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Abstract
In this work we consider an epidemic model that contains four species susceptible,
exposed, infected and quarantined. With this model, first we find a feasible region
which is invariant and where the solutions of our model are positive. Then the
persistence of the model and sufficient conditions associated with extinction of
infection population are discussed. To show that the system is locally asymptotically
stable, a Lyapunov functional is constructed. After that, taking the delay as the key
parameter, the conditions for local stability and Hopf bifurcation are derived. Further,
we estimate the properties for the direction of the Hopf bifurcation and stability of
the periodic solutions. Finally, some numerical simulations are presented to support
our analytical results.
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1 Introduction
Since the principles to the mathematical model of epidemics, as the susceptible–infected–
susceptible (SIS) model and the susceptible–infected–removed (SIR) model, were pre-
sented in [1, 2], the mathematical investigation of disease transmission has developed
quickly. As is well known, many epidemic diseases such as HIV/AIDS [3], H1N1 [4], H5N1
[5] and SARS [6], are harmful to individual health and to the stability of our society. It is
an increasingly urgent issue to control the prevalence of epidemic diseases. Mathemat-
ical epidemiology, which describes the prevalence of epidemic diseases by building and
analyzing mathematical models, has been one of the major areas of biology. In recent
years, mathematical models have become one of the important tools in the investiga-
tion of the prevalence and control of epidemic diseases since the pioneering work of Ker-
mack and Mckendrick [7, 8]. For example, the SIRS (Susceptible–Infectious–Recovered–
Susceptible) epidemic model [9–12], the SEIS (Susceptible–Exposed–Infectious–Suscept-
ible) epidemic model [13–16], SEIR (Susceptible–Exposed–Infectious–Recovered) epi-
demic model [17–20], the SEIRS (Susceptible–Exposed–Infectious–Recovered–Suscept-
ible) epidemic model [21–25] and epidemic models with vaccination [26–28].

In real world, some people can be quarantined once they are found to have been infected
with epidemic diseases in the exposed state or the infectious state. Based on this consider-
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Table 1 Parameters and their meanings in this paper

Parameter Description

A the constant recruitment rate of the population
β The infection rate of the susceptible population
μ The natural mortality rate of all populations
c The rate that the infected recovers and comes into the susceptible class
ε The rate at which some exposed people become infective
α The mortality rate of the infected and quarantined population due to disease
σ1 The quarantined rate of the exposed population
σ2 The quarantined rate of the infected population
γ1 The recovery rate of the exposed population
γ2 The recovery rate of the infected population
γ3 The recovery rate of the quarantined population

ation, recently, Chen et al. [29] proposed the following epidemic model with quarantine:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dS(t)
dt = A – βS(t)I(t) – μS(t) + cI(t),

dE(t)
dt = βS(t)I(t) – (μ + ε + σ1 + γ1)E(t),

dI(t)
dt = εE(t) – (μ + α + c + σ2 + γ2)I(t),

dQ(t)
dt = σ1E(t) + σ2I(t) – (μ + α + γ3)Q(t),

(1)

where S(t), E(t), I(t) and Q(t) are the numbers of the susceptible, the exposed, the infected
and the quarantined individuals at time t, respectively. The meanings of the parameters
are listed in Table 1.

With this model they [29] investigated the local and the global stability of system (1),
and they also estimated the domain of attraction of system (1).

As stated in [30], most infectious diseases evolve by infection, and then there appear
some symptoms needing a period of time (namely the incubation period). Therefore, if
an epidemic model considers time delay, then it is more consistent with the actual situa-
tion [11, 12, 14, 22, 23]. Compared with ordinary differential equations, delay differential
equations exhibit more complicated dynamics, such as the loss of stability, oscillations and
periodic solutions. Recently, there appeared some work about epidemic models with time
delay. In [31], Bai and Wu studied the traveling waves of a delayed SIR epidemic model
with nonlinear incidence. In [32], Liu et al. investigated the asymptotic properties of a
stochastic delayed SIR epidemic model with temporary immunity. Liu et al. [33, 34] ana-
lyzed the Hopf bifurcation of different SIRS epidemic model with time delay. Liu et al. [35]
studied the global attractiveness and persistence of a delayed SIRS epidemic model on a
scale-free network. Liu and Wang [36] investigated the Hopf bifurcation of an SIRS epi-
demic model with delays and stage structure. Sharma et al. [37, 38] analyzed the impact of
time delay on the dynamics of different SEIR epidemic model. Jiang et al. [39] considered
an SEIRS system with two delays and the general nonlinear incidence rate and dealt with
the global Hopf bifurcation and permanence of the model. Liu and Wang [40] studied the
Hopf bifurcation of an SIQR epidemic model with two delays and a nonlinear incidence
rate. Obviously, most of the epidemic models with time delay above neglect the effect of
quarantine. Based on this consideration and motivated by the work above, we incorporate
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the latent delay into system (1) and study the following delayed system:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dS(t)
dt = A – βS(t)I(t) – μS(t) + cI(t),

dE(t)
dt = βS(t)I(t) – (μ + σ1 + γ1)E(t) – εE(t – τ ),

dI(t)
dt = εE(t – τ ) – (μ + α + c + σ2 + γ2)I(t),

dQ(t)
dt = σ1E(t) + σ2I(t) – (μ + α + γ3)Q(t),

(2)

subject to the initial conditions

S(θ ) = φ1(θ ) > 0,

E(θ ) = φ2(θ ) > 0,

I(θ ) = φ3(θ ) > 0,

Q(θ ) = φ4(θ ) > 0, θ ∈ [–τ , 0),φi(0) > 0, i = 1, 2, 3, 4,

(3)

where the meanings of the parameters are given in Table 1 and they are assumed to be
positive and τ is the latent delay of the disease.

The organization of the paper is as follows. In the next section, it is shown that the so-
lution of (2) is positive and bounded in a feasible region R̄, which is invariant. Also, the
persistence of the proposed model and some sufficient conditions associated with extinc-
tion of infective population are discussed. In Sect. 3, the condition for local asymptotical
stability is examined by constructing a suitable Lyapunov functional. By taking the latent
delay τ as the bifurcation parameter, the conditions for the occurrence of Hopf bifurca-
tion are derived in Sect. 4. Further, the direction of Hopf bifurcation and the stability of
the periodic solution are examined in Sect. 5. Some numerical results are carried out for
our expository results in Sect. 6. Finally, the paper ends with the conclusion of the work.

2 The boundedness, persistence and extinction of infected population
2.1 The boundedness
In this section we shall discuss about the positivity and boundedness of solution of system
(2).

For this purpose, we assume the function V to be

V (t) = S(t) + E(t) + I(t) + Q(t). (4)

Taking the derivative of (4) and using (2) we get

V̇ (t) = A – μS(t) – (μ + γ1)E(t) – (μ + α + γ2)I(t) – (μ + α + γ3)Q(t), (5)

where S(t) > 0 and E(t), I(t), Q(t) ≥ 0.
If E(t) = 0, I(t) = 0 and Q(t) = 0 from (5) we get

lim
t→∞ sup V (t) ≤ A

μ
. (6)
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Also, if V (t) > A
μ

then V̇ (t) < 0. Therefore, we get 0 < V ≤ A
μ

, i.e., we get a feasible re-
gion R̄:

R̄ =
{
(
S(t), E(t), I(t), Q(t)

) ∈ R4 : 0 < S(t) + E(t) + I(t) + Q(t) ≤ A
μ

}

.

Thus we see that the solution of system (2) is bounded and independent of the initial
condition. So the feasible region R̄ is an invariant set. Also, as A > 0, μ > 0, A

μ
> 0, i.e., the

feasible region R̄ is positive.
Hence all solutions of (2) will enter the field R̄ and will remain in R̄.

2.2 The persistence and extinction of infection species
In this section, we will consider the ultimate state of infection, that is, the disease will be
either persistent or extinct ultimately.

Since the variable Q does not appear explicitly in the first three equations in system
(2), we need only to consider the dynamics of a subsystem consisting of the first three
equations in system (2). We have

dS(t)
dt

= A – βS(t)I(t) – μS(t) + cI(t),

dE(t)
dt

= βS(t)I(t) – (μ + σ1 + γ1)E(t) – εE(t – τ ),

dI(t)
dt

= εE(t – τ ) – (μ + α + c + σ2 + γ2)I(t),

(7)

From the first equation in system (7), we have ds
dt ≤ μ( A

μ
– S); it implies that

limt→∞ sup S(t) ≤ A
μ

; therefore, the set ω = {(S, E, I) ∈ R3
+ : S ≤ A

μ
} is positively invariant

under system (7). Thus, we only consider the dynamical behavior of system (7) on the
set ω.

When R0 < 1, define the function

V1 = ρE + I, (8)

where ρ ∈ ( 1
ε
, μ+α+c+σ2+γ2

β(A/μ) ), then the derivative of V1 with respect to t along the solution of
(7) on the set ω is given by

dV1

dt
= –ρ(μ + σ1 + γ1)E(t) + (1 – ρε)E(t – τ ) +

{

ρβ
A
μ

– (μ + α + c + σ2 + γ2)
}

I(t). (9)

Thus,

dV1

dt
≤ (1 – ρε)E(t – τ ) +

{

ρβ
A
μ

– (μ + α + c + σ2 + γ2)
}

I(t). (10)

As ρ ∈ ( 1
ε
, μ+α+c+σ2+γ2

β(A/μ) ), we have 1 – ρε < 0, and ρβ A
μ

– (μ + α + c + σ2 + γ2) < 0. Therefore
we consider a positive number σ , such that, 1 – ρε < σρ(R0 – 1) and 1 – ρε < 0, and ρβ A

μ
–

(μ + α + c + σ2 + γ2) < σ (R0 – 1). Thus from (10) we can write

V1(t) ≤ V1(0) exp
[
σ (R0 – 1)t

]
, (11)
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where V1(0) = ρE(0) + I(0), therefore for R0 < 1 we have

lim
t→∞ V1(t) = 0, i.e., lim

t→∞ E(t) = 0 = lim
t→∞ I(t).

This shows that the disease will extinct if R0 < 1.
In order to discuss the persistence of the disease, we first introduce some definitions;

then we follow the steps in [41].
Assume that X is a locally compact metric space with metric d, and let F be a closed

subset of X with boundary δF and interior int F . Let π be a semidynamical system de-
fined on F . We say that π is persistent if, for all u ∈ int F , limt→+∞ inf d(π (u, t), δF) > 0,
and we say that π is uniformly persistent if there is ξ > 0 such that, for all u ∈ int F ,
limt→+∞ inf d(π (u, t), δF) > ξ .

In [41], Fonda gives a result about persistence in terms of repellers. A subset � of
F is said to be a uniform repeller if there is an η > 0 such that, for each u ∈ F \ �,
limt→+∞ inf d(π (u, t),�) > η. A semiflow on a closed subset F of a locally compact met-
ric space is uniformly persistent if the boundary of F is repelling in a suitable strong sense.

Lemma 1 Let � be a compact subset of X such that X \ � is positively invariant. A neces-
sary and sufficient condition for � to be a uniform repeller is that there exist a neighborhood
U of � and a continuous function P : X → R+ satisfying

(1) P(u) = 0 if and only if u ∈ �,
(2) for all u ∈ U \ � there is a Tu > 0 such that P(π (u, Tu)) > P(u).

For any u0 = (S0, E0, I0) ∈ ω, there is a unique solution π (u0, t) = (S, E, I)(t; u0) of system
(7), which is defined in R+ and satisfies π (u0, 0) = (S0, E0, I0). Since ω is a positively invariant
set of system (7), then π (u0, t) ∈ ω for t ∈ R+ and it is a semidynamical system in ω. Here,
we will prove that, when R0 > 1, � = {(S, E, I) ∈ � : I = 0} is a uniform repeller, which
implies that the semidynamical system π is uniformly persistent. Obviously, I(t) > 0 for
t > 0 if I(0) > 0, then ω \ � is invariant to (7). Again the set � is a compact subset of ω.

Let P : ω → R+ be defined by P(S, E, I) = I , and let U = {(S, E, I) ∈ ω : P(S, E, I) < ζ1}, where
ζ1 > 0 is small enough so that

{

A –
μ(μ + σ1 + γ1 + ε)(μ + α + c + σ2 + γ2)

βε

}

–
{

(μ + σ1 + γ1 + ε)(μ + α + c + σ2 + γ2)
ε

– c
}

ζ1 > 0. (12)

Since R0 > 1, the positive number ζ1 is sufficiently small to satisfy the inequality (12).
Assume that there is ū ∈ U (ū = (S̄, Ē, Ī)) such that for each t > 0 we have P(π (ū, t)) <

P(ū) < ζ1, which implies that I(t, ū) < ζ1 for t > 0. From the first equation of (7) we have

dS
dt

≥ A + cζ1 – (μ + βζ1)S, (13)

then

lim
t→∞ inf S(t, ū) ≥ A + cζ1

μ + βζ1
. (14)
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For sufficiently large number of T > 0 we have S(t, ū) > A+cζ1
μ+βζ1

for t ≥ T .
Now we define another function V2(t) = (1 – ζ2)E(t) + μ+σ1+γ1+ε

β
I(t), where ζ2 (0 < ζ2 < 1)

is a sufficiently small constant so that

{

A –
μ(1 – ζ2)(μ + σ1 + γ1 + ε)(μ + α + c + σ2 + γ2)

βε

}

>
{

(μ + σ1 + γ1 + ε)(μ + α + c + σ2 + γ2)
ε

– c
}

ζ1. (15)

Now we differentiate V2(t) along with π (ū, t) as follows:

dV2

dt
≥ ζ2(μ + σ1 + γ1)

β
E(t) +

{

A –
μ(1 – ζ2)(μ + σ1 + γ1 + ε)(μ + α + c + σ2 + γ2)

βε

–
(

(μ + σ1 + γ1 + ε)(μ + α + c + σ2 + γ2)
ε

– c
)

ζ1

}

I(t), (16)

dV2

dt
> κV2, (17)

where

κ = min

{
ζ2(μ + σ1 + γ1)

β(1 – ζ2)
,

β

μ + σ1 + γ1

[

A –
μ(1 – ζ2)(μ + σ1 + γ1 + ε)(μ + α + c + σ2 + γ2)

βε

–
(

(μ + σ1 + γ1 + ε)(μ + α + c + σ2 + γ2)
ε

– c
)

ζ1

]}

> 0.

Thus we see that

lim
t→∞ V2(t) = +∞. (18)

Therefore, this proof shows that, for each u ∈ ω \� with u belonging to a suitable small
neighborhood of �, there is some Tu such that P(π (u, Tu)) > P(u). Therefore, it follows
from Lemma 1 that � = {(S, E, I) ∈ � : I = 0} is a uniform repeller when R0 > 1, i.e., the
infection is uniformly persistent. So we conclude that system (7) will be persistent for
R0 > 1 and infection will be extinct when R0 < 1.

3 Stability analysis
Based on the analysis in [29], we know that if R0 > 1, then system (2) has a unique endemic
equilibrium P∗(S∗, E∗, I∗, Q∗), where

S∗ =
A

μR0
, I∗ =

εE∗

μ + α + c + σ2 + γ2
,

E∗ =
A(R0 – 1)(μ + α + c + σ2 + γ2)

R0[(μ + σ1 + γ1)(μ + α + c + σ2 + γ2) + ε(μ + α + σ2 + γ2)]
,

Q∗ =
(μ + α + c + σ2 + γ2)σ1 + εσ2

(μ + α + γ3)(μ + α + c + σ2 + γ2)
E∗,
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R0 =
Aβε

μ(μ + ε + σ1 + γ1)(μ + α + c + σ2 + γ2)
.

In this section the linear stability of system (2) is discussed by constructing a suitable
Lyapunov functional given in (20). For this purpose, let u1(t) = S(t) – S∗, u2(t) = E(t) – E∗,
u3(t) = I(t) – I∗, u4(t) = Q(t) – Q∗ then system (2) transforms into

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

du1(t)
dt = (–βI∗ – μ)u1 + (c – βS∗)u3,

dB1(t)
dt = βI∗u1 – (μ + σ1 + γ1 + ε)u2 + βS∗u3,

dB2(t)
dt = εu2 – (μ + α + c + σ2 + γ2)u3,

du4
dt = σ1u2 + σ2u3 – (μ + α + γ3)u4,

(19)

where B1(t) = u2 – ε
∫ t

t–τ
u2(s) ds and B2(t) = u3 + ε

∫ t
t–τ

u2(s) ds.
Now following the steps in [42, 43], we shall check the stability of the system by assuming

a suitable Lyapunov function w(v)(t) as follows:

w(u)(t) = k1w1(u)(t) + k2w2(u)(t) + k3w3(u)(t) + k4w4(u)(t) + k5w5(u)(t)

+ k6w6(u)(t) + k7w7(u)(t) + k8w8(u)(t) + k9w9(u)(t) + k10w10(u)(t), (20)

where k1, k2, k3, k4, k5, k6, k7, k8, k9, k10 are given in the Appendix and

w1(u)(t) = u2
1(t),

w2(u)(t) = B2
1(t) + ε

(
μ + σ1 + γ1 + ε – βI∗ – βS∗)

∫ t

t–τ

∫ t

s
u2

2(l) dl ds,

w3(u)(t) = B2
2(t) +

{
ε2 – ε(μ + α + c + σ2 + γ2)

}
∫ t

t–τ

∫ t

s
u2

2(l) dl ds,

w4(u)(t) = u2
4(t),

w5(u)(t) = u1(t)B1(t) +
βI∗ε + με – cε + βS∗ε

2

∫ t

t–τ

∫ t

s
u2

2(l) dl ds,

w6(u)(t) = u1(t)B2(t) +
cε – βS∗ε – βI∗ε – με

2

∫ t

t–τ

∫ t

s
u2

2(l) dl ds,

w7(u)(t) = u1(t)u4(t),

w8(u)(t) = B1(t)B2(t) +
βI∗ε – σ1ε – γ1ε – 2ε2 + βS∗ε + αε + cε + σ2ε + γ2ε

2

×
∫ t

t–τ

∫ t

s
u2

2(l) dl ds,

w9(u)(t) = B1(t)u4(t) +
με + αε + γ3ε – σ1ε – σ2ε

2

∫ t

t–τ

∫ t

s
u2

2(l) dl ds,

w10(u)(t) = B2(t)u4 +
σ1ε + σ2ε – με – αε – γ3ε

2

∫ t

t–τ

∫ t

s
u2

2(l) dl ds.

All the parameters are assumed to be positive and chosen in such a way that k1 > 0,
k2 > 0, k3 > 0, k4 > 0, k5 > 0, k6 > 0, k7 > 0, k8 > 0, k9 > 0, k10 > 0 and w(u)(t) > 0. Taking the
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Figure 1 τ versus �1, �2, �3, �4 have been plotted, where all the �1, �2, �3, �4 are negative for
τ ≤ τ0 = 13.9858

Figure 2 τ versus �1, �2, �3, �4 have been plotted, where all the �1, �2, �3, �4 are positive and
τ ≥ τ0 = 13.9858

derivative of (20), and using (19) we get

d
dt

w(u)(t) ≤ �1u2
1 + �2u2

2 + �3u2
3 + �4u2

4, (21)

where the expressions for �1, �2, �3, �4 are given in the Appendix.

Theorem 1 If the value of the delay τ satisfy the conditions �1 < 0, �2 < 0, �3 < 0, �4 < 0
then the interior equilibrium point P∗(S∗, E∗, I∗, Q∗) of (2) is locally asymptotically stable
(Fig. 1). Otherwise if any one of the �i become positive then the system will be unstable
(Fig. 2)

Proof Let � = max{�1,�2,�3,�4}. Then, for t > T , from (21) we get

w(u)(t) + �

∫ t

T

(
u2

1(s) + u2
2(s) + u2

3(s) + u2
4(s)

)
ds ≤ w(u)(T),
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for t ≥ T , implies u2
1 + u2

2 + u2
3 + u2

4 ∈ L1[T ,∞]. It is easy to conclude from (19) and the
boundedness of u(t) that u2

1(t) + u2
2(t) + u2

3(t) + u2
4(t) is uniformly continuous. Using Bar-

balat’s lemma [44], we can say that

lim
t→∞

{
u2

1 + u2
2 + u2

3 + u2
4
}

= 0. (22)

So the internal solution of (19) and the solutions of (2) are asymptotically stable, i.e., the
positive equilibrium P∗ of (2) is locally asymptotically stable. Hence, this completes the
proof. �

Remark As �1, �2, �3, �4 depends on the delay τ and the local stability condition for P∗

of system (2) is preserved for small τ satisfying �1 < 0, �2 < 0, �3 < 0, �4 < 0. For a set
of parameters, �1, �2, �3, �4 have been plotted in Fig. 1, it shows that all the values of
� are negative within an interval of τ , which implies the stability of the system. But, for
increased values of the latent delay τ , all the values of � are positive (see Fig. 2), which
shows that the system is unstable.

4 Linear stability and Hopf-bifurcation analysis
Here we shall discuss the condition for linear stability and then taking τ as bifurcation
parameter the condition for Hopf bifurcation is discussed. The characteristic equation of
system (2) is

λ4 + m3λ
3 + m2λ

2 + m1λ + m0 +
(
n3λ

3 + n2λ
2 + n1λ + n0

)
e–λτ = 0, (23)

where

m0 = a1a4a6a9,

m1 = –
[
a1a4a6 + a9(a1a4 + a1a6 + a4a6)

]
,

m2 = a1a4 + a1a6 + a4a6 + a9(a1 + a4 + a6),

m3 = –(a1 + a4 + a6 + a9),

n0 = a1a9(a6b1 – a5b2) + a2a3a9b2,

n1 = a5b2(a1 + a9) – a2a3b2 – b1(a1a6 + a1a9 + a6a9),

n2 = b1(a1 + a6 + a9) – a5b2, n3 = –b1,

and

a1 = –
(
βI∗ + μ

)
, a2 = c – βS∗, a3 = βI∗,

a4 = –(μ + σ1 + γ1), a5 = βS∗,

a6 = –(μ + α + c + σ2 + γ2),

a7 = σ1, a8 = σ2, a9 = –(μ + α + γ3), b1 = –ε, b2 = ε.

Theorem 2 For system (2), if R0 > 1 and the conditions (H1)–(H2) hold, then the endemic
equilibrium P∗(S∗, E∗, I∗, Q∗) is locally asymptotically stable when τ ∈ [0, τ0); system (2)
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undergoes a Hopf bifurcation at the endemic equilibrium P∗(S∗, E∗, I∗, Q∗) when τ = τ0 and
a family of periodic solutions bifurcate from the endemic equilibrium P∗(S∗, E∗, I∗, Q∗). The
conditions (H1) and (H2) are described in the following.

Proof The proof proceeds by using some lemmas.

Lemma 2 ([29]) When R0 > 1, the unique endemic equilibrium P∗(S∗, E∗, I∗, R∗) is locally
asymptotically stable when τ = 0 for system (2).

For τ > 0, let λ = iω (ω > 0) be the root of Eq. (23), then

⎧
⎨

⎩

(n1ω – n3ω
3) sin τω + (n0 – n2ω

2) cos τω = m2ω
2 – ω4 – m0,

(n1ω – n3ω
3) cos τω – (n0 – n2ω

2) sin τω = m3ω
3 – m1ω,

(24)

which leads to

ω8 + l3ω
6 + l2ω

4 + l1ω
2 + l0 = 0, (25)

where

l0 = m2
0 – n2

0,

l1 = m2
1 – 2m0m2 + 2n0n2 – n2

1,

l2 = m2
2 + 2m0 – 2m1m3 – n2

2 + 2n1n3,

l3 = m2
3 – n2

3 – 2m2.

Let ω2 = v, then Eq. (25) becomes

v4 + l3v3 + l2v2 + l1v + l0 = 0. (26)

Define

f (v) = v4 + l3v3 + l2v2 + l1v + l0. (27)

Thus,

f ′(v) = 4v3 + 3l3v2 + 2l2v + l1. (28)

Set

4v3 + 3l3v2 + 2l2v + l1 = 0. (29)

Let y = v + 3l3
4 . Then Eq. (29) becomes

y3 + r1y + s1 = 0, (30)
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where

r1 =
l2

2
–

3
16

l2
3, s1 =

l3
3

32
–

l2l3

8
+ l1.

Denote

D =
(

s1

2

)2

+
(

r1

3

)3

, σ =
–1 +

√
3i

2
,

y1 = 3

√

–
s1

2
+

√
D + 3

√

–
s1

2
–

√
D,

y2 = 3

√

–
s1

2
+

√
Dσ + 3

√

–
s1

2
–

√
Dσ 2,

y3 = 3

√

–
s1

2
+

√
Dσ 2 + 3

√

–
s1

2
–

√
Dσ ,

vi = yi –
3l3

4
, i = 1, 2, 3.

Based on the discussion of the distribution of roots of Eq. (26) in Lemma 2.1 and
Lemma 2.2 in [45], we have the following results.

Lemma 3 For Eq. (26), we have
(H1) If l0 < 0, Eq. (26) has at least one positive root;
(H2) If l0 ≥ 0 and D ≥ 0, Eq. (26) has positive roots if and only if v1 > 0 and f (v1) < 0;
(H3) If l0 ≥ 0 and D < 0, Eq. (26) has positive roots if and only if there exists at least one

v∗ ∈ {v1, v2, v3} such that v∗ > 0 and f (v∗) ≤ 0.

In what follows, we assume (H1): the coefficients in f (v) satisfy one of the following
conditions in (a)–(c).

(a) l0 < 0;
(b) l0 ≥ 0, D ≥ 0, v1 > 0 and f (v1) < 0;
(c) l0 ≥ 0, D < 0, and there exists at least one v∗ ∈ {v1, v2, v3} such that v∗ > 0 and

f (v∗) ≤ 0.
If the condition (H1) holds, then Eq. (26) has positive root v0 such that Eq. (23) has a

pair of imaginary roots ±iω0 = ±i√v0. Further, we have

τ0 = 1
ω0

arccos

{
(n2 – m3n3)ω6

0 + (m1n3 + m3n1 – m2n2)ω4
0 + (m0n2 + m2n0 – m1n1)ω2

0 – m0n0

(n1ω0 – n3ω
3
0)2 + (n0 – n2ω

2
0)2

}

.

(31)

Differentiating both sides of Eq. (23) with respect to τ yields
[

dλ

dτ

]–1

= –
4λ3 + 3m3λ

2 + 2m2λ + m1

λ(λ4 + m3λ3 + m2λ2 + m1λ + m0)
+

3n3λ
2 + 2n2λ + n1

λ(n3λ3 + n2λ2 + n1λ + n0)
–

τ

λ
.

Further, we have

Re

[
dλ

dτ

]–1

τ=τ0

=
f ′(v∗∗)

(n1ω0 – n3ω
3
0)2 + (n0 – n2ω

2
0)2 ,

where f (v) = v4 + l3v3 + l2v2 + l1v + l0 and v∗∗ = ω2
0.
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Clearly, if the condition (H2): f ′(ω2
0) 
= 0 holds, then Re[dλ/dτ ]–1

τ=τ0 
= 0. Therefore, by
the Hopf-bifurcation theorem that determines the existence of a Hopf bifurcation for a
delayed dynamical system in [44], we can obtain the results described in Theorem 2. The
proof is completed. �

5 Direction of the Hopf bifurcation and stability of the periodic solutions
Let u1(t) = S(t) – S∗, u2(t) = E(t) – E∗, u3(t) = I(t) – I∗, u4(t) = Q(t) – Q∗, and normalize
the delay with t → (t/τ ). Let τ = τ0 + � (� ∈ R), then � = 0 is the Hopf-bifurcation value of
system (2). And system (2) can be transformed into a functional differential equation in
C = C([–1, 0], R4) as follows:

u̇(t) = L�(ut) + F(�, ut), (32)

where u(t) = (u1, u2, u3, u4)T ∈ C = C([–1, 0], R4) and L� : C → R4 and F : R × C → R4 are
given, respectively, by

L�φ = (τ0 + �)
(
Amaxφ(0) + Bmaxφ(–1)

)
,

and

F(�,φ) =

⎛

⎜
⎜
⎜
⎝

–βφ1(0)φ3(0)
βφ1(0)φ3(0)

0
0

⎞

⎟
⎟
⎟
⎠

,

with

Amax =

⎛

⎜
⎜
⎜
⎝

a1 0 a2 0
a3 a4 a5 0
0 0 a6 0
0 a7 a8 a9

⎞

⎟
⎟
⎟
⎠

, Bmax =

⎛

⎜
⎜
⎜
⎝

0 0 0 0
0 b1 0 0
0 b2 0 0
0 0 0 0

⎞

⎟
⎟
⎟
⎠

.

Theorem 3
(i) If μ2 > 0 (μ2 < 0), then the Hopf bifurcation is supercritical (subcritical);

(ii) if β2 < 0 (β2 > 0, then the bifurcation periodic solutions are stable (unstable);
(iii) if T2 > 0 (T2 < 0), then the bifurcating periodic solutions increase (decrease).

The expressions of μ2, β2 and T2 are described in the following.

Proof By the Riesz representation theorem, there exists a function η(θ ,�) of bounded vari-
ation for θ ∈ [–1, 0] such that

Lμφ =
∫ 0

–1
dη(θ ,�)φ(θ ), for φ ∈ C. (33)

In fact, we choose

η(θ ,�) = (τ0 + �)
(
Amaxδ(θ ) + Bmaxδ(θ + 1)

)
,

where δ(θ ) is the Dirac delta function.
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For φ ∈ C([–1, 0], R4), define

A(�)φ =

⎧
⎨

⎩

dφ(θ )
dθ

, –1 ≤ θ < 0,
∫ 0

–1 dη(θ ,�)φ(θ ), θ = 0,

and

R(�)φ =

⎧
⎨

⎩

0, –1 ≤ θ < 0,

F(�,φ), θ = 0.

Then system (32) is equivalent to

u̇(t) = A(�)ut + R(�)ut . (34)

For ϕ ∈ C1([0, 1], (R4)∗), the adjoint operator A∗ of A(0) is defined as follows:

A∗(ϕ) =

⎧
⎨

⎩

– dϕ(s)
ds , 0 < s ≤ 1,

∫ 0
–1 dηT (s, 0)ϕ(–s), s = 0.

Next, we define the bilinear inner form for A and A∗

〈
ϕ(s),φ(θ )

〉
= ϕ̄(0)φ(0) –

∫ 0

θ=–1

∫ θ

ξ=0
ϕ̄(ξ – θ ) dη(θ )φ(ξ ) dξ , (35)

where η(θ ) = η(θ , 0).
Let q(θ ) = (1, q2, q3, q4)T eiτ0ω0θ be the eigenvector of A(0) corresponding to +iτ0ω0 and

q∗(s) = V (1, q∗
2, q∗

3, q∗
4)T eiτ0ω0s be the eigenvector of A∗(0) corresponding to –iτ0ω0, respec-

tively. Based on the definition of A(0) and A∗, one can obtain

q2 =
a3 + a5q3

iω0 – a4 – b1e–iτ0ω0
, q3 =

iω0 – a1

a2
, q4 =

a7q2 + a8q3

(iω0 – a9)
,

q∗
2 = –

iω0 + a1

a3
, q∗

4 = –
a2 + a5q2 + (a6 + iω0)q3

a8
,

q∗
3 =

a7(a2 + a5q2) – a8(iω0 + a4 + b1eiτ0ω0 )q2

a8b2eiτ0ω0 – a7(a6 + iω0)
.

(36)

From Eq. (35), we can obtain

V̄ =
[
1 + q2q∗

2 + q3q̄∗
3 + q4q̄∗

4 + τ0e–iτ0ω0 q2
(
b1q̄2

∗ + b2q̄∗
3
)]–1

such that 〈q∗, q〉 = 1 and 〈q∗, q̄〉 = 0.
Next, according to the algorithms in [44] and a similar computation process to that in

[46], we can obtain the expressions of g20, g11, g02 and g21 as follows:

g20 = 2βτ0V̄ q3
(
q̄∗

3 – 1
)
,

g11 = βτ0V̄ (q3 + q̄3)
(
q̄∗

3 – 1
)
,
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g02 = 2βτ0V̄ q̄3
(
q̄∗

3 – 1
)
,

g21 = 2βτ0V̄
(
q̄∗

3 – 1
)
(

W (1)
11 (0)q2 +

1
2

W (1)
20 (0)q̄2

+ W (3)
11 (0) +

1
2

W (3)
20 (0)

)

,

with

W20(θ ) =
ig20q(0)
τ0ω0

eiτ0ω0θ +
iḡ02q̄(0)
3τ0ω0

e–iτ0ω0θ + E1e2iτ0ω0θ ,

W11(θ ) = –
ig11q(0)
τ0ω0

eiτ0ω0θ +
iḡ11q̄(0)
τ0ω0

e–iτ0ω0θ + E2.

E1 and E2 can be obtained by the following two equations:

E1 = 2

⎛

⎜
⎜
⎜
⎝

2iω0 – a1 0 –a2 0
–a3 2iω0 – a4 – b1e–2iτ0ω0 –a5 0

0 –b2e–2iτ0ω0 2iω0 – a6 0
0 a7 –a8 2iω0 – a9

⎞

⎟
⎟
⎟
⎠

–1

×

⎛

⎜
⎜
⎜
⎝

βq3

βq3

0
0

⎞

⎟
⎟
⎟
⎠

,

E2 = –

⎛

⎜
⎜
⎜
⎝

a1 0 a2 0
a3 a4 + b1 a5 0
0 b2 a6 0
0 a7 a8 a9

⎞

⎟
⎟
⎟
⎠

–1

×

⎛

⎜
⎜
⎜
⎝

–β(q3 + q̄3)
β(q3 + q̄3)

0
0

⎞

⎟
⎟
⎟
⎠

.

Then one can obtain

C1(0) =
i

2τ0ω0

(

g11g20 – 2|g11|2 –
|g02|2

3

)

+
g21

2
,

μ2 = –
Re{C1(0)}
Re{λ′(τ0)} ,

β2 = 2Re
{

C1(0)
}

,

T2 = –
Im{C1(0)} + μ2 Im{λ′(τ0)}

τ0ω0
.

(37)

Thus, we can obtain the results described in Theorem 3. The proof is completed. �

6 Numerical simulation
In this section we shall perform some numerical scenario as the support of our obtained
analytical results by choosing the suitable value of the parameters. For different values of
delays we obtain different scenarios with P∗(S∗, E∗, I∗, Q∗) as interior equilibrium point.
The value of the parameters are taken as follows:

A = 20, β = 0.5, μ = c = 0.25, ε = 0.25,

σ1 = γ1 = 0.125, α = 0.5, σ2 = γ2 = 0.25, γ3 = 0.5.
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The parameters are chosen in such a way that they satisfy the conditions obtained in the
previous sections analytically. We have

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dS(t)
dt = 20 – 0.5S(t)I(t) – 0.25S(t) + 0.25I(t),

dE(t)
dt = 0.5S(t)I(t) – 0.5E(t) – 0.5E(t – τ ),

dI(t)
dt = 0.5E(t – τ ) – 1.5I(t),

dQ(t)
dt = 0.125E(t) + 0.25I(t) – 1.25Q(t).

(38)

With this set of parameters we get the basic reproduction number R0 = 13.3333 > 0 and
the unique endemic equilibrium P∗(6, 20.1818, 6.7273, 3.3636). Biologically it shows that
all the individuals coexist. First, in the absence of latent delay, i.e. τ = 0 the dynamics of
system (1) has been plotted in Fig. 3 and the dynamics is stable in the absence of delay
(Lemma 1). But in Fig. 4 it is seen that in the presence of delay (very small value of τ )
initially all the individuals are oscillating and after some time again it comes to a stable
situation. Thus for a more increased value of the delay the oscillation for the individuals
also increases. Hence, the interior equilibrium point P∗(S∗, E∗, I∗, Q∗) is seen to be stable
for τ < τ0 (Fig. 5) and at the critical value of delay we get a stable periodic solution where
the Hopf bifurcation occurs (Fig. 6). Finally for large value of delay τ > τ0 the system loses

Figure 3 Time series plot for τ = 0, which is stable

Figure 4 Time series plot for τ 
= 0 but very small τ , which is stable
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Figure 5 P∗ is locally asymptotically stable when τ = 10.65 < τ0 = 13.9858

Figure 6 P∗ is stable periodic when τ = τ0 = 13.9858

Figure 7 P∗ loses its stability when τ = 28.85 > τ0 = 13.9858

its stability (Fig. 7). This property can be also illustrated by the bifurcation diagram with
respect to τ in Fig. 8.

7 Conclusions
In [29], a non-delayed SEIQ epidemic model has been investigated by the authors. But the
disease models are not instantaneous, i.e., infected diseases start by infection and then
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Figure 8 Bifurcation diagram with respect to time delay

some symptoms can be seen. Thus, in the incubation period it takes some time for a re-
sponse to occur, i.e., delay is arising. Here, in this article we have assumed a delayed SEIQ
epidemic model by incorporating the latent delay to the model proposed in [29]. Thus,
compared with the model proposed in [29], the model we consider in the present paper is
more general. We consider not only the effect of the time delay on the model, but also the
boundedness, persistence and the properties of the Hopf bifurcation. The results obtained
in the present paper are the complement of the research work in the literature [29].

For this model, a feasible region R̄ is obtained with the appropriate choice of the pa-
rameters. It can be seen that all the solutions of (2) will remain in or tend to R̄, i.e., the
feasible region R̄ is positive and invariant. If the basic reproduction number R0 > 1, then
the model has an endemic equilibrium point which is unique. Also if R0 > 1 the system
(2) will be persistent and for R0 < 1, the infection will be extinct, i.e., system (2) becomes
disease free. Next, we construct a suitable Lyapunov functional of the form (20) to check
the stability of system (2). Using this Lyapunov functional the sufficient conditions for lo-
cal asymptotic stability are given in Theorem 1. With the choice of the parameters given
in the numerical section and for τ < τ0 all the � are negative (Fig. 1), which satisfies the
conditions obtained in Theorem 1. Next, the sufficient conditions for local stability of the
endemic equilibrium of the model and the existence of a Hopf bifurcation are obtained
by taking the delay as the bifurcating parameter. Also, the critical value of the latent delay
is obtained. We can conclude that if the latent delay for system (2) is less than its criti-
cal value then the endemic equilibrium for the system gets in a stable situation but if it is
greater than the critical value the endemic equilibrium for system (2) will lose its stability.
Further, properties of the Hopf bifurcation such as direction and stability are studied by
means of the center manifold and normal form theory. At the end, with a set of suitable
parameters, some numerical computations are presented to justify our results obtained
analytically and to see the effect of the latent delay on the stability of the system.

It should be pointed out that system (2) undergoes a local Hopf bifurcation at the en-
demic equilibrium P∗(S∗, E∗, I∗, Q∗) and a bifurcating periodic solution exists when τ near
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τ0. In other words, the existence of these periodic solutions remains valid only in a small
neighborhood of the critical value τ0. It is interesting to investigate whether these periodic
solutions remain when the value of the time delay τ becomes large enough. We leave the
existence of a global Hopf bifurcation of system (2) as our next work in the near future.

Appendix
We have

�1 = –2k1
(
μ + βI∗) – k2βI∗ετ + k5

{

βI∗ +
βI∗ετ + μετ

2

}

+ k6
–μετ – βI∗ετ

2
+ k8

βI∗ετ
2

+ k10
σ1ετ

2
,

�2 = k2
{

–2μ – 2σ1 – 2γ1 – 2ε + ετ
(
2μ + 2σ1 + 2γ1 + 2ε – βI∗ – βS∗)}

+ k3
{

2τε2 – ετ (μ + α + c + σ2 + γ2)
}

+ k5
βI∗ετ + μετ – cετ + βS∗ετ

2

+ k6
–τε(βI∗ + μ – c + βS∗)

2

+ k8

{

ε +
τε

2
(
–4ε – μ – 2σ1 – 2γ1 + βI∗ + βS∗ + α + c + σ2 + γ2

)
}

+ k9
2σ1 + τε(μ + α + γ3 – 2σ1 – σ2)

2
+ k10

σ1ετ

2
,

�3 = k2
(
–βS∗ετ

)
– k3

{
2(μ + α + c + σ2 + γ2) + τε(μ + α + c + σ2 + γ2)

}

+ k5
βS∗ετ – cετ

2
+ k6

2c – 2βS∗ + cετ – βετS∗

2

+ k8
2βS∗ + (βS∗ + μ + α + c + σ2 + γ2)ετ+

2
+ k9

–εσ2τ

2
+ k10

2σ2 + σ2ετ

2
,

�4 = –2k4(μ + α + γ3) + k9
(μ + α + γ3)τε

2
+ k10

(–μ – α – γ3)τε

2
,

k1 = k4

=
(

γ3S∗ + cτ +
cγ2τ + 2β2τ + 2μα

2
+

σ1σ2

2
+ 2βS∗ +

c – βS∗

2
+

–βS∗ετ
2

+
–βS∗ετ – cετ

2
+

μ + α + γ3

2

)/(

2ε

(

–γ1 – β +
βγ3τ

2
+

γ1 + σ2τ

2
+

βI∗ + μ

2

+
ετ (–2μ – σ1 – γ1 – ε)

2
+

(μ + α + c + σ2 + γ2)τ
2

+
–2μ + γ1γ2τ + 2σ1τ

2

))

,

k2 = k3 = 2k8

=
(

σ2I∗ + σ2γ2τ +
σ1γ3τ + βI∗ + βS∗τε – cτε

2
+

–μτε – βεI∗τ
2

+
βγ3τ

2

+
ε + α + c

2
+

σ1 + α + c + 2γ2

2

)/(

2ε

(

–γ1 – β +
βγ3τ

2
+

γ1 + σ2τ

2
+

βI∗ + μ

2

+
ετ (–2μ – σ1 – γ1 – ε)

2
+

(μ + α + c + σ2 + γ2)τ
2

+
–2μ + γ1γ2τ + 2σ1τ

2

))

,

k5 = k10
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= 2(μ + α + γ3) +
βS∗τ

2
+

βI∗ετ
2

+ 2
(
μ + βI∗) +

α + c + μ + γ2τ

2
+ 2σ1 + ετ

+
c – βS∗ – βI∗ – 2μ

2
+

ετ

2
(2μ + 2α + γ3 + c + σ2 + γ2)

/
(

2ε

(

–γ1 – β +
βγ3τ

2

+
γ1 + σ2τ

2
+

βI∗ + μ

2
+

ετ (–2μ – σ1 – γ1 – ε)
2

+
(μ + α + c + σ2 + γ2)τ

2
+

–2μ + γ1γ2τ + 2σ1τ

2

))

,

k6 = k7 = k9

=
(
–2μ – 2σ1 – 2γ1 – 2ε + τε

(
2μ + 2σ1 + 2γ1 + 2ε – βI∗ – βS∗))/

(

2ε

(

–γ1

– β +
βγ3τ

2
+

γ1 + σ2τ

2
+

βI∗ + μ

2
+

ετ (–2μ – σ1 – γ1 – ε)
2

+
(μ + α + c + σ2 + γ2)τ

2
+

–2μ + γ1γ2τ + 2σ1τ

2

))

.
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