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Abstract
In this paper, we propose a cubic non-polynomial spline method to solve the
time-fractional nonlinear Schrödinger equation. The method is based on applying the
L1 formula to approximate the Caputo fractional derivative and employing the cubic
non-polynomial spline functions to approximate the spatial derivative. By considering
suitable relevant parameters, the scheme of order O(τ 2–α + h4) has been obtained.
The unconditional stability of the method is analyzed by the Fourier analysis.
Numerical experiments are given to illustrate the effectiveness and accuracy of the
proposed method.
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1 Introduction
In this paper, we consider the following time-fractional nonlinear Schrödinger equation:

i
∂αu(x, t)

∂tα
+

∂2u(x, t)
∂x2 + λ

∣
∣u(x, t)

∣
∣
2u(x, t) = f (x, t), (x, t) ∈ [a, b] × [0, T], (1)

subject to the initial condition

u(x, 0) = φ(x), x ∈ [a, b], (2)

and boundary conditions

u(a, t) = ψ1(t), u(b, t) = ψ2(t), t ∈ [0, T], (3)

where 0 < α < 1 and λ ≥ 0 is a constant. ∂αu(x,t)
∂tα denotes the Caputo fractional derivative of

the function u(x, t) defined by

∂αu(x, t)
∂tα

=
1

�(1 – α)

∫ t

0

u′(s)
(t – s)α

ds, 0 < α < 1.

In recent years, fractional differential equations have attracted extensive attention in
many branches of science and engineering [1–5]. Particularly, there has been explosive
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research about studying quantum phenomena by fractional calculus. The time-fractional
Schrödinger equation is a fundamental equation of fractional quantum mechanics which
can be obtained from the classical Schrödinger equation by replacing the time derivative
by a Caputo fractional derivative [6]. Although analytic solutions of fractional Schrödinger
equations can be found in terms of special functions [7–9], it is difficult to obtain these
functions most of the time. In general cases, numerical methods have become important
for the approximate solutions of time-fractional Schrödinger equations. Wei et al. [10] pre-
sented an implicit fully discrete local discontinuous Galerkin (LDG) finite element method
for the time-fractional Schrödinger equation. Mohebbi et al. [11] proposed a meshless
technique based on collocation and radial basis functions. In [12], a shifted Legendre collo-
cation method was developed for solving multi-dimensional fractional Schrödinger equa-
tions subject to initial-boundary and nonlocal conditions. Garrappa et al. [13] analyzed
some approaches based on the Krylov projection methods to approximate the Mittag–
Leffler function which expressed the solution of the time-fractional Schrödinger equation.
In [14], the stability analysis was presented for a first order difference scheme applied to
a nonhomogeneous time-fractional Schrödinger equation. Bhrawy et al. [15]used Jacobi
spectral collocation approximation for multi-dimensional time-fractional Schrödinger
equations. Shivanian et al. [16] applied a kind of spectral meshless radial point interpo-
lation technique to the time-fractional nonlinear Schrödinger equation in regular and ir-
regular domains.

The possibility of using spline functions for smooth approximate solution of differential
systems was given by Ahlberg et al. [17]. Since then, the spline method has been applied to
solve the boundary value problems [18–21] and some partial differential equations [22–
26]. Recently, the spline method has been extended to solve the fractional partial differen-
tial equations. In [27], Talaat et al. presented a general framework of the cubic parametric
spline functions to develop a numerical method for the time-fractional Burgers’ equation.
In [28], Mohammad et al. used both polynomial and non-polynomial spline functions for
approximating the solution of the fractional subdiffusion equation. In [29], Ding et al. pro-
posed two classes of difference schemes for solving the fractional reaction-subdiffusion
equations based on a mixed spline function. In [30], Li et al. developed a numerical scheme
for the fractional subdiffusion equation using parametric quintic spline. In [31], Yaseen et
al. adopted a cubic trigonometric B-spline collocation approach for the numerical solu-
tion of fractional subdiffusion equation. In [32–35], the spline method was employed for
the numerical solution of time-fractional fourth order partial differential equation. In this
paper, we apply the spline method based on a cubic non-polynomial spline function to the
time-fractional nonlinear Schrödinger equation.

The remainder of this paper is organized as follows. In Sect. 2, we give a description of
the cubic non-polynomial function. In Sect. 3, the method depends on the use of the cubic
non-polynomial spline is derived. In Sect. 4, stability analysis of the scheme is performed.
An illustrative example is carried out to justify the theoretical results in Sect. 5. Finally,
the conclusion is included in the last section.

2 Cubic non-polynomial spline function
In order to construct a numerical method to simulate the solution of (1), we let xj = jh,
j = 0, 1, . . . , M, and tn = nτ , n = 0, 1, . . . , N , where h = b–a

M and τ = T
N are the uniform spatial

and temporal step sizes, respectively, and M, N are two positive integers. Let Pn
j be an
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approximation to un
j = u(xj, tn), obtained by the segment P	j(x, tn) of the parametric cubic

spline functions P	(x, tn) passing through the points (xj, Pn
j ) and (xj+1, Pn

j+1). P	(x, tn, θ ) =
P	(x, tn) is a parametric cubic spline function, depending on a parameter θ > 0, satisfying
the differential equation

P′′
	(x, tn) – θP	(x, tn) =

xj+1 – x
h

[

P′′(xj, tn) – θP(xj, tn)
]

+
x – xj

h
[

P′′(xj+1, tn) – θP(xj+1, tn)
]

, x ∈ [xj, xj+1], (4)

which satisfies the following interpolation conditions:

P	(xj, tn) = u(xj, tn), P	(xj+1, tn) = u(xj+1, tn). (5)

The spline derivative approximations to the function derivatives u′′(xj, tn) are given by

P′′
	(xj, tn) = S(xj, tn), P′′

	(xj+1, tn) = S(xj+1, tn). (6)

Basing on Eq. (4) and the above interpolatory conditions (5), we have

P	(xj, tn) =
h2

ω2 sinh(ω)

[

Sn
j+1 sinh

ω(x – xj)
h

+ Sn
j sinh

ω(xj+1 – x)
h

]

–
h2

ω2

[
x – xj

h

(

Sn
j+1 –

ω2

h2 un
j+1

)

+
xj+1 – x

h

(

Sn
j –

ω2

h2 un
j

)]

, (7)

where ω = h
√

θ .
Differentiating the above Eq. (7) yields the following expression:

P′
	

(

x+
j , tn

)

=
un

j+1 – un
j

h
+

h
ω2

[(
ω

sinh(ω)
– 1

)

Sn
j+1 +

(

1 –
ω cosh(ω)
sinh(ω)

)

Sn
j

]

. (8)

Considering the interval [xj–1, xj] and proceeding similarly, we have

P′
	

(

x–
j , tn

)

=
un

j – un
j–1

h
+

h
ω2

[(
ω cosh(ω)
sinh(ω)

– 1
)

Sn
j +

(

1 –
ω

sinh(ω)

)

Sn
j–1

]

. (9)

Using the continuity condition of the first derivative of the spline function P	(x, tn) at
(xj, tn) , we get the following consistency relation:

un
j+1 – 2un

j + un
j–1 = γ Sn

j+1 + βSn
j + γ Sn

j–1, j = 1, 2, . . . , N , (10)

where γ = h2

ω2 [1 – ω
sinh(ω) ], β = 2h2

ω2 [ ω cosh(ω)
sinh(ω) – 1].

3 Derivation of numerical method
In this section, we develop a numerical scheme for solving (1)–(3) using cubic non-
polynomial spline. The time Caputo derivative is replaced by the L1 -approximation and
the approximation order can be given in the following lemma.
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Lemma 1 ([36]) Suppose 0 < α < 1 and g(t) ∈ C2[0, tk], it holds that

∣
∣
∣
∣
∣

1
�(1 – α)

∫ tk

0

g ′(t)
(tk – t)α

dt

–
τ–α

�(2 – α)

[

b0g(tk) –
k–1
∑

m=1

(bk–m–1 – bk–m)g(tm) – bk–1g(t0)

]∣
∣
∣
∣
∣

≤ 1
�(2 – α)

[
1 – α

12
+

22–α

2 – α
–

(

1 + 2–α
)
]

max
0≤t≤tk

∣
∣g ′′(t)

∣
∣τ 2–α , (11)

where bm = (m + 1)1–α – m1–α , m ≥ 0.

Lemma 2 ([37]) Let 0 < α < 1 and bm = (m + 1)1–α – m1–α , m = 0, 1, . . . , then

1 = b0 > b1 > · · · > bm → 0, as m → ∞.

Based on Lemma 1, we can approximate the Caputo fractional derivative as follows:

∂αun
j

∂tα
= μ

[

b0un
j –

n–1
∑

m=1

(bn–m–1 – bn–m)um
j – bn–1u0

j

]

+ O
(

τ 2–α
)

, (12)

where μ = τ–α

�(2–α) .
The second order space derivative can be replaced by a non-polynomial spline function

at (xj, tn) as follows:

∂2u(xj, tn)
∂x2 ≈ P′′

	(xj, tn) = Sn
j , (13)

where Sn
j = S(xj, tn).

At the grid point (xj, tn), from Eqs. (1), (12), and (13), one can write Sn
j in the form

Sn
j = –i

∂αun
j

∂xα
– λ

∣
∣un

j
∣
∣
2un

j + f n
j + Rn

j

= –iμ

[

b0un
j –

n–1
∑

m=1

(bn–m–1 – bn–m)um
j – bn–1u0

j

]

– λ
∣
∣un

j
∣
∣
2un

j + f n
j + Rn

j . (14)

Replacing j with j – 1 and j + 1 in Eq. (14) respectively yields

Sn
j–1 = –iμ

[

b0un
j–1 –

n–1
∑

m=1

(bn–m–1 – bn–m)um
j–1 – bn–1u0

j–1

]

– λ
∣
∣un

j–1
∣
∣
2un

j–1 + f n
j–1 + Rn

j–1 (15)
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and

Sn
j+1 = –iμ

[

b0un
j+1 –

n–1
∑

m=1

(bn–m–1 – bn–m)um
j+1 – bn–1u0

j+1

]

– λ
∣
∣un

j+1
∣
∣
2un

j+1 + f n
j+1 + Rn

j+1. (16)

Substituting Eqs. (14)–(16) into Eq. (10), we have

un
j+1 – 2un

j + un
j–1 + γ λ

∣
∣un

j+1
∣
∣
2un

j+1 + βλ
∣
∣un

j
∣
∣
2un

j + γ λ
∣
∣un

j–1
∣
∣
2un

j–1

+ iγμun
j+1 + iβμun

j + iγμun
j–1 – γ f n

j+1 – βf n
j – γ f n

j–1

= iγμ(b0 – b1)un–1
j+1 + iβμ(b0 – b1)un–1

j + iγμ(b0 – b1)un–1
j–1

+ iγμ

[ n–2
∑

m=1

(bn–m–1 – bn–m)um
j+1 + bn–1u0

j+1

]

+ iβμ

[ n–2
∑

m=1

(bn–m–1 – bn–m)um
j + bn–1u0

j

]

+ iγμ

[ n–2
∑

m=1

(bn–m–1 – bn–m)um
j–1 + bn–1u0

j–1

]

+ Tn
j , (17)

where Tn
j = γ Rn

j+1 + βRn
j + γ Rn

j–1.
Omitting the small term Tn

j and replacing the function un
j with its numerical approxi-

mation Un
j in Eq. (17), we can get the following difference scheme for Eq. (1):

Un
j+1 – 2Un

j + Un
j–1 + γ λ

∣
∣Un

j+1
∣
∣
2Un

j+1 + βλ
∣
∣Un

j
∣
∣
2Un

j + γ λ
∣
∣Un

j–1
∣
∣
2Un

j–1

+ iγμUn
j+1 + iβμUn

j + iγμUn
j–1 – γ f n

j+1 – βf n
j – γ f n

j–1

= iγμ(b0 – b1)Un–1
j+1 + iβμ(b0 – b1)Un–1

j + iγμ(b0 – b1)Un–1
j–1

+ iγμ

[ n–2
∑

m=1

(bn–m–1 – bn–m)Um
j+1 + bn–1U0

j+1

]

+ iβμ

[ n–2
∑

m=1

(bn–m–1 – bn–m)Um
j + bn–1U0

j

]

+ iγμ

[ n–2
∑

m=1

(bn–m–1 – bn–m)Um
j–1 + bn–1U0

j–1

]

. (18)

System (18) contains N – 1 equations with N + 1 unknowns. To get a solution to this
system, we need two additional equations. These equations are obtained from the initial
and boundary conditions which can be written as

U0
j = φ(x), j = 0, 1, . . . , M,

Un
0 = ψ1(t0), Un

M = ψ2(tn), n = 0, 1, . . . , N . (19)
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For the convenience of implementation, scheme (18) can be rewritten as the following
system:

AjU1
j–1 + BjU1

j + CjU1
j+1 = A∗

j U0
j–1 + B∗

j U0
j + C∗

j U0
j+1

+ γ f 1
j+1 + βf 1

j + γ f 1
j–1, j = 2, . . . , N – 1, (20)

and

AjUn
j–1 + BjUn

j + CjUn
j+1

= A∗
j Un–1

j–1 + B∗
j Un–1

j + C∗
j Un–1

j+1

+ γ f n
j+1 + βf n

j + γ f n
j–1 + Qn

j , j = 2, . . . , N – 1 and n ≥ 2, (21)

where

Aj = 1 + γ λ
∣
∣δn

j+1
∣
∣
2 + iγμ, δn

j+1 = Un
j+1,

Bj = –2 + βλ
∣
∣δn

j
∣
∣
2 + iβμ, δn

j = Un
j ,

Cj = 1 + γ λ
∣
∣δn

j–1
∣
∣
2 + iγμ, δn

j–1 = Un
j–1,

A∗
j = i(b0 – b1)γμ,

B∗
j = i(b0 – b1)βμ,

C∗
j = i(b0 – b1)γμ,

and

Qn
j = iγμ

[ n–2
∑

m=1

(bn–m–1 – bn–m)Um
j+1 + bn–1U0

j+1

]

+ iβμ

[ n–2
∑

m=1

(bn–m–1 – bn–m)Um
j + bn–1U0

j

]

+ iγμ

[ n–2
∑

m=1

(bn–m–1 – bn–m)Um
j–1 + bn–1U0

j–1

]

.

Remark 1 To cope with the nonlinear terms in system (20)–(21), the following steps are
taken:

1. At n = 1, we approximate δ1
j by U0

j and then system (20) becomes a linear equation.
We can solve the linear equation to obtain a first approximation Û1

j to U1
j . We iterate

using (20) for some iterations with δ1
j approximated by Û1

j to refine the
approximation to U1

j . The process is repeated until the result satisfies the error
precision requirement.

2. At n = k, we approximate δk
j by Uk–1

j and then system (21) becomes a linear equation.
We can solve the linear equation to obtain a first approximation Ûk

j to Uk
j . We iterate

using (21) for some iterations with δk
j approximated by Ûk

j to refine the
approximation to Uk

j . The process is repeated until the result satisfies the error
precision requirement.
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Theorem 1 Suppose that Tn
j is the local truncation error of the jth formula in the numer-

ical scheme(18), it holds that

Tn
j =

(

h2 – 2γ – β
)∂2un

j

∂x2 + h2
(

h2

12
– γ

)
∂4un

j

∂x4

+ h4
(

h2

360
–

γ

12

)
∂6un

j

∂x6 + (2γ + β)O
(

τ 2–α
)

+ O
(

h6).

Proof From (21), we obtain the local truncation error

Tn
j =

(

1 + γ λ
∣
∣Un

j+1
∣
∣
2 + iγμ

)

Un
j+1

+
(

–2 + βλ
∣
∣Un

j
∣
∣
2 + iβμ

)

Un
j +

(

1 + γ λ
∣
∣un

j–1
∣
∣
2 + iγμ

)

Un
j–1

– iγμ(b0 – b1)Un–1
j+1 + iβμ(b0 – b1)Un–1

j – iγμ(b0 – b1)Un–1
j–1

– iγμ

( n–2
∑

m=1

(bn–m–1 – bn–m)Um
j+1 + bn–1U0

j+1

)

– γ f n
j+1 – βf n

j – γ f n
j–1

+ iβμ

( n–2
∑

m=1

(bn–m–1 – bn–m)Um
j + bn–1U0

j

)

– iγμ

( n–2
∑

m=1

(bn–m–1 – bn–m)Um
j–1 + bn–1U0

j–1

)

= Un
j+1 – 2Un

j + Un
j–1 – γ

(

iμ
n–1
∑

m=0

bn,m
(

Um+1
j+1 – Um

j+1
)

+ λ
∣
∣Un

j+1
∣
∣
2Un

j+1 – f n
j+1

)

– β

(

iμ
n–1
∑

m=0

bn,m
(

Um+1
j – Um

j
)

+ λ
∣
∣Un

j
∣
∣
2Un

j – f n
j

)

– γ

(

iμ
n–1
∑

m=0

bn,m
(

Um+1
j–1 – Um

j–1
)

+ λ
∣
∣Un

j–1
∣
∣
2Un

j–1 – f n
j–1

)

= Un
j+1 – 2Un

j + Un
j–1 – γ

(
∂2Un

j–1

∂x2 +
∂2Un

j+1

∂x2

)

– β
∂2Un

j

∂x2 + (2γ + β)O
(

τ 2–α
)

. (22)

Expanding (22) in a Taylor series in terms of u(xj, tn) and its derivatives, we obtain

Tn
j =

(

1 – h
∂

∂x
+

h2

2
∂2

∂x2 –
h3

6
∂3

∂x3 +
h4

24
∂4

∂x4 –
h5

120
∂5

∂x5 +
h6

720
∂6

∂x6 + · · ·
)

un
j

+
(

1 + h
∂

∂x
+

h2

2
∂2

∂x2 +
h3

6
∂3

∂x3 +
h4

24
∂4

∂x4 +
h5

120
∂5

∂x5 +
h6

720
∂6

∂x6 + · · ·
)

un
j

– 2un
j – γ

(
∂2

∂x2 – h
∂3

∂x3 +
h2

2
∂4

∂x4 –
h3

6
∂5

∂x5 +
h4

24
∂6

∂x6 + · · ·
)

un
j

– γ

(
∂2

∂x2 – h
∂3

∂x3 +
h2

2
∂4

∂x4 –
h3

6
∂5

∂x5 +
h4

24
∂6

∂x6 + · · ·
)

un
j

– β
∂2un

j

∂x2 + (2γ + β)O
(

τ 2–α
)

. (23)
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Then, after some simple calculations, we have

Tn
j =

(

h2 – 2γ – β
)∂2un

j

∂x2 + h2
(

h2

12
– γ

)
∂4un

j

∂x4

+ h4
(

h2

360
–

γ

12

)
∂6un

j

∂x6 + (2γ + β)O
(

τ 2–α
)

+ O
(

h6).

By choosing suitable values of parameters γ and β , we obtain the following various
methods for Eq. (1):

(i) If we choose 2γ + β = h2, we obtain a scheme of order O(τ 2–α + h2).
(ii) If we choose 2γ + β = h2 and γ = h2

12 , we obtain a scheme of order O(τ 2–α + h4). �

4 Stability analysis
In this section, we analyze the stability of scheme (18) by means of Fourier analysis. Basing
on the Fourier method which can only be applied to a linear problem, we must linearize
the nonlinear term λ|u2|u of (1) by making the quantity λ|u2| as a local constant d.

Let Ũn
j be the approximate solution of (18) and define

ρk
j = Uk

j – Ũk
j , j = 0, 1, . . . , M, k = 0, 1, . . . , N . (24)

With the above definition (24) and regarding (20) and (21), we can easily get the following
roundoff error equations:

ρ1
j+1 – 2ρ1

j + ρ1
j–1 + γ dρ1

j+1 + β dρ1
j + γ dρ1

j–1 + iγμρ1
j+1 + iβμρ1

j + iγμρ1
j–1

= iγμ(b0 – b1)ρ0
j+1 + iβμ(b0 – b1)ρ0

j + iγμ(b0 – b1)ρ0
j–1, (25)

and

ρn
j+1 – 2ρn

j + ρn
j–1 + γ dρn

j+1 + β dρn
j + γ dρn

j–1 + iγμρn
j+1 + iβμρn

j + iγμρn
j–1

= iγμ(b0 – b1)ρn–1
j+1 + iβμ(b0 – b1)ρn–1

j + iγμ(b0 – b1)ρn–1
j–1

+ iγμ

[ n–2
∑

m=1

(bn–m–1 – bn–m)ρm
j+1 + bn–1ρ

0
j+1

]

+ iβμ

[ n–2
∑

m=1

(bn–m–1 – bn–m)ρm
j + bn–1ρ

0
j

]

+ iγμ

[ n–2
∑

m=1

(bn–m–1 – bn–m)ρm
j–1 + bn–1ρ

0
j–1

]

, n ≥ 2. (26)

We define the grid function as follows:

ρk(x) =

⎧

⎨

⎩

ρk
j , xj – h

2 < x ≤ xj + h
2 , j = 1, 2, . . . , M – 1,

0, a ≤ x ≤ a + h
2 or b – h

2 < x ≤ b,
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where ρk(x) can be expanded in a Fourier series

ρk(x) =
∞

∑

l=–∞
ςk(l)ei2π lx/L, k = 1, 2, . . . , N , (27)

in which L = b – a and

ςk(l) =
1
L

∫ L

0
ρk(x)e–i2π lx/L dx.

We define the following discrete L2 norm:

∥
∥ρk∥∥

2 =

(M–1
∑

j=1

h
∣
∣ρk

j
∣
∣
2
) 1

2

=
[∫ L

0

∣
∣ρk(x)

∣
∣
2 dx

] 1
2

,

where ρk = [ρk
1 ,ρk

2 , . . . ,ρk
M–1]T .

Based on the Parseval equality

∫ L

0

∣
∣ρk(x)

∣
∣
2 dx =

∞
∑

l=–∞

∣
∣ςk(l)

∣
∣
2,

we have

∥
∥ρk∥∥

2 =

( ∞
∑

l=–∞

∣
∣ςk(l)

∣
∣
2
) 1

2

. (28)

According to the above analysis, we suppose that the solution of Eqs. (25) and (26) has
the following form:

ρk
j = ςkeiσ jh, (29)

where σ = 2π l
L is a real spatial wave number.

Substituting (29) into (25), we have

Djς1 exp
[

σ (j – 1)hi
]

+ Ejς1 exp(σ jhi) + Fjς1 exp
[

σ (j + 1)hi
]

= D∗
j ς0 exp

[

σ (j – 1)hi
]

+ E∗
j ς0 exp(σ jhi) + F∗

j ς0 exp
[

σ (j + 1)hi
]

, (30)

where

Dj = 1 + γ λd + iγμ, D∗
j = iγμ,

Ej = –2 + βλd + iβμ, E∗
j = iβμ,

Fj = 1 + γ λd + iγμ, F∗
j = iγμ.

After simple calculations, (30) leads to

ς1 =
D∗

j exp(–σhi) + E∗
j + F∗

j exp(σhi)
Dj exp(–σhi) + Ej + Fj exp(σhi)

ς0. (31)
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Using Euler’s formula, (31) can be rewritten in the form

ς1 =
(D∗

j + F∗
j ) cos(σh) + E∗

j

(Dj + Fj) cos(σh) + Ej
ς0, (32)

or

ς1 =
[2γμ cos(σh) + βμ]i

[2γμ cos(σh) + βμ]i + (2 + 2γ λd) cos(σh) + βλd – 2
ς0. (33)

(33) can be rewritten in the form

|ς1| =

√

ξ 2

ξ 2 + μ2 |ς0| ≤ |ς0|, (34)

where

ξ = 2γμ cos(σh) + βμ,

μ = (2 + 2γ λd) cos(σh) + βλd – 2.

Substituting (29) into (26) results in

Djςn exp
[

σ (j – 1)hi
]

+ Ejςn exp(σ jhi) + Fjςn exp
[

σ (j + 1)hi
]

= D∗
j ςn–1 exp

[

σ (j – 1)hi
]

+ E∗
j ςn–1 exp(σ jhi) + F∗

j ςn–1 exp
[

σ (j + 1)hi
]

+ En
j , (35)

where

En
j = –D∗

j

n–2
∑

m=0

bn,m
{

ςm+1 exp
[

σ (j + 1)hi
]

– ςm exp
[

σ (j + 1)hi
]}

– E∗
j

n–2
∑

m=0

bn,m
[

ςm+1 exp(σ jhi) – ςm exp(σ jhi)
]

– D∗
j

n–2
∑

m=0

bn,m
{

ςm+1 exp
[

σ (j – 1)hi
]

– ςm exp
[

σ (j – 1)hi
]}

.

(35) can be simplified as

ςn =
ξ i

μ + σ i
ςn–1 –

1
(μ + ξ i) exp(φjhi)

En
j

=
ξ i

μ + ξ i
ςn–1 –

ξ i
μ + ξ i

n–2
∑

m=0

bn,m(ςm+1 – ςm). (36)

For n = 2, we have

ς2 =
ξ i

μ + ξ i
ς1 –

ξ i
μ + ξ i

b2,0(ς1 – ς0).



Li et al. Advances in Difference Equations  (2018) 2018:318 Page 11 of 15

Because | ξ i
μ+ξ i | > 0, (1 – b2,0) > 0, and b2,0 > 0, we obtain

|ς2| ≤
∣
∣
∣
∣

ξ i
μ + ξ i

∣
∣
∣
∣
|ς1|(1 – b2,0) +

∣
∣
∣
∣

ξ i
μ + ξ i

∣
∣
∣
∣
|ς0|b2,0

≤
∣
∣
∣
∣

ξ i
μ + ξ i

∣
∣
∣
∣
|ς0|(1 – b2,0 + b2,0)

≤ |ς0|.

For n = 3, we have

ς3 =
ξ i

μ + ξ i
ς1 –

ξ i
μ + ξ i

b3,0(ς1 – ς0) –
ξ i

μ + ξ i
b3,1(ς2 – ς1).

Because| ξ i
μ+ξ i | > 0, (1 – b3,1) > 0 , (b3,1 – b3,0) > 0, and b3,0 > 0, we obtain

|ς3| ≤
∣
∣
∣
∣

ξ i
μ + ξ i

∣
∣
∣
∣
|ς2|(1 – b3,1) +

∣
∣
∣
∣

ξ i
μ + σ i

∣
∣
∣
∣
|ς1|(b3,1 – b3,0) +

∣
∣
∣
∣

ξ i
μ + ξ i

∣
∣
∣
∣
|ς0|b3,0

≤
∣
∣
∣
∣

ξ i
μ + ξ i

∣
∣
∣
∣
|ς0|(1 – b3,1) +

∣
∣
∣
∣

ξ i
μ + ξ i

∣
∣
∣
∣
|ς0|(b3,1 – b3,0) +

∣
∣
∣
∣

ξ i
μ + ξ i

∣
∣
∣
∣
|ς0|b3,0

=
∣
∣
∣
∣

ξ i
μ + ξ i

∣
∣
∣
∣
|ς0|

≤ |ς0|.

By a similar argument, it is then obtained that |ςj| ≤ |ς0| for n = 4, 5, . . . . Hence, the
linearized method is unconditionally stable.

5 Numerical experiments
In this section, some numerical calculations are carried out to test our theoretical results.
To illustrate the accuracy of the method and to compare the method with another method
in the literature, we compute the maximum norm errors denoted by

e∞(h, τ ) = max
0≤n≤N

∥
∥Un – un∥∥∞.

Furthermore, the temporal convergence order is denoted by

rate1∞ = log2

(
e∞(h, 2τ )
e∞(h, τ )

)

for sufficiently small h, and the spatial convergence order is denoted by

rate2∞ = log2

(
e∞(2h, τ )
e∞(h, τ )

)

for sufficiently small τ .

Example 1 Consider the following time-fractional Schrödinger equation:

i
∂αu(x, t)

∂tα
+

∂2u(x, t)
∂x2 +

∣
∣u(x, t)

∣
∣
2u(x, t) = f (x, t), 0 ≤ x ≤ 1, 0 < t ≤ T , (37)
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with the initial condition

u(x, 0) = 0, 0 ≤ x ≤ 1,

and boundary conditions

u(0, t) = it2, u(1, t) = it2,

where

f (x, t) = –
2t2–α

�(3 – α)
cos(2πx) +

(

–4π2t2 + t6) sin(2πx)

+ i
[

2t2–α

�(3 – α)
sin(2πx) +

(

–4π2t2 + t6) cos(2πx)
]

.

The exact solution of (37) is given by

u(x, t) = t2[sin(2πx) + i cos(2πx)
]

.

Firstly, the temporal errors and convergence orders are given in Table 1. We take the
sufficiently small spatial step h = 1

1000 and let α = 0.2, 0.4, 0.6, and 0.8, respectively. It is
observed that the scheme generates temporal convergence order, which is consistent with
our theoretical analysis. Secondly, the spatial errors and convergence orders are tabulated
in Table 2. We take the sufficiently small temporal step τ = 1

5000 and let α = 0.2, 0.4, 0.6,
and 0.8, respectively. The results illustrate that our scheme has accuracy of O(h4) in spatial
direction. That is in good agreement with our theoretical analysis. Figure 1 presents the
graphs of exact and numerical solutions with h = 1

48 , τ = 1
500 , and α = 0.3.

The comparisons of our numerical solutions and the results of the method developed
in [11] for α = 0.1 and 0.3 are shown in Tables 3 and 4. We take step size τ = 1

512 and
h = 1

4 , 1
9 , 1

14 , 1
19 , 1

24 , and 1
29 . It can be seen that the results of this paper are better than the

results of [11].

Table 1 The temporal errors and convergence orders with h = 1
1000

α τ e∞(h,τ ) (real part) rate1∞ e∞(h,τ ) (Imag. part) rate1∞
0.2 1/20 4.9502501e–5 ∗ 2.5500257e–5 ∗

1/40 1.5001572e–5 1.72238 7.7471511e–6 1.71877
1/80 4.5009049e–6 1.73683 2.3483707e–6 1.72201
1/160 1.3370712e–6 1.75114 7.2290069e–7 1.69979

0.4 1/20 1.7551888e–4 ∗ 8.9455142e–5 ∗
1/40 5.9215472e–5 1.56758 3.0178643e–5 1.56756
1/80 1.9859482e–5 1.57615 1.0137123e–5 1.57594
1/160 6.6285477e–6 1.58306 3.4053117e–6 1.58237

0.6 1/20 4.8635429e–4 ∗ 2.4476220e–4 ∗
1/40 1.8560647e–4 1.38976 9.3463972e–5 1.38966
1/80 7.0665619e–5 1.39317 3.5602853e–5 1.39309
1/160 2.6857043e–5 1.39570 1.3550513e–5 1.39553

0.8 1/20 1.2232584e–3 ∗ 6.0930267e–4 ∗
1/40 5.3226290e–4 1.20052 2.6632309e–4 1.19997
1/80 2.3192537e–4 1.19848 1.1621693e–4 1.19835
1/160 1.0104317e–4 1.19869 5.0636302e–5 1.19870
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Table 2 The spatial errors and convergence orders with τ = 1
5000

α h e∞(h,τ ) (real part) rate2∞ e∞(h,τ ) (Imag. part) rate2∞
0.2 1/4 3.7584486e–2 ∗ 7.0194896e–2 ∗

1/8 2.1460025e–3 4.13041 3.9870246e–3 4.13798
1/16 1.3155654e–4 4.02790 2.4435715e–4 4.02825
1/32 8.2162754e–6 4.00105 1.5201566e–5 4.00669

0.4 1/4 3.9172112e–2 ∗ 6.9118840e–2 ∗
1/8 2.2323011e–3 4.13322 3.9321438e–3 4.13569
1/16 1.3682056e–4 4.02817 2.4101573e–4 4.02812
1/32 8.5392992e–6 4.00202 1.4999655e–5 4.00613

0.6 1/4 4.0855486e–2 ∗ 6.7504824e–2 ∗
1/8 2.3249758e–3 4.13524 3.8502877e–3 4.13195
1/16 1.4239539e–4 4.02924 2.3604686e–4 4.02782
1/32 8.8294610e–6 4.01143 1.4703310e–5 4.00486

0.8 1/4 4.2399284e–2 ∗ 6.5355436e–2 ∗
1/8 2.4119363e–3 4.13577 3.7401138e–3 4.12715
1/16 1.4702052e–4 4.03610 2.2944121e–4 4.02689
1/32 8.3350082e–6 4.14069 1.4399479e–5 3.99404

Figure 1 Graphs of exact and numerical solutions
with h = 1

48 , τ = 1
500 , and α = 0.3

6 Conclusion
In this paper, we have studied a numerical method based on cubic non-polynomial spline
for the solution of a time-fractional nonlinear Schrödinger equation. By using the Fourier
analysis, the scheme is shown to be unconditionally stable. The truncation errors of our
scheme can be reached to O(τ 2–α + h4). Numerical results coincide with the theoretical
analysis.
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Table 3 Comparison of errors obtained for Example 1 with τ = 1
512 and α = 0.1

h e∞(h,τ ) (real part) e∞(h,τ ) (Imag. part)

Our method [11] Our method [11]

1/4 3.6866388e–2 4.2824e–1 7.0575277e–2 6.1335e–1
1/9 1.2682659e–3 7.0404e–2 2.4249059e–3 7.6325e–2
1/14 2.2076538e–4 2.1873e–2 4.1971919e–4 2.6096e–2
1/19 6.5146969e–5 1.0022e–2 1.2268149e–4 1.2230e–2
1/24 2.5400339e–5 5.1958e–3 4.8342660e–5 6.4207e–3
1/29 1.1938367e–5 2.8536e–3 2.2621457e–5 3.5662e–3

Table 4 Comparison of errors obtained for Example 1 with τ = 1
512 and α = 0.3

h e∞(h,τ ) (real part) e∞(h,τ ) (Imag. part)

Our method [11] Our method [11]

1/4 3.8355790e–2 4.3293e–1 6.9716586e–2 6.1119e–1
1/9 1.3134983e–3 7.0520e–2 2.3999262e–3 3.5128e–2
1/14 2.2989563e–4 2.1979e–2 4.1516336e–4 1.4733e–2
1/19 6.7510083e–5 1.0068e–2 1.2139583e–4 7.1997e–3
1/24 2.6166613e–5 5.2146e–3 4.7854800e–5 3.8478e–3
1/29 1.2194745e–5 2.8610e–3 2.2402366e–5 2.1771e–3
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