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1 Introduction
In recent years, fractional calculus and fractional differential equations are emerging as a
useful tool in modeling the dynamics of many physical systems and electrical phenomena,
which has been demonstrated by many researchers in the fields of mathematics, science,
and engineering; see [3, 4, 18, 19, 22, 23, 30, 31, 35–40]. Recently, considerable attention
has been given to the existence of solutions of initial and boundary value problems for
fractional differential equations with Hilfer fractional derivative [15, 16, 18, 20, 32, 34]
and other problems with Hilfer–Hadamard fractional derivative [28, 29].

The measure of weak noncompactness was introduced by De Blasi [14]. The strong mea-
sure of noncompactness was developed first by Banaś and Goebel [8] and subsequently
developed and used in many papers; see, for example, Akhmerov et al. [6], Alvárez [7],
Benchohra et al. [12], Guo et al. [17], and the references therein. In [12, 26], the authors
considered some existence results by the technique of measure of noncompactness. Re-
cently, several researchers obtained other results by the technique of measure of weak
noncompactness; see [2, 4, 10, 11] and the references therein.

Consider the following coupled system of implicit Hilfer–Hadamard fractional differen-
tial equations:

⎧
⎨

⎩

(HDα,β
1 u1)(t) = f1(t, u1(t), u2(t), (HDα,β

1 u1)(t), (HDα,β
1 u2)(t)),

(HDα,β
1 u2)(t) = f2(t, u1(t), u2(t), (HDα,β

1 u1)(t), (HDα,β
1 u2)(t)),

t ∈ I, (1)
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with the initial conditions
⎧
⎨

⎩

(HI1–γ
1 ui)(t)|t=1 = φ1,

(HI1–γ
1 u2)(t)|t=1 = φ2,

(2)

where I := [1, T], T > 1,α ∈ (0, 1),β ∈ [0, 1],γ = α + β – αβ ,φi ∈ E, fi : I × E4 → E, i = 1, 2,
are given continuous functions, E is a real (or complex) Banach space with norm ‖ · ‖E

and dual E∗, such that E is the dual of a weakly compactly generated Banach space X,
HI1–γ

1 is the left-sided mixed Hadamard integral of order 1 – γ , and HDα,β
1 is the Hilfer–

Hadamard fractional derivative of order α and type β . In this paper, we prove the exis-
tence of weak solutions for a coupled system of implicit fractional differential equations
of Hilfer–Hadamard type.

2 Preliminaries
Let C be the Banach space of all continuous functions v from I into E with the supremum
(uniform) norm

‖v‖∞ := sup
t∈I

∥
∥v(t)

∥
∥

E .

As usual, AC(I) denotes the space of absolutely continuous functions from I into E. We
define the space

AC1(I) :=
{

w : I → E : w′ ∈ AC(I)
}

,

where w′(t) = d
dt w(t), t ∈ I . Let

δ = t
d
dt

, n = [q] + 1,

where [q] is the integer part of q > 0. Define the space

ACn
δ :=

{
u : [1, T] → E : δn–1(u) ∈ AC(I)

}
.

Let γ ∈ (0, 1]. By Cγ (I), C1
γ (I), and Cγ ,ln(I) we denote the weighted spaces of continuous

functions defined by

Cγ (I) =
{

w : (1, T] → E :∈ w̄ ∈ C
}

,

where w̄(t) = t1–γ w(t), t ∈ (1, T], with the norm

‖w‖Cγ := sup
t∈I

∥
∥w̄(t)

∥
∥

E ,

C1
γ (I) =

{
w ∈ C : w′ ∈ Cγ

}

with the norm

‖w‖C1
γ

:= ‖w‖∞ +
∥
∥w′∥∥

Cγ
,
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and

Cγ ,ln(I) = {w : I → E : w̃ ∈ C},

where w̃(t) = (ln t)1–γ w(t), t ∈ I , with the norm

‖w‖Cγ ,ln := sup
t∈I

∥
∥w̃(t)

∥
∥

E .

We further denote ‖w‖Cγ ,ln by ‖w‖C .
Define the weighted product space C := Cγ ,ln(I) × Cγ ,ln(I) with the norm

∥
∥(w1, w2)

∥
∥
C := ‖w1‖C + ‖w2‖C .

In the same way, we can define the the weighted product space C := (Cγ ,ln(I))n with the
norm

∥
∥(w1, w2, . . . , wn)

∥
∥

C :=
n∑

k=1

‖wk‖C .

Let (E, w) = (E,σ (E, E∗)) be the Banach space E with weak topology.

Definition 2.1 A Banach space X is said to be weakly compactly generated (WCG) if it
contains a weakly compact set whose linear span is dense in X.

Definition 2.2 A function h : E → E is said to be weakly sequentially continuous if h takes
each weakly convergent sequence in E to a weakly convergent sequence in E (i.e., for any
(un) in E with un → u in (E, w), we have h(un) → h(u) in (E, w)).

Definition 2.3 ([27]) The function u : I → E is said to be Pettis integrable on I if and only
if there is an element uJ ∈ E corresponding to each J ⊂ I such that φ(uJ ) =

∫

J φ(u(s)) ds for
all φ ∈ E∗, where the integral on the right-hand side is assumed to exist in the Lebesgue
sense (by definition uJ =

∫

J u(s) ds).

Let P(I, E) be the space of all E-valued Pettis-integrable functions on I , and let L1(I, E) be
the Banach space of Bochner-integrable measurable functions u : I → E. Define the class

P1(I, E) =
{

u ∈ P(I, E) : ϕ(u) ∈ L1(I,R) for every ϕ ∈ E∗}.

The space P1(I, E) is normed by

‖u‖P1 = sup
ϕ∈E∗ ,‖ϕ‖≤1

∫ T

1

∣
∣ϕ

(
u(x)

)∣
∣dλx,

where λ is the Lebesgue measure on I .
The following result is due to Pettis [27, Thm. 3.4 and Cor. 3.41].

Proposition 2.4 ([27]) If u ∈ P1(I, E) and h is a measurable and essentially bounded E-
valued function, then uh ∈ P1(I, E).

In what follows, the symbol “
∫

” denotes the Pettis integral.
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Now, we give some results and properties of fractional calculus.

Definition 2.5 ([3, 22, 30]) The left-sided mixed Riemann–Liouville integral of order r > 0
of a function w ∈ L1(I) is defined by

(
Ir

1w
)
(t) =

1

(r)

∫ t

1
(t – s)r–1w(s) ds for a.e. t ∈ I,

where 
 is the (Euler) gamma function defined by


(ξ ) =
∫ ∞

0
tξ–1e–t dt, ξ > 0.

Notice that, for all r, r1, r2 > 0 and w ∈ C, we have Ir
0w ∈ C and

(
Ir1

1 Ir2
1 w

)
(t) =

(
Ir1+r2

1 w
)
(t); for a.e. t ∈ I.

Definition 2.6 ([3, 22, 30]) The Riemann–Liouville fractional derivative of order r > 0 of
a function w ∈ L1(I) is defined by

(
Dr

1w
)
(t) =

(
dn

dtn In–r
1 w

)

(t)

=
1


(n – r)
dn

dtn

∫ t

1
(t – s)n–r–1w(s) ds for a.e. t ∈ I,

where n = [r] + 1, and [r] is the integer part of r.

In particular, if r ∈ (0, 1], then

(
Dr

1w
)
(t) =

(
d
dt

I1–r
1 w

)

(t)

=
1


(1 – r)
d
dt

∫ t

1
(t – s)–rw(s) ds for a.e. t ∈ I.

Let r ∈ (0, 1],γ ∈ [0, 1), and w ∈ C1–γ (I). Then the following expression leads to the left
inverse operator:

(
Dr

1Ir
1w

)
(t) = w(t) for all t ∈ (1, T].

Moreover, if I1–r
1 w ∈ C1

1–γ (I), then the following composition is proved in [30]:

(
Ir

1Dr
1w

)
(t) = w(t) –

(I1–r
1 w)(1+)


(r)
tr–1 for all t ∈ (1, T].

Definition 2.7 ([3, 22, 30]) The Caputo fractional derivative of order r > 0 of a function
w ∈ L1(I) is defined by

(cDr
1w

)
(t) =

(

In–r
1

dn

dtn w
)

(t)
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=
1


(n – r)

∫ t

1
(t – s)n–r–1 dn

dsn w(s) ds for a.e. t ∈ I.

In particular, if r ∈ (0, 1], then

(cDr
1w

)
(t) =

(

I1–r
1

d
dt

w
)

(t)

=
1


(1 – r)

∫ t

1
(t – s)–r d

ds
w(s) ds for a.e. t ∈ I.

Let us recall some definitions and properties of Hadamard fractional integration and dif-
ferentiation. We refer to [22] for more details.

Definition 2.8 ([22]) The Hadamard fractional integral of order q > 0 for a function g ∈
L1(I, E) is defined as

(HIq
1 g

)
(x) =

1

(q)

∫ x

1

(

ln
x
s

)q–1 g(s)
s

ds,

provided that the integral exists.

Example 2.9 Let 0 < q < 1. Then

HIq
1 ln t =

1

(2 + q)

(ln t)1+q for a.e. t ∈ [0, e].

Remark 2.10 Let g ∈ P1(I, E). For every ϕ ∈ E∗, we have

ϕ
(HIq

1 g
)
(t) =

(HIq
1ϕg

)
(t) for a.e. t ∈ I.

Similarly to the Riemann–Liouville fractional calculus, the Hadamard fractional deriva-
tive is defined in terms of the Hadamard fractional integral as follows.

Definition 2.11 ([22]) The Hadamard fractional derivative of order q > 0 applied to a
function w ∈ ACn

δ is defined as

(HDq
1w

)
(x) = δn(HIn–q

1 w
)
(x).

In particular, if q ∈ (0, 1], then

(HDq
1w

)
(x) = δ

(HI1–q
1 w

)
(x).

Example 2.12 Let 0 < q < 1. Then

HDq
1 ln t =

1

(2 – q)

(ln t)1–q for a.e. t ∈ [0, e].

It has been proved (see, e.g., Kilbas [21, Thm. 4.8]) that, in the space L1(I, E), the
Hadamard fractional derivative is the left-inverse operator to the Hadamard fractional
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integral, that is,

(HDq
1
)(HIq

1 w
)
(x) = w(x).

From [22, Thm. 2.3] we have

(HIq
1
)(HDq

1w
)
(x) = w(x) –

(HI1–q
1 w)(1)

(q)

(ln x)q–1.

Similarly to the Hadamard fractional calculus, the Caputo–Hadamard fractional deriva-
tive is defined as follows.

Definition 2.13 The Caputo–Hadamard fractional derivative of order q > 0 applied to a
function w ∈ ACn

δ is defined as

(HcDq
1w

)
(x) =

(HIn–q
1 δnw

)
(x).

In particular, if q ∈ (0, 1], then

(HcDq
1w

)
(x) =

(HI1–q
1 δw

)
(x).

Hilfer [18] studied applications of the generalized fractional operator having the
Riemann–Liouville and the Caputo derivatives as particular cases (see also [20, 32]).

Definition 2.14 Let α ∈ (0, 1),β ∈ [0, 1], w ∈ L1(I) and I(1–α)(1–β)
1 w ∈ AC1(I). The Hilfer

fractional derivative of order α and type β of w is defined as

(
Dα,β

1 w
)
(t) =

(

Iβ(1–α)
1

d
dt

I(1–α)(1–β)
1 w

)

(t) for a.e. t ∈ I. (3)

Properties Let α ∈ (0, 1),β ∈ [0, 1],γ = α + β – αβ , and w ∈ L1(I).
1. The operator (Dα,β

1 w)(t) can be written as

(
Dα,β

1 w
)
(t) =

(

Iβ(1–α)
1

d
dt

I1–γ
1 w

)

(t) =
(
Iβ(1–α)

1 Dγ
1 w

)
(t) for a.e. t ∈ I.

Moreover, the parameter γ satisfies

γ ∈ (0, 1], γ ≥ α, γ > β , 1 – γ < 1 – β(1 – α).

2. For β = 0, generalization (3) coincides with the Riemann–Liouville derivative and for
β = 1, with the Caputo derivative:

Dα,0
1 = Dα

1 and Dα,1
1 =c Dα

1 .

3. If Dβ(1–α)
1 w exists and is in L1(I), then

(
Dα,β

1 Iα
1 w

)
(t) =

(
Iβ(1–α)

1 Dβ(1–α)
1 w

)
(t) for a.e. t ∈ I.
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Furthermore, if w ∈ Cγ (I) and I1–β(1–α)
1 w ∈ C1

γ (I), then

(
Dα,β

1 Iα
1 w

)
(t) = w(t) for a.e. t ∈ I.

4. If Dγ
1 w exists and is in L1(I), then

(
Iα

1 Dα,β
1 w

)
(t) =

(
Iγ

1 Dγ
1 w

)
(t) = w(t) –

I1–γ
1 (1+)

(γ )

tγ –1 for a.e. t ∈ I.

Based on the Hadamard fractional integral, the Hilfer–Hadamard fractional derivative
(introduced for the first time in [28]) is defined as follows.

Definition 2.15 Let α ∈ (0, 1),β ∈ [0, 1], γ = α + β – αβ , w ∈ L1(I), and H I(1–α)(1–β)
1 w ∈

AC1(I). The Hilfer–Hadamard fractional derivative of order α and type β applied to a
function w is defined as

(HDα,β
1 w

)
(t) =

(HIβ(1–α)
1

(H Dγ
1 w

))
(t)

=
(HIβ(1–α)

1 δ
(H I1–γ

1 w
))

(t) for a.e. t ∈ I. (4)

This new fractional derivative (4) may be viewed as interpolation of the Hadamard and
Caputo–Hadamard fractional derivatives. Indeed, for β = 0, this derivative reduces to the
Hadamard fractional derivative, and, for β = 1, we recover the Caputo–Hadamard frac-
tional derivative:

HDα,0
1 =H Dα

1 and HDα,1
1 =Hc Dα

1 .

From [29, Thm. 21] we have the following lemma.

Lemma 2.16 Let fi : I × E4 → E, i = 1, 2, be such that fi(·, u, v, ū, v̄) ∈ Cγ ,ln(I) for any
u, v, ū, v̄ ∈ Cγ ,ln(I). Then system (1)–(2) is equivalent to the problem of obtaining the so-
lution of the coupled system

⎧
⎨

⎩

g1(t) = f1(t, φ1

(γ ) (ln t)γ –1 + (HIα

1 g1)(t), φ2

(γ ) (ln t)γ –1 + (HIα

1 g2)(t), g1(t), g2(t)),

g2(t) = f2(t, φ1

(γ ) (ln t)γ –1 + (HIα

1 g1)(t), φ2

(γ ) (ln t)γ –1 + (HIα

1 g2)(t), g1(t), g2(t)),

and if gi(·) ∈ Cγ ,ln are the solutions of this system, then

⎧
⎨

⎩

u1(t) = φ1

(γ ) (ln t)γ –1 + (HIα

1 g1)(t),

u2(t) = φ2

(γ ) (ln t)γ –1 + (HIα

1 g2)(t).

Definition 2.17 ([14]) Let E be a Banach space, let �E be the set of bounded subsets of
E, and let B1 be the unit ball of E. The De Blasi measure of weak noncompactness is the
map μ : �E → [0,∞) defined by

μ(X) = inf{ε > 0 : there exists a weakly compact set � ⊂ E such that X ⊂ εB1 + �}.
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The De Blasi measure of weak noncompactness satisfies the following properties:
(a) A ⊂ B ⇒ μ(A) ≤ μ(B),
(b) μ(A) = 0 ⇔ A is weakly relatively compact,
(c) μ(A ∪ B) = max{μ(A),μ(B)},
(d) μ(Aω) = μ(A), where Aω denotes the weak closure of A,
(e) μ(A + B) ≤ μ(A) + μ(B),
(f ) μ(λA) = |λ|μ(A),
(g) μ(conv(A)) = μ(A),
(h) μ(

⋃
|λ|≤h λA) = hμ(A).

The next result follows directly from the Hahn–Banach theorem.

Proposition 2.18 If E is a normed space and x0 ∈ E – {0}, then there exists ϕ ∈ E∗ with
‖ϕ‖ = 1 and ϕ(x0) = ‖x0‖.

For a given set V of functions v : I → E, let us denote

V (t) =
{

v(t) : v ∈ V
}

; t ∈ I and V (I) =
{

v(t) : v ∈ V , t ∈ I
}

.

Lemma 2.19 ([17] ) Let H ⊂ C be a bounded equicontinuous subset. Then the function
t → μ(H(t)) is continuous on I ,

μC(H) = max
t∈I

μ
(
H(t)

)
,

and

μ

(∫

I
u(s) ds

)

≤
∫

I
μ

(
H(s)

)
ds,

where H(t) = {u(t) : u ∈ H}, t ∈ I , and μC is the De Blasi measure of weak noncompactness
defined on the bounded sets of C.

For our purpose, we will need the following fixed point theorem.

Theorem 2.20 ([25]) Let Q be a nonempty, closed, convex, and equicontinuous subset of a
metrizable locally convex vector space C(I, E) such that 0 ∈ Q. Suppose T : Q → Q is weakly
sequentially continuous. If the implication

V = conv
({0} ∪ T(V )

) ⇒ V is relatively weakly compact (5)

holds for every subset V ⊂ Q, then the operator T has a fixed point.

3 Existence of weak solutions
Let us start by the definition of a weak solution of problem (1).

Definition 3.1 By a weak solution of the coupled system (1)–(2) we mean a coupled
measurable functions (u1, u2) ∈ C such that (HI1–γ

1 ui)(1+) = φi, i = 1, 2, and the equations
(HDα,β

1 ui)(t) = fi(t, u1(t), u2(t), (HDα,β
1 u1)(t), (HDα,β

1 u2)(t)) are satisfied on I .
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We further will use the following hypotheses.
(H1) The functions v → fi(t, v, w, v̄, w̄), w → fi(t, v, w, v̄, w̄), v̄ → fi(t, v, w, v̄, w̄), and w̄ →

fi(t, v, w, v̄, w̄), i = 1, 2, are weakly sequentially continuous for a.e. t ∈ I ,
(H2) For all v, w, v̄, w̄ ∈ E, the functions t → fi(t, v, w, v̄, w̄), i = 1, 2, are Pettis integrable

a.e. on I ,
(H3) There exist pi, qi ∈ C(I, [0,∞)) such that, for all ϕ ∈ E∗,

∣
∣ϕ

(
fi(t, u, v, ū, v̄)

)∣
∣ ≤ pi(t)‖u‖E + qi(t)‖v‖E

1 + ‖ϕ‖ + ‖u‖E + ‖v‖E + ‖ū‖E + ‖v̄‖E

for a.e. t ∈ I and all u, v, ū, v̄ ∈ E,
(H4) For all bounded measurable sets Bi ⊂ E, i = 1, 2, and all t ∈ I , we have

μ
(
f1

(
t, B1, B2,H Dα,β

1 B1,H Dα,β
1 B2

)
, 0

) ≤ p1(t)μ(B1) + q1(t)μ(B2)

and

μ
(
0, f2

(
t, B1, B2,H Dα,β

1 B1,H Dα,β
1 B2

)) ≤ p2(t)μ(B1) + q2(t)μ(B2),

where HDα,β
1 Bi = {HDα,β

1 w : w ∈ Bi}, i = 1, 2.
Set

p∗
i = sup

t∈I
pi(t) and q∗

i = sup
t∈I

qi(t), i = 1, 2.

Theorem 3.2 Assume that the hypotheses (H1)–(H4) hold. If

L :=
(p∗

1 + p∗
2 + q∗

1 + q∗
2)(ln T)α


(1 + α)
< 1, (6)

then the coupled system (1)–(2) has at least one weak solution defined on I .

Proof Consider the operators Ni : Cγ ,ln → Cγ ,ln, i = 1, 2, defined by

(Niui)(t) =
φi


(γ )
(ln t)γ –1 +

(HIα
1 gi

)
(t),

where gi ∈ Cγ ,ln, i = 1, 2, are defined as

gi(t) = fi

(

t,
φ1


(γ )
(ln t)γ –1 +

(HIα
1 g1

)
(t),

φ2


(γ )
(ln t)γ –1 +

(HIα
1 g2

)
(t), g1(t), g2(t)

)

.

Consider the operator N : C → C such that, for any (u1, u2) ∈ C ,

(
N(u1, u2)

)
(t) =

(
(N1u1)(t), (N2u2)(t)

)
. (7)

First, notice that the hypotheses imply that, for each gi ∈ Cγ ,ln, i = 1, 2, the function

t �→
(

ln
t
s

)α–1

gi(s)
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is Pettis integrable over I , and

t �→ fi

(

t,
φ1


(γ )
(ln t)γ –1 +

(H Iα
1 g1

)
(t),

φ2


(γ )
(ln t)γ –1 +

(HIα
1 g2

)
(t), g1(t), g2(t)

)

for a.e. t ∈ I is Pettis integrable. Thus, the operator N is well defined. Let R > 0 be such
that R > L1 + L2, where

Li :=
(p∗

i + q∗
i )(ln T)1–γ +α


(1 + α)
, i = 1, 2,

and consider the set

Q =
{

(u1, u2) ∈ C :
∥
∥(u1, u2)

∥
∥
C ≤ R and

∥
∥(ln t2)1–γ ui(t2) – (ln t1)1–γ ui(t1)

∥
∥

E

≤ Li

(

ln
t2

t1

)α

+
p∗

i + q∗
i


(α)

∫ t1

1

∣
∣
∣
∣(ln t2)1–γ

(

ln
t2

s

)α–1

– (ln t1)1–γ

(

ln
t1

s

)α–1∣∣
∣
∣ds, i = 1, 2

}

.

Clearly, the subset Q is closed, convex, and equicontinuous. We will show that the operator
N satisfies all the assumptions of Theorem 2.20. The proof will be given in several steps.

Step 1. N maps Q into itself. Let (u1, u2) ∈ Q, t ∈ I , and assume that (N(u1, u2))(t) �= (0.0).
Then there exists ϕ ∈ E∗ such that ‖(ln t)1–γ (Niui)(t)‖E = |ϕ((ln t)1–γ (Niui)(t))|, i = 1, 2.
Thus, for any i ∈ {1, 2}, we have

∥
∥(ln t)1–γ (Niui)(t)

∥
∥

E = ϕ

(
φi


(γ )
+

(ln t)1–γ


(α)

∫ t

1

(

ln
t
s

)α–1

gi(s)
ds
s

)

,

where gi ∈ Cγ ,ln are defined as

gi(t) = fi

(

t,
φ1


(γ )
(ln t)γ –1 +

(HIα
1 g1

)
(t),

φ2


(γ )
(ln t)γ –1 +

(HIα
1 g2

)
(t), g1(t), g2(t)

)

.

Then from (H3) we get

∣
∣ϕ

(
gi(t)

)∣
∣ ≤ p∗

i + q∗
i .

Thus

∥
∥(ln t)1–γ (Niui)(t)

∥
∥

E

≤ (ln t)1–γ


(α)

∫ t

1

(

ln
t
s

)α–1∣
∣ϕ

(
gi(s)

)∣
∣ds

s

≤ (p∗
i + q∗

i )(ln T)1–γ


(α)

∫ t

1

(

ln
t
s

)α–1 ds
s

≤ (p∗
i + q∗

i )(ln T)1–γ +α


(1 + α)

= Li.
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Hence we get

∥
∥N(u1, u1)

∥
∥
C ≤ L1 + L2 < R.

Next, let t1, t2 ∈ I be such that t1 < t2, and let u ∈ Q be such that

(ln t2)1–γ (Niui)(t2) – (ln t1)1–γ (Niui)(t1) �= 0.

Then there exists ϕ ∈ E∗ such that

∥
∥(ln t2)1–γ (Niui)(t2) – (ln t1)1–γ (Niui)(t1)

∥
∥

E

=
∣
∣ϕ

(
(ln t2)1–γ (Niui)(t2) – (ln t1)1–γ (Niui)(t1)

)∣
∣

and ‖ϕ‖ = 1. Then, for any i ∈ {1, 2}, we have

∥
∥(ln t2)1–γ (Niui)(t2) – (ln t1)1–γ (Niui)(t1)

∥
∥

E

=
∣
∣ϕ

(
(ln t2)1–γ (Niui)(t2) – (ln t1)1–γ (Niui)(t1)

)∣
∣

≤ ϕ

(

(ln t2)1–γ

∫ t2

1

(

ln
t2

s

)α–1 gi(s)
s
(α)

ds – (ln t1)1–γ

∫ t1

1

(

ln
t1

s

)α–1 gi(s)
s
(α)

ds
)

,

where gi ∈ Cγ ,ln are defined as

gi(t) = fi

(

t,
φ1


(γ )
(ln t)γ –1 +

(HIα
1 g1

)
(t),

φ1


(γ )
(ln t)γ –1 +

(HIα
1 g2

)
(t), g1(t), g2(t)

)

.

Then

∥
∥(ln t2)1–γ (Niui)(t2) – (ln t1)1–γ (Niui)(t1)

∥
∥

E

≤ (ln t2)1–γ

∫ t2

t1

(

ln
t2

s

)α–1 |ϕ(gi(s))|
s
(α)

ds

+
∫ t1

1

∣
∣
∣
∣(ln t2)1–γ

(

ln
t2

s

)α–1

– (ln t1)1–γ

(

ln
t1

s

)α–1∣∣
∣
∣
|ϕ(gi(s))|

s
(α)
ds

≤ (ln t2)1–γ

∫ t2

t1

(

ln
t2

s

)α–1 pi(s) + qi(s)
s
(α)

ds

+
∫ t1

1

∣
∣
∣
∣(ln t2)1–γ

(

ln
t2

s

)α–1

– (ln t1)1–γ

(

ln
t1

s

)α–1∣∣
∣
∣
pi(s) + qi(s)

s
(α)
ds.

Thus, we get

∥
∥(ln t2)1–γ (Niui)(t2) – (ln t1)1–γ (Niui)(t1)

∥
∥

E

≤ Li

(

ln
t2

t1

)α

+
p∗

i + q∗
i


(α)

∫ t1

1

∣
∣
∣
∣(ln t2)1–γ

(

ln
t2

s

)α–1

– (ln t1)1–γ

(

ln
t1

s

)α–1∣∣
∣
∣ds.

Hence N(Q) ⊂ Q.
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Step 2. N is weakly sequentially continuous. Let {(un, vn)}n be a sequence in Q, and
let (un(t), vn(t) → (u(t), v(t)) in (E,ω) × (E,ω) for each t ∈ I . Fix t ∈ I . Since for any
i ∈ 1, 2, the function fi satisfies assumption (H1), we have that fi(t, un(t), vn(t), (HDα,β

1 un)(t),
(HDα,β

1 vn)(t)) converges weakly uniformly to fi(t, u(t), v(t), (Dα,β
0 u)(t), (Dα,β

0 v)(t)). Hence the
Lebesgue dominated convergence theorem for Pettis integral implies that (N(un, vn))(t)
converges weakly uniformly to (N(u, v))(t) in (E,ω) for each t ∈ I . Thus N(un, vn) →
N(u, v). Hence N : Q → Q is weakly sequentially continuous.

Step 3. Implication (5) holds. Let V be a subset of Q such that V = conv(N(V ) ∪ {(0, 0)}).
Obviously,

V (t) ⊂ conv(NV )(t)) ∪ {
(0, 0)

}
), t ∈ I.

Further, as V is bounded and equicontinuous, by [13, Lemma 3] the function t → μ(V (t))
is continuous on I . From (H3), (H4), Lemma 2.19, and the properties of the measure μ, for
any t ∈ I , we have

μ
(
(ln t)1–γ V (t)

)

≤ μ
(
(ln t)1–γ (NV )(t) ∪ {

(0, 0)
})

≤ μ
(
(ln t)1–γ (NV )(t)

)

≤ μ(
{(

(ln t)1–γ (N1v1)(t), (ln t)1–γ (N2v2)(t) : (v1, v2) ∈ V
})

≤ 1

(α)

∫ t

1

(

ln
t
s

)α–1

μ
({

(ln s)1–γ
(
f1

(
s, v1(s), v2(s),

(H Dα,β
1 v1

)
(t),

(HDα,β
1 v2

)
(t)

)
, 0

)
: (v1, v2) ∈ V

})ds
s

+
1


(α)

∫ t

1

(

ln
t
s

)α–1

μ
({

(ln s)1–γ
(
0, f2

(
s, v1(s), v2(s),

(H Dα,β
1 v1

)
(t),

(HDα,β
1 v2

)
(t)

))
: (v1, v2) ∈ V

})ds
s

≤ 1

(α)

∫ t

1

(

ln
t
s

)α–1[
p1(s)μ

({
(ln s)1–γ

(
v1(s), 0

)
: (v1, 0) ∈ V

})

+ q1(s)μ
({

(ln s)1–γ
(
0, v2(s)

)
: (0, v2) ∈ V

})]ds
s

+
1


(α)

∫ t

1

(

ln
t
s

)α–1[
p2(s)μ

({
(ln s)1–γ

(
v1(s), 0

)
: (v1, 0) ∈ V

})

+ q2(s)μ
({

(ln s)1–γ
(
0, v2(s)

)
: (0, v2) ∈ V

})]ds
s

.

Thus

μ
(
(ln t)1–γ V (t)

)

≤ 1

(α)

∫ t

1

(

ln
t
s

)α–1(
p1(s) + q1(s) + p2(s) + q2(s)

)

× μ
(
(ln s)1–γ V (s)

)ds
s
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≤ 1

(α)

∫ t

1

(

ln
t
s

)α–1(
p1(s) + q1(s) + p2(s) + q2(s)

)

× sup
s∈I

μ
(
(ln s)1–γ V (s)

)ds
s

≤ (p∗
1 + p∗

2 + q∗
1 + q∗

2)(ln T)α


(1 + α)
sup
t∈I

μ
(
(ln t)1–γ V (t)

)
.

Hence

sup
t∈I

μ
(
(ln t)1–γ V (t)

) ≤ L sup
t∈I

μ
(
(ln t)1–γ V (t)

)
.

From (6) we get supt∈I μ((ln t)1–γ V (t)) = 0, that is, μ(V (t)) = 0 for each t ∈ I . Then by [24,
Thm. 2] V is weakly relatively compact in C . From Theorem 2.20 we conclude that N has
a fixed point, which is a weak solution of the coupled system (1)–(2). �

As a consequence of the theorem, we get the following corollary.

Corollary 3.3 Consider the following system of implicit Hilfer–Hadamard fractional dif-
ferential equations:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(HDα,β
1 u1)(t)

= f1(t, u1(t), u2(t), . . . , un(t),

(HDα,β
1 u1)(t), (HDα,β

1 u2)(t), . . . , (HDα,β
1 un)(t)),

(HDα,β
1 u2)(t)

= f2(t, u1(t), u2(t), . . . , un(t),

(HDα,β
1 u1)(t), (HDα,β

1 u2)(t), . . . , (HDα,β
1 un)(t)),

...

(HDα,β
1 un)(t)

= fn(t, u1(t), u2(t), . . . , un(t),

(HDα,β
1 u1)(t), (HDα,β

1 u2)(t), . . . , (HDα,β
1 un)(t)),

t ∈ I, (8)

(HI1–γ
1 ui

)
(t)|t=1 = φi, i = 1, 2, . . . , n, (9)

I := [1, T], T > 1,α ∈ (0, 1),β ∈ [0, 1],γ = α + β – αβ ,φi ∈ E, fi : I × E2n → E, i = 1, 2, . . . , n,
are given continuous functions, E is a real (or complex) Banach space with norm ‖ · ‖E and
dual E∗, such that E is the dual of a weakly compactly generated Banach space X , HI1–γ

1 is
the left-sided mixed Hadamard integral of order 1 – γ , and HDα,β

1 is the Hilfer–Hadamard
fractional derivative of order α and type β .

Assume that the following hypotheses hold:
(H01) The functions vj → fi(t, v1, v2, . . . , vj, . . . , v2n), i = 1, . . . , n, j = 1, . . . , 2n, are weakly se-

quentially continuous for a.e. t ∈ I ,
(H02) For each vj ∈ E, j = 1, . . . , 2n, the functions t → fi(t, v1, v2, . . . , vj, . . . , v2n), i = 1, 2, are

Pettis integrable a.e. on I ,



Abbas et al. Advances in Difference Equations  (2018) 2018:328 Page 14 of 17

(H03) There exist pij ∈ C(I, [0,∞)) such that, for all ϕ ∈ E∗, we have

∣
∣ϕ

(
fi(t, v1, v2, . . . , v2n)

)∣
∣ ≤

∑n
i=1

∑n
j=1 pij(t)‖vj‖E

1 + ‖ϕ‖ +
∑n

j=1 ‖vi‖E

for a.e. t ∈ I and each vi ∈ E, i = 1, 2, . . . , n,
(H04) For all bounded measurable sets Bi ⊂ E, i = 1, . . . , n, and for each t ∈ I , we have

μ
(
0, . . . , fj

(
t, B1, B2, . . . , Bn,H Dα,β

1 B1,H Dα,β
1 B2, . . . ,H Dα,β

1 Bn
)
, . . . , 0

)

≤
n∑

i=1

pij(t)μ(Bi), j = 1, . . . , n,

where HDα,β
1 Bi = {HDα,β

1 w : w ∈ Bi}, i = 1, . . . , n.
If

L∗ :=
∑n

i=1
∑n

j=1 p∗
ij(ln T)α


(1 + α)
< 1,

where

p∗
ij = sup

t∈I
pij(t), i, j = 1, . . . , n,

then the coupled system (8)–(9) has at least one weak solution defined on I .

4 An example
Let

E = l1 =
{

u = (u1, u2, . . . , un, . . .),
∞∑

n=1

|un| < ∞}

be the Banach space with the norm

‖u‖E =
∞∑

n=1

|un|.

As an application of our results, we consider the coupled system of Hilfer–Hadamard frac-
tional differential equations

⎧
⎨

⎩

(HD
1
2 , 1

2
1 un)(t) = fn(t, u(t), v(t), (HD

1
2 , 1

2
1 un)(t), (HD

1
2 , 1

2
1 vn)(t)),

(HD
1
2 , 1

2
1 vn)(t) = gn(t, u(t), v(t), (HD

1
2 , 1

2
1 un)(t), (HD

1
2 , 1

2
1 vn)(t)),

t ∈ [1, e], (10)

(HI
1
4

1 u
)
(t)|t=1 =

(HI
1
4

1 v
)
(t)|t=1 = (0, 0, . . . , 0, . . .), (11)

where

fn
(
t, u(t), v(t)

)
=

ct2

1 + ‖u(t)‖E + ‖v(t)‖E + ‖ū(t)‖E + ‖v̄(t)‖E

un(t)
et+4 , t ∈ [1, e],
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and

gn
(
t, u(t), v(t)

)
=

ct2

1 + ‖v(t)‖E + ‖v(t)‖E + ‖ū(t)‖E + ‖v̄(t)‖E

un(t)
et+4 , t ∈ [1, e],

with

u = (u1, u2, . . . , un, . . .), v = (v1, v2, . . . , vn, . . .) and c :=
e3

16
√

π .

Set

f = (f1, f2, . . . , fn, . . .) and g = (g1, g2, . . . , gn, . . .).

Clearly, the functions f and g are continuous.
For all u, v, ū, v̄ ∈ E and t ∈ [1, e], we have

∥
∥f

(
t, u(t), v(t), ū(t), v̄(t)

)∥
∥

E ≤ ct2 1
et+4 and

∥
∥g

(
t, u(t), v(t), ū(t), v̄(t)

)∥
∥

E ≤ ct2 1
et+4 .

Hence, hypothesis (H3) is satisfied with p∗
i = ce–3 and q∗

i = 0, i = 1, 2. We will show that
condition (6) holds with T = e. Indeed,

(p∗
1 + q∗

1 + p∗
2 + q∗

2)(ln T)α


(1 + α)
=

4ce–3
√

π
=

1
4

< 1.

Simple computations show that all conditions of Theorem 3.2 are satisfied. It follows that
the coupled system (10)–(11) has at least one weak solution defined on [1, e].

5 Conclusion
In the recent years, implicit functional differential equations have been considered by
many authors [1, 5, 9, 33]. In this work, we give some existence results for coupled im-
plicit Hilfer–Hadamard fractional differential systems. This paper initiates the application
of the measure of weak noncompactness to such a class of problems.
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