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1 Introduction
This paper focuses on the following fractional differential equations with impulsive effects:

⎧
⎪⎪⎨

⎪⎪⎩

tDα
T (c

0Dα
t u(t)) + κ(t)u(t) = f (t, u(t)), 0 < t < T , t �= tj,

�(tDα–1
T (c

0Dα
t u))(tj) = Ij(u(tj)), j = 1, 2, . . . , m,

u(0) = u(T) = 0,

(1.1)

where 0 < α ≤ 1, c
0Dα

t and tDα
T denote the left Caputo fractional derivative and the right

Riemann–Liouville fractional derivative of order α, respectively, 0 = t0 < t1 < · · · < tm+1 =
T , and �(tDα–1

T (c
0Dα

t u))(tj) = tDα–1
T (c

0Dα
t u)(t+

j ) – tDα–1
T (c

0Dα
t u)(t–

j ), where tDα–1
T (c

0Dα
t u)(t+

j ) =
limt→t+

j tDα–1
T (c

0Dα
t u)(t), tDα–1

T (c
0Dα

t u)(t–
j ) = limt→t–

j tDα–1
T (c

0Dα
t u)(t), and f ∈ C([0, T] × R),

Ij ∈ C(R,R). For the function κ we assume the following condition:
(H0): κ ∈ C[0, T] and essinft∈[0,T] κ(t) = κ0 > –λ1, where λ1 is the first eigenvalue of the

operator tDα
T (c

0Dα
t u(t)) (see (1.4)).

Fractional differential equations (FDEs for short) have been recently proved to be strong
tools in the modeling of many phenomena in various areas of science as physics, biology,
geology, polymer rheology, control theory, chemistry and engineering, etc. There have
been important advances in the theory of fractional calculus and fractional ordinary and
partial differential equations recently, for more details on fractional calculus theory, see
the monographs of Podlubny [1], Kilbas et al. [2], Zhou [3] and the references therein.
Based on variational methods and critical point theory, Jiao and Zhou [4] investigated the
existence of at least one weak solution to the following nonlinear FDEs:

⎧
⎨

⎩

tDα
T (0Dα

t u(t)) = ∇F(t, u(t)), a.e. t ∈ [0, T],

u(0) = u(T) = 0,
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where α ∈ (0, 1], 0Dα
t and tDα

T are the left and right Riemann–Liouville fractional deriva-
tives respectively. F : [0, T] × RN → R (with N ≥ 1) is an appropriate given function and
∇F(t, u) is the gradient of F at u. Since then the variational methods were used to deal with
the existence of solutions for fractional differential equations by many authors. In addi-
tion, impulsive problems for differential equations appear in mathematical models with
sudden and discontinuously changes of their states in pharmacology, population dynam-
ics, optimal control, etc. [5]. Very recently, Bonanno et al. [6], Fečkan et al. [7] and D’Aguì
et al. [8] have investigated the existence results of solutions for impulsive FDEs. For more
related work on impulsive FDEs, we refer the interested reader to [9–18] and the refer-
ences therein. However, the main techniques used in these references are the coincidence
degree theory, fixed-point theorems and critical point theory in nonlinear analysis but not
Morse theory.

On the other hand, in the last few years, Morse theory has been recently used to deal
with the existence of solutions for impulsive differential equations [19–22] having the cor-
responding variational structure. In [21], Shi and Chen considered the following impulsive
boundary value problems:

⎧
⎪⎪⎨

⎪⎪⎩

–u′′(t) = f (t, u), t ∈ [0, T] \ {t1, t2, . . . , tm},
	u′(tj) = Ij(u(tj)), j = 1, 2, . . . , m,

u(0) = u(T) = 0.

(1.2)

Under some natural assumptions, the authors established some new results on the exis-
tence of three nontrivial solutions for problems (1.2) via Morse theory. However, to the
best of our knowledge, with exception of [23], little work has been done on the existence
and multiplicity of solutions for impulsive FDEs with Dirichlet boundary conditions by us-
ing Morse theory. More precisely, in [23], the authors studied problem (1.1) and obtained
the existence of one nontrivial solution via computing the critical groups at infinity and at
zero. Motivated by the above described work, we are interested in investigating the multi-
plicity of nontrivial solutions for problem (1.1) via Morse theory, local linking arguments
and the Clark theorem.

A number λ ∈R is said to be an eigenvalue of the following Dirichlet problem:

⎧
⎨

⎩

tDα
T (c

0Dα
t u(t)) = λu(t),

u(0) = u(T) = 0,
(1.3)

if there exists a nontrivial solution u ∈ Eα
0 (Eα

0 be given in Definition 2.1) such that

∫ T

0

c
0Dα

t u(t)c
0Dα

t v(t) dt – λ

∫ T

0
u(t)v(t) dt = 0

for any v ∈ Eα
0 . By Riesz–Schauder theory, we can show that problem (1.3) has a sequence

of positive eigenvalues {λk}∞k=1, and λ1 can be characterized as

λ1 = inf
u∈Eα

0 \{0}

∫ T
0 |c0Dα

t u(t)|2 dt
∫ T

0 |u(t)|2 dt
. (1.4)
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Before stating our main results, we give the following hypotheses on the nonlinearity f
and Ij (j = 1, 2, . . . , m):

(H1) For every j, there exist constants aj, bj > 0 and γj ∈ [0, 1) such that |Ij(u)| ≤ aj|u|γj +
bj, and Ij satisfy

∫ u
0 Ij(s) ds ≥ 0 for all u ∈R.

(H2) There exist c0 > 0, q ≥ 1 such that |f (t, u)| ≤ c0(1 + |u|q–1), a.e. t ∈ [0, T], u ∈R.
(H3) lim sup|u|→∞

F(t,u)
|u|2 < 1

2 (λ1 + κ0) uniformly on t ∈ [0, T], where F(t, u) =
∫ u

0 f (t, s) ds.
(H4) There exist r > 0 small and c1, c2 > 0 with c2ξ

2∗ < 1, 0 < μ < min{γj + 1} such that

c1|u|μ ≤ F(t, u) ≤ c2

2
|u|2, |u| ≤ r, t ∈ [0, T],

where ξ∗ will be given in Remark A.
(H5) f (t, u) and Ij(u) (j = 1, 2, . . . , m) are odd with respect to u. Now we state the main

results of this paper.

Theorem 1.1 Assume conditions (H0)–(H4) hold, then the problem (1.1) has at least two
nontrivial weak solutions in Eα

0 .

Theorem 1.2 Assume conditions (H0)–(H5) hold, then the problem (1.1) possesses at least
k distinct pairs of nontrivial weak solution in Eα

0 .

The paper is arranged as follows. The variational setting and some preliminaries are
presented in Sect. 2 In Sect. 3, we complete the proof of Theorems 1.1 and 1.2.

2 Variational setting and preliminaries
For any fixed t ∈ [0, T] and 1 ≤ p < ∞, let

‖x‖∞ = max
[0,T]

∣
∣x(t)

∣
∣, ‖x‖Lp[0,t] =

(∫ t

0

∣
∣x(s)

∣
∣p ds

)1/p

and

‖x‖Lp =
(∫ T

0

∣
∣x(t)

∣
∣p dt

)1/p

.

In order to establish a variational structure for problem (1.1), we need to construct suitable
function spaces. Denote by C∞

0 ([0, T],R) the set of all functions u ∈ C∞([0, T],R) with
u(0) = u(T) = 0. From Lemma 5.1 in [3], for any u ∈ C∞

0 ([0, T],R) and 1 < p < ∞, we have
u ∈ Lp([0, T],R) and c

0Dα
t u ∈ Lp([0, T],R).

Definition 2.1 Let 0 < α ≤ 1. The fractional derivative space Eα
0 is defined by the closure

of C∞
0 ([0, T],R), that is Eα

0 = C∞
0 ([0, T],R) with respect to the norm

‖u‖α,2 =
(∫ T

0

∣
∣c
0Dα

t u(t)
∣
∣2 dt +

∫ T

0

∣
∣u(t)

∣
∣2 dt

)1/2

, ∀u ∈ Eα
0 . (2.1)

From Proposition 5.4 in [3], one finds that, for 0 < α ≤ 1, the space Eα
0 is a reflexive and

separable Banach space. We present some properties of the fractional derivative space Eα
0 .

Lemma 2.1 ([4]) Let 0 < α ≤ 1,‖c
0Dα

t u‖L2 := (
∫ T

0 |c0Dα
t u(t)|2 dt)1/2. For any u ∈ Eα

0 , we have

‖u‖L2 ≤ Tα

�(α + 1)
∥
∥c

0Dα
t u

∥
∥

L2 . (2.2)
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Moreover, if α > 1
2 , then

‖u‖∞ ≤ Tα– 1
2

�(α)
√

2α – 1

∥
∥c

0Dα
t u

∥
∥

L2 . (2.3)

According to (2.2) we may consider the fractional space Eα
0 with the norm ‖u‖α = ‖c

0Dα
t u‖L2 ,

which is equivalent to (2.1).

Lemma 2.2 ([4]) Let 1
2 < α ≤ 1. Assume that the sequence {un} converges weakly to u in

Eα
0 , i.e., un ⇀ u. Then {un} converges strongly to u in C([0, T],R), i.e., ‖un – u‖∞ → 0, as

n → ∞.

Lemma 2.3 Assume that 0 < α ≤ 1, If (H0) holds, then the norm

‖u‖ =
(∫ T

0

∣
∣c
0Dα

t u(t)
∣
∣2 dt +

∫ T

0
κ(t)

∣
∣u(t)

∣
∣2 dt

)1/2

, ∀u ∈ Eα
0 , (2.4)

and the norm ‖ · ‖α are equivalent, namely, there exist two positive constants ξ ,η such that

ξ‖u‖α ≤ ‖u‖ ≤ η‖u‖α , for any u ∈ Eα
0 .

Proof Since essinft∈[0,T] κ(t) > –λ1, there exists ε ∈ (0, 1) such that –κ0 ≤ λ1(1 – ε). By
virtue of (1.4), we get

(1 – ε)
∫ T

0

∣
∣c
0Dα

t u(t)
∣
∣2 dt ≥ λ1(1 – ε)

∫ T

0

∣
∣u(t)

∣
∣2 dt ≥ –κ0

∫ T

0

∣
∣u(t)

∣
∣2 dt

for any u ∈ Eα
0 . Therefore, for all u ∈ Eα

0 , we have

‖u‖2 ≥
∫ T

0

(∣
∣c
0Dα

t u(t)
∣
∣2 + κ0

∣
∣u(t)

∣
∣2)dt ≥ ε

∫ T

0

∣
∣c
0Dα

t u(t)
∣
∣2 dt = ε‖u‖2

α .

On the other hand, from (1.4) and (2.4) we deduce that

‖u‖2 ≤
∫ T

0

(∣
∣c
0Dα

t u(t)
∣
∣2 + ‖κ‖∞

∣
∣u(t)

∣
∣2)dt ≤

(

1 +
‖κ‖∞

λ1

)∫ T

0

∣
∣c
0Dα

t u(t)
∣
∣2 dt

=
(

1 +
‖κ‖∞

λ1

)

‖u‖2
α .

Thus the norm ‖ · ‖ and the norm ‖ · ‖α are equivalent and we may choose, for instance,
ξ =

√
ε and η =

√
1 + ‖κ‖∞

λ1
. In the sequel, we will consider Eα

0 with the norm ‖ · ‖ defined
in (2.4). �

Remark A From Lemmas 2.1 and 2.3, we have
(i) for 0 < α ≤ 1, ‖u‖L2 ≤ Tα

�(α+1)‖u‖α ≤ ξ∗‖u‖, where ξ∗ = Tα

ξ�(α+1) ;

(ii) for 1
2 < α ≤ 1, ‖u‖∞ ≤ Tα– 1

2
�(α)

√
2α–1‖u‖α ≤ η∗‖u‖, where η∗ = Tα– 1

2
ξ�(α)

√
2α–1 .
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Definition 2.2 We say that u ∈ Eα
0 is a weak solution of problem (1.1) if the identity

∫ T

0

(c
0Dα

t u(t)c
0Dα

t v(t) + κ(t)u(t)v(t)
)

dt +
m∑

j=1

Ij
(
u(tj)

)
v(tj) =

∫ T

0
f
(
t, u(t)

)
v(t) dt

holds for any v ∈ Eα
0 .

Consider the functional ϕ : Eα
0 →R defined by

ϕ(u) =
1
2
‖u‖2 +

m∑

j=1

∫ u(tj)

0
Ij(s) ds –

∫ T

0
F
(
t, u(t)

)
dt. (2.5)

Since f and Ij (j = 1, . . . , m) are continuous, we can infer that ϕ is continuous, differentiable
and for all u, v ∈ Eα

0

〈
ϕ′(u), v

〉
=

∫ T

0

(c
0Dα

t u(t)c
0Dα

t v(t) + κ(t)u(t)v(t)
)

dt +
m∑

j=1

Ij
(
u(tj)

)
v(tj)

–
∫ T

0
f
(
t, u(t)

)
v(t) dt.

Then it is clear that the critical points of ϕ are weak solutions of the problem (1.1).

Definition 2.3 We say that ϕ satisfies the (PS) condition in Eα
0 , if any (PS) sequence

{un}n∈N ⊂ Eα
0 , i.e., {ϕ(un)}n∈N is bounded and ϕ′(un) → 0 as n → ∞, has a strongly con-

vergent subsequence in Eα
0 .

Definition 2.4 Let E be a real Banach space and ϕ ∈ C1(E,R). Set u be an isolated critical
point of ϕ with ϕ(u) = c, for c ∈ R, and let U be a neighborhood of u such that ϕ has only
u as a critical point in U . We call

Ck(ϕ, u) := Hk
(
ϕc ∩ U ,ϕc ∩ U \ {u}),

(
k ∈N := {0, 1, 2, . . .})

the kth critical group of ϕ at u, where ϕc := {u ∈ E : ϕ(u) ≤ c} is the c-sublevel set, and Hk

is the singular relative homology group with coefficients in an Abelian group G. For more
details, we refer the reader to [24].

One calls u a homological nontrivial critical point of the functional ϕ if at least one of
the critical groups of ϕ is nontrivial.

Lemma 2.4 ([25], Proposition 2.1) Let 0 be a critical point of ϕ with ϕ(0) = 0. Suppose
that ϕ has a local linking at 0 with respect to E = V ⊕Y , k = dim V < ∞, that is, there exists
ρ > 0 small enough such that

ϕ(u) ≤ 0, ∀u ∈ V ,‖u‖ ≤ ρ and ϕ(u) > 0, ∀u ∈ Y , 0 < ‖u‖ ≤ ρ.

Then Ck(ϕ, 0) � 0, hence 0 is a homological nontrivial critical point of ϕ.
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Lemma 2.5 ([25], Theorem 2.1) Let E be a real Banach space and let ϕ ∈ C1(E,R) satisfy
the (PS)-condition and be bounded from below. If ϕ has a critical point that is homological
nontrivial and is not a minimizer of ϕ, then ϕ has at least three critical points.

Lemma 2.6 ([26], Theorem 9.1) Let E be a real Banach space, ϕ ∈ C1(E,R) with ϕ even,
bounded from below, and satisfying (PS)-condition. Suppose ϕ(0) = 0, there is a set � ⊂ E
such that � is homeomorphic to Sk–1 by an odd map, and sup� ϕ < 0. Then ϕ possesses at
least k distinct pairs of critical points.

3 Proofs of main results
To obtain multiple nontrivial solutions of the problem (1.1), we shall present the following
lemmas and compute the critical groups of the functional ϕ.

Lemma 3.1 Assume conditions (H0)–(H2) hold, then any bounded sequence {un} ⊂ Eα
0

such that ϕ′(un) → 0 as n → ∞ admits a strongly convergent subsequence in Eα
0 .

Proof Let {un} be a bounded sequence in Eα
0 . Going to a subsequence if necessary, we can

assume that un ⇀ u0 weakly in Eα
0 . Hence,

un → u0 in Lp([0, T]
)
, un → u0 a.e. t ∈ [0, T]. (3.1)

We will show that {un} converges strongly to u0 in Eα
0 . Since Eα

0 is reflexive space and
un ⇀ u0 in Eα

0 , ϕ′(un) → 0 in (Eα
0 )∗, then from (2.5), we can obtain

〈
ϕ′(un) – ϕ′(u0), un – u0

〉 ≤ ∥
∥ϕ′(un)

∥
∥ · ‖un – u0‖ –

〈
ϕ′(u0), un – u0

〉 → 0 (3.2)

as n → ∞. Moreover, it follows from (2.4) and Lemma 2.2 that un is bounded in C[0, T]
and ‖un – u0‖∞ → 0 as n → ∞. Hence, by (H1), (H2) and the Hölder inequality, we have

⎧
⎨

⎩

limn→∞
∫ T

0 (f (t, un(t)) – f (t, u0(t)))(un(t) – u0(t)) dt = 0,

limn→∞
∑m

j=1(Ij(un(tj)) – Ij(t, u0(tj)))(un(tj) – u0(tj)) = 0.
(3.3)

Observe that

0 ← 〈
ϕ′(un) – ϕ′(u0), un – u0

〉

= ‖un – u0‖2 –
∫ T

0

[
f (t, un) – f (t, u0)

]
(un – u0) dt

+
m∑

j=1

[
Ij
(
un(tj)

)
– Ij

(
u0(tj))]

(
un(tj) – u0(tj)

)

≥ ‖un – u0‖2 –
∣
∣
∣
∣

∫ T

0

[
f (t, un) – f (t, u0)

]
dt

∣
∣
∣
∣ · ‖un – u0‖∞

–

∣
∣
∣
∣
∣

m∑

j=1

[
Ij
(
un(tj)

)
– Ij

(
u0(tj)

)]
∣
∣
∣
∣
∣
· ‖un – u0‖∞.

Combining (3.2) and (3.3), we deduce that ‖un –u0‖2 → 0 as n → ∞, and we have un → u0

in Eα
0 . Thus, {un} admits a convergent subsequence. This completes the proof. �
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Lemma 3.2 Assume that (H0)–(H3) hold. Then ϕ satisfies the (PS) condition.

Proof According to Lemma 3.1, it suffices to verify the boundedness of (PS) sequences. It
follows from (H3) that, for some ε > 0 small, there exists a constant Cε > 0 such that

∣
∣F(t, u)

∣
∣ ≤ 1

2
(λ1 + κ0 – ε)|u|2 + Cε , for all u ∈R, t ∈ [0, T]. (3.4)

By assumption (H1) we get

∫ u(tj)

0
Ij(s) ds ≤ Cj|u|γj+1, for some Cj > 0 (j = 1, 2, . . . , m). (3.5)

Thus, by means of (1.3), (3.4) and (3.5), for u ∈ Eα
0 , u �= 0, we have

ϕ(u) ≥ 1
2

∫ T

0

∣
∣c
0Dα

t u(t)
∣
∣2 dt +

κ0

2

∫ T

0

∣
∣u(t)

∣
∣2 dt

–
m∑

j=1

Cj|u|γj+1 –
1
2

(λ1 + κ0 – ε)
∫ T

0

∣
∣u(t)

∣
∣2 dt – CεT

=
1
2
‖u‖2

α –
1
2

(λ1 – ε)‖u‖2
L2 –

m∑

j=1

Cj|u|γj+1 – CεT

≥ 1
2
‖u‖2

α –
1

2λ1
(λ1 – ε)‖u‖2

α –
m∑

j=1

Cj(η∗)γj+1‖u‖γj+1 – CεT

≥ ε

2η2 ‖u‖2 –
m∑

j=1

C∗
j ‖u‖γj+1 – CεT → +∞

as ‖u‖ → ∞, since η > 0, 1 ≤ max{γj + 1} < 2 and C∗
j > 0 (j = 1, 2, . . . , m) are positive con-

stants. That is to say, ϕ is coercive on Eα
0 . Therefore, we get the desired assertion.

Since Eα
0 is a reflexive and separable Banach space, we may choose an orthogonal ba-

sis {ei} of Eα
0 with Eα

0 = span{ei : i = 1, 2, . . .}. For k = 1, 2, . . . , denote Xi := span{ei}, Vk =
⊕k

i=1 Xi, Yk =
⊕∞

i=k Xi, then Eα
0 = Vk ⊕ Yk . �

Lemma 3.3 Assume that (H0)–(H2) and (H4) are satisfied. Then there exists k0 ∈N such
that Ck0 (ϕ, 0) �= 0.

Proof According to Lemma 2.4, it suffices to show that the functional ϕ has a local linking
at zero with respect to Eα

0 = Vk ⊕ Yk .
Step 1: Set u ∈ Vk . Since V is finite dimensional, from Remark A(ii) one sees that, for

given r, there is ρ ∈ (0, 1] small such that, for u ∈ Vk ,‖u‖ ≤ ρ implies |u(t)| ≤ r for t ∈
[0, T]. Denote F∗(t, u) = F(t, u) – c1|u|μ. Using (H2) and (H4), there exists c3 > 0 such that,
for some q > 2, we have F∗(t, u) ≥ –c3|u|q for all t ∈ [0, T] and |u| > 0. Therefore, for u ∈ Vk

with ‖u‖ ≤ ρ , we get

ϕ(u) =
1
2
‖u‖2 +

m∑

j=1

∫ u(tj)

0
Ij(s) ds – c1

∫ T

0
|u|μ dt –

(∫

{|u(t)|≤r}
+

∫

{|u(t)|>r}

)

F∗(t, u(t)
)

dt
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≤ 1
2
‖u‖2 +

m∑

j=1

Cj
∣
∣u(tj)

∣
∣γj+1 – c1

∫ T

0
|u|μ dt + c3

∫

{|u(t)|>r}
|u|q dt

≤ 1
2
‖u‖2 +

m∑

j=1

C∗
j ‖u‖γj+1 – c1‖u‖μ

Lμ + c4‖u‖q,

where c4 and C∗
j (j = 1, 2, . . . , m) are positive constants. Notice that the norms on Vk are

equivalent to each other, thus ‖u‖Lμ is equivalent to ‖u‖. Since 0 < μ < min{γj + 1} ≤
max{γj + 1} < 2 < q, we have ϕ(u) ≤ 0, for any u ∈ Vk with ‖u‖ ≤ ρ .

Step 2: Choose u ∈ Yk , Due to the continuous embedding Eα
0 → C∞

0 ([0, T],R) is com-
pact. Then, for given r > 0, by (H2), (H4) and Young’s inequality, there is a constant c5 > 0
such that, for some q > 2, one has

∣
∣F(t, u)

∣
∣ ≤ c2

2
|u|2 + c5|u|q, for all t ∈ [0, T] and |u| ≥ r. (3.6)

Denoting H(t, u) = F(t, u) – c2
2 |u|2, from (H1), Remark A(i) and (3.6) we obtain

ϕ(u) =
1
2
‖u‖2 +

m∑

j=1

∫ u(tj)

0
Ij(s) ds –

c2

2

∫ T

0
|u|2 dt –

(∫

{|u(t)|≤r}
+

∫

{|u(t)|>r}

)

H
(
t, u(t)

)
dt

≥ 1
2
(
1 – c2ξ

2
∗
)‖u‖2 – c5

∫

{|u(t)>r}

∣
∣u(t)

∣
∣q dt

≥ 1
2
(
1 – c2ξ

2
∗
)‖u‖2 – c6‖u‖q,

where c6 is positive constant. Since c2ξ
2∗ < 1, q ∈ (2, +∞), we can show that ϕ(u) > 0 as

u ∈ Yk and 0 < ‖u‖ < ρ with ρ > 0 small enough. This completes the proof. �

Proof of Theorem 1.1 By Lemma 3.2, ϕ satisfies the (PS) condition and is bounded from
below. According Lemma 3.3, the trivial solution u = 0 is homological nontrivial and is
not a minimizer. Then the conclusion follows immediately by Lemma 2.5. �

Proof of Theorem 1.2 From (H5), we can infer that ϕ is even. Lemma 3.2 shows that ϕ

satisfies the (PS) condition and is bounded from below. For given ρ > 0, set � = Sρ = {u ∈
Vk : ‖u‖ = ρ}. Therefore, just as shown in the proof of Lemma 3.3, if ρ is small enough, we
show that sup� ϕ(u) < 0. Obviously, dim Vk = k, then it follows from Lemma 2.6 that ϕ has
at least k distinct pairs of critical points. Thus, problem (1.1) has at least k distinct pairs
of nontrivial solutions. �

4 Conclusion
In this paper, we have studied the existence and multiplicity of the solutions for an impul-
sive fractional differential equations with Dirichlet boundary conditions. Our approach is
based on Morse theory, local linking arguments and the Clark theorem. In the future, we
will consider the existence of solutions for the impulsive fractional differential equation
with p-Laplacian via Morse theory.
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