sec(ξ ) – tan(ξ )

)
. (130)

If B1 = 1(–1), B2 = 0, B3 = 1(–1), then we have the following results:
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Family I

a1 = ±
√

–6β – 12γ√
α

, η = 2(β + 2γ ), a0 = 0, b1 = 0. (131)

Put (131) in (5),


59 = ±
√

–6β – 12γ√
α

(
tan(ξ )

(
cot(ξ )

))
. (132)

Family II

b1 = ±
√

–6β – 12γ√
α

, η = 2(β + 2γ ), a0 = 0, a1 = 0. (133)

Replace (133) in (5),


60 = ±
√

–6β – 12γ√
α

(
1

tan(ξ )(cot(ξ )

)
. (134)

Family III

b1 = ±
√

–6β – 12γ√
α

, η = –4(β + 2γ ), a0 = 0, a1 = ±
√

–6β – 12γ√
α

. (135)

Substitute (135) in (5),


61 = ±
√

–6β – 12γ√
α

(tan(ξ )
(

cot(ξ ) +
1

tan(ξ )(cot(ξ )

)
. (136)

2.4.3 The rational function solution of Eq. (100)
If B1 �= 0, B2 �= 0, B3 = 0, then we have the following results:

a1 = 0, η =
1
2
(
–βB2

2 – 2B2
2γ

)
,

a0 = ±B2
√

–β – 2γ√
α

, b1 = ±B1
√

–6(β + 2γ )√
α

.
(137)

Put (137) in (5),


62 = ±B2
√

–β – 2γ√
α

± B1
√

–6(β + 2γ )√
α

(
B2

(exp(B2ξ ) – B1)

)
. (138)

3 Discussion of the results
After successfully employing the modified F-expansion method on four important mod-
els, now in this section we shall discuss the similarities and dissimilarities of our novel
constructed results with other results in the previous literature. By choosing different val-
ues of ai and bi in Eq. (5) with Eq. (6), we have obtained a collection of different solutions.
Few of our results are similar to others, our solution (15) and (19) approximate in the
same way as (2.37), (2.59) in [24], respectively. In the same way our constructed solutions
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(39) and (39) are similar to the solutions (22) and (26) in [23], respectively. Furthermore
our solutions (49) and (81) are approximately similar solutions to (3.16) and (3.14) in [27].
The results of all our constructed solutions of both models are new and have not been
investigated before in any previous research literature. The discussion of the results and
graphically illustration of some solution demonstrate that our methods are more efficient,
and a reliable and powerful tool to solve nonlinear problems.

4 Conclusion
From this study, we have seen the analytical structure of the complex fractional Kundu–
Eckhaus, the van der Waals normal form for fluidized granular matter, the Benny–Luke
and the (3 + 1)-dimensional modified Korteweg–de Vries–Zakharov–Kuznetsov waves
models for constructing the exact, solitary wave solutions by employing the modified F-
expansion method. The constructed solutions are novel and more general. These results
facilitate us to explore the physical phenomena of these nonlinear models. The obtained
results having potential applications in mathematical physics.
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