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Abstract
In this paper, we propose and study a two-species stage structured amensalism
model with a cover for the first species. By developing a new analysis technique or,
more precisely, by combining the differential inequality theory and the Lyapunov
function method, we obtain sufficient conditions ensuring the global attractivity of
positive and boundary equilibria, respectively. Our study shows that the final density
of the first species is an increasing function of the partial cover, and if the stage
structured species is globally asymptotically stable, then there exists a threshold such
that if the cover is greater than this threshold, the species can still exist in the long
run, whereas if the cover is too small, then the first species is driven to extinction.
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1 Introduction
The aim of this paper is to investigate the dynamic behavior of the following stage structure
amensalism system with a cover for the first species:

dx1

dt
= αx2 – βx1 – δ1x1 – d1(1 – k)x1y,

dx2

dt
= βx1 – δ2x2 – γ x2

2 – d2(1 – k)x2y,

dy
dt

= y(b2 – a2y),

(1.1)

where α,β , δ1, δ2, d1, d2, k, b2, a2, and γ are positive constants, x1(t) and x2(t) are the densi-
ties of the immature and mature first species at time t, y is the density of the second species
at time t, and k ∈ (0, 1) is a cover provided for the first species. The following assumptions
are made in model (1.1):

1. The first species has two-stage structure, immature and mature. Its dynamic behavior
is described by the equation system

dx1

dt
= αx2 – βx1 – δ1x1,
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dx2

dt
= βx1 – δ2x2 – γ x2

2.

We refer to Khajanchi and Banerjee [1] for more background of this equation system.
2. There is a partial cover (represented by k) for the first species to protect it from the

second species.
3. Both relationships between the immature species and the second species and

between the mature species and the second species are bilinear: (d1(1 – k)x1y and
d2(1 – k)x2y).

4. The second species satisfies the logistic model.
During the last decades, many scholars investigated the dynamic behavior of the com-

mensalism or amensalism model [2–19]. Such topics as the local stability of the equilib-
rium [2–4, 7, 8, 10–16, 18, 19], the existence of the positive periodic solution [5, 17] the ex-
istence and stability of the almost periodic solution [6], extinction of the species [8, 11, 14],
and the influence of the cover [14, 16, 18] have been studied, and many excellent results
are obtained. Recently, Xiong, Wang, and Zhang [13] proposed the following amensalism
model:

dN1

dt
= r1N1

(
1 –

N1

P1
– u

N2

P1

)
,

dN2

dt
= r2N2

(
1 –

N2

P2

)
.

(1.2)

The authors investigated the local stability property of the equilibria of the system.
Zhu and Chen [10] studied the qualitative property of the following two-species amen-

salism model:

dx
dt

= x(r1 – a11x – a12y),

dy
dt

= y(r2 – a22y).
(1.3)

They showed by a vector field that system (1.3) may have a positive equilibrium, and it is
globally stable, or that the system has no positive equilibrium, and one of the boundary
equilibria is globally stable.

Stimulated by the work [13], Chen [15] proposed the following nonselective harvesting
Lotka–Volterra amensalism model incorporating partial closure for the populations:

dN1

dt
= r1N1

(
1 –

N1

P1
– u

N2

P1

)
– q1EmN1,

dN2

dt
= r2N2

(
1 –

N2

P2

)
– q2EmN2.

(1.4)

Chen showed that after introducing the harvesting term, the dynamic behavior of system
(1.4) becomes complicated, the system maybe extinction, partial survival, or two species
can coexist in a stable state.

Some scholars argued that the functional response between the species is the essential
factor to influence the dynamic behavior of the system. For example, Wu [19] proposed a
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two-species amensalism model with nonmonotonic functional response, which takes the
form

dx1

dt
= x1

(
a1 – b1x1 –

c1x2

d1 + x2
2

)
,

dx2

dt
= x2(a2 – b2x2).

(1.5)

They showed that the dynamic behavior of system (1.5) is similar to that of system (1.3).
It is well known that refuge plays an important role on the dynamic behavior of the

predator–prey system (see [20–23]). Stimulated by the notion of the refuge, Xie, Chen,
and He [18] studied the following two species amensalism model with a partial cover for
the first species to protect it from the second species:

dx
dt

= a1x(t) – b1x2(t) – a12(1 – k)x(t)y(t),

dy
dt

= a2y(t) – b2y2(t).
(1.6)

Their study indicates that the conditions that ensure the local stability of the boundary
equilibrium are sufficient to ensure its global stability, and once a positive equilibrium
exists, it is globally stable. Their results were then generalized by Wu, Zhao, and Lin [14]
to a two-species amensalism model with Holling II functional response and a cover for
the first species.

On the other hand, many scholars investigated the dynamic behavior of the stage struc-
tured species; see [1, 24–36] and the references therein. Many scholars [24–34] argued
that a suitable stage-structured model should incorporate the time delay, which reflects
the period of immature species to grow up to mature species. For example, Lin, Xie, and
Chen [32] proposed the following stage-structured predator–prey model (stage structure
for both predator and prey, respectively) with modified Leslie–Gower and Holling-type II
schemes:

x′
1(t) = r1x2(t) – d11x1(t) – r1e–d11τ1 x2(t – τ1),

x′
2(t) = r1e–d11τ1 x2(t – τ1) – d12x2(t) – bx2

2(t) –
a1y2(t)x2(t)

x2(t) + k1
,

y′
1(t) = r2y2(t) – d22y1(t) – r2e–d22τ2 y2(t – τ2),

y′
2(t) = r2e–d22τ2 y2(t – τ2) – d21y2(t) –

a2y2
2(t)

x2(t) + k2
.

(1.7)

They showed that for a stage-structured predator–prey community, both stage structure
and death rate of the mature species are the important factors that lead to the permanence
or extinction of the system.

Many scholars [1, 35, 36] also proposed and studied the stage-structured ecosystem
without time delay, that is, they assumed that there are proportional numbers of immature
species that become mature species at time t. Recently, Khajanchi and Banerjee [1] pro-
posed the following stage structure predator–prey model with ratio dependent functional



Lei Advances in Difference Equations  (2018) 2018:272 Page 4 of 23

response:

dx1

dt
= αx2(t) – βx1(t) – δ1x1(t),

dx2

dt
= βx1(t) – δ2x2(t) – γ x2

2(t) –
η(1 – θ )x2(t)y(t)

g(1 – θ )x2(t) + hy(t)
,

dy
dt

=
uη(1 – θ )x2(t)y(t)

g(1 – θ )x2(t) + hy(t)
– δ3y(t).

(1.8)

The authors investigated the stability property of the positive equilibrium and boundary
equilibrium.

Stimulated by the works of Chen [15] and Khajanchi and Banerjee [1], we [36] proposed
the following single-species stage structure system incorporating partial closure for the
populations and nonselective harvesting:

dx1

dt
= αx2 – βx1 – δ1x1 – q1Emx1,

dx2

dt
= βx1 – δ2x2 – γ x2

2 – q2Emx2.
(1.9)

We showed that the birth rate of the immature species and the fraction of the stocks for
the harvesting play a crucial role on the dynamic behavior of the system.

It brings to our attention that, to this day, still no scholars propose and study the dynamic
behaviors of the amensalism model with stage structure. This motivated us to propose
system (1.1). We mention here that at first sight, system (1.1) is very simple, However,
the third equation is independent of x1 and x2, and hence it is impossible to investigate
the stability property of the system by constructing a suitable Lyapunov function. Also,
since this is a three-dimensional system, we cannot investigate the stability property of
the system by using the Dulac criterion.

The paper is arranged as follows. We investigate the existence and locally stability prop-
erty of the equilibria of system (1.1) in Sect. 2. In Sect. 3, by applying the differential in-
equality theory and constructing some suitable Lyapunov function we are able to inves-
tigate the global attractivity of the positive and boundary equilibria. We then discuss the
influence of partial cover to the final density of the first species in Sect. 4, and in Sect. 5,
we present an example together with its numerical simulations to show the feasibility of
the main results. We end this paper by a brief discussion.

2 Local stability of the equilibria
Before we study the local stability property of the equilibrium points of system (1.1), we
introduce the stability of equilibrium of the following single-species stage-structured sys-
tem:

dx1

dt
= αx2 – βx1 – δ1x1,

dx2

dt
= βx1 – δ2x2 – γ x2

2,
(2.1)

where α,β , δ1, δ2, and γ are positive constants. The following lemma is Theorems 4.1 and
4.2 of [36].
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Lemma 2.1 If

αβ < δ2(β + δ1), (2.2)

then the boundary equilibrium O(0, 0) of system (2.1) is globally stable. If

αβ > δ2(β + δ1), (2.3)

then the positive equilibrium B(x∗
1, x∗

2) of system (2.1) is globally stable, where

x∗
1 =

αx∗
2

β + δ1
, x∗

2 =
αβ – δ2(β + δ1)

γ (β + δ1)
.

Now we are in position to investigate the local stability property of system (1.1).
The equilibria of system (1.1) are determined by the system

αx2 – βx1 – δ1x1 – d1(1 – k)x1y = 0,

βx1 – δ2x2 – γ x2
2 – d2(1 – k)x2y = 0,

y(b2 – a2y) = 0.

(2.4)

The system always admits two boundary equilibria, A1(0, 0, 0) and A2(0, 0, b2
a2

). If

αβ > δ2(β + δ1), (2.5)

then the system admits boundary equilibrium A3(x∗
1, x∗

2, 0), where

x∗
1 =

αx∗
2

β + δ1
, x∗

2 =
αβ – δ2(β + δ1)

γ (β + δ1)
. (2.6)

If

αβ –
(

δ2 +
d2(1 – k)b2

a2

)(
β + δ1 +

d1(1 – k)b2

a2

)
> 0, (2.7)

then system (1.1) admits a unique positive equilibrium A4(x∗∗
1 , x∗∗

2 , y∗∗), where

x∗∗
1 =

αx∗∗
2

β + δ1 + d1(1–k)b2
a2

,

x∗∗
2 =

αβ – (δ2 + d2(1–k)b2
a2

)(β + δ1 + d1(1–k)b2
a2

)

(β + δ1 + d1(1–k)b2
a2

)γ
,

y∗∗ =
b2

a2
.

(2.8)

Obviously, x∗∗
1 , x∗∗

2 , and y∗∗ satisfy the equations

αx∗∗
2 – βx∗∗

1 – δ1x∗∗
1 – d1(1 – k)x∗∗

1 y∗∗ = 0,

βx∗∗
1 – δ2x∗∗

2 – γ
(
x∗∗

2
)2 – d2(1 – k)x∗∗

2 y∗∗ = 0,

b2 – a2y∗∗ = 0.

(2.9)
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We will now investigate the local stability of the above equilibria.
The variational matrix of system (1.1) is

J(x1, x2, y) =

⎛
⎜⎝

	1 α –d1(1 – k)x1

β 	2 –d2(1 – k)x2

0 0 –2a2y + b2

⎞
⎟⎠ , (2.10)

where

	1 = –β – δ1 – d1(1 – k)y,

	2 = –δ2 – 2γ x2 – d2(1 – k)y.

Theorem 2.1 A1(0, 0, 0) is unstable.

Proof From (2.10) we can see that the Jacobian matrix of the system about the equilibrium
point A1(0, 0, 0) is given by

⎛
⎜⎝

–β – δ1 α 0
β –δ2 0
0 0 b2

⎞
⎟⎠ . (2.11)

We can easily see that it has one positive characteristic root λ1 = b2, and, consequently,
A1(0, 0, 0) is unstable. This ends the proof of Theorem 2.1. �

Theorem 2.2 If

(
δ2 +

d2(1 – k)b2

a2

)(
β + δ1 +

d1(1 – k)b2

a2

)
– αβ > 0, (2.12)

then A2(0, 0, b2
a2

) is locally asymptotically stable. If

(
δ2 +

d2(1 – k)b2

a2

)(
β + δ1 +

d1(1 – k)b2

a2

)
– αβ < 0, (2.13)

then A2(0, 0, b2
a2

) is unstable.

Proof From (2.10) we can see that the Jacobian matrix of the system about the equilibrium
point A2(0, 0, b2

a2
) is given by

⎛
⎜⎝

–β – δ1 – d1(1–k)b2
a2

α 0
β –δ2 – d2(1–k)b2

a2
0

0 0 –b2

⎞
⎟⎠ . (2.14)

The characteristic equation of this matrix is

(λ + b2)
[
λ2 + K1λ + K2

]
= 0, (2.15)
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where

K1 = δ1 + δ2 + β +
d1(1 – k)b2

a2
+

d2(1 – k)b2

a2
,

K2 =
(

β + δ1 +
d1(1 – k)b2

a2

)(
δ2 +

d2(1 – k)b2

a2

)
– αβ .

Hence it has one negative characteristic root λ1 = –b2 < 0; the other two characteristic
roots are determined by the equation

λ2 + K1λ + K2 = 0. (2.16)

Note that the two characteristic roots of equation (2.16) satisfy

λ2 + λ3 = –K1, λ2λ3 = K2. (2.17)

Under assumption (2.13), λ2λ3 < 0, hence at least one characteristic root is positive, and,
consequently, A2(0, 0, b2

a2
) is unstable. Under assumption (2.12), λ2 < 0 and λ3 < 0. Thus

three characteristic roots of matrix (2.14) are all negative, and hence A1(0, 0, b2
a2

) is locally
asymptotically stable. This ends the proof of Theorem 2.2. �

Theorem 2.3 A3(x∗
1, x∗

2, 0) is unstable.

Proof From (2.10) we can see that the Jacobian matrix of the system about the equilibrium
point A3(x∗

1, x∗
2, 0) is given by

⎛
⎜⎝

–β – δ1 α –d1(1 – k)x∗
1

β –δ2 – 2γ x∗
2 –d2(1 – k)x∗

2

0 0 b2

⎞
⎟⎠ . (2.18)

From (2.18) we can easily see that the matrix has one positive characteristic root λ1 = b2,
and, consequently, A3(x∗

1, x∗
2, 0) is unstable. This ends the proof of Theorem 2.3. �

Theorem 2.4 If

(
δ2 +

d2(1 – k)b2

a2

)(
β + δ1 +

d1(1 – k)b2

a2

)
– αβ < 0, (2.19)

then A4(x∗∗
1 , x∗∗

2 , y∗∗) is locally asymptotically stable.

Proof From (2.10) we can see that the Jacobian matrix of the system about the equilibrium
point A4(x∗∗

1 , x∗∗
2 , y∗∗) is given by

⎛
⎜⎝

�1 α –d1(1 – k)x∗∗
1

β �2 –d2(1 – k)x∗∗
2

0 0 –2a2y∗∗ + b2

⎞
⎟⎠ , (2.20)

where

�1 = –β – δ1 – d1(1 – k)y∗∗,
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�2 = –δ2 – 2γ x∗∗
2 – d2(1 – k)y∗∗.

Noting that

–2a2y∗∗ + b2 = –2a2
b2

a2
+ b2 = –b2,

from the second equation of (2.9) we have

–δ2 – 2γ x∗∗
2 – d2(1 – k)y∗∗

= –
βx∗∗

1
x∗∗

2
– γ x∗∗

2

= –
αβ

β + δ1 + d1(1–k)b2
a2

– γ x∗∗
2 .

The characteristic equation of above matrix is

(λ + b2)
[
λ2 + B1λ + B2

]
= 0, (2.21)

where

B1 = β + δ1 + d1(1 – k)y∗∗ +
α

β + δ1 + d1(1–k)b2
a2

+ γ x∗∗
2 ,

B2 =
(
β + δ1 + d1(1 – k)y∗∗)( βα

β + δ1 + d1(1–k)b2
a2

+ γ x∗∗
2

)
– αβ .

Hence it has one negative characteristic root λ1 = –b2 < 0, and the other two characteristic
roots are determined by the equation

λ2 + B1λ + B2 = 0. (2.22)

Note that by the expressions of x∗∗
2 and y∗∗ and by condition (2.19) the two characteristic

roots of equation (2.22) satisfy

λ2 + λ3 = –B1 < 0,

λ2λ3 =
(
β + δ1 + d1(1 – k)y∗∗)L1 – αβ

=
(

β + δ1 + d1(1 – k)
b2

a2

)
L1 – αβ

= αβ –
(

δ2 +
d2(1 – k)b2

a2

)(
β + δ1 +

d1(1 – k)b2

a2

)

> 0,

(2.23)

where

L1 =
βα

β + δ1 + d1(1–k)b2
a2

+ γ x∗∗
2
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=
2αβ – (δ2 + d2(1–k)b2

a2
)(β + δ1 + d1(1–k)b2

a2
)

β + δ1 + d1(1–k)b2
a2

.

Hence λ2 < 0 and λ3 < 0, and therefore all of three characteristic roots are negative. Con-
sequently, A4(x∗∗

1 , x∗∗
2 , y∗∗) is locally asymptotically stable. This ends the proof of Theo-

rem 2.4. �

3 Global stability
As was shown in the previous section, under some suitable conditions, A2 and A4 can be
locally asymptotically stable. In this section, we obtain some sufficient conditions that for
the global asymptotical stability of the equilibria A2 and A4.

Theorem 3.1 If

(
δ2 +

d2(1 – k)b2

a2

)(
β + δ1 +

d1(1 – k)b2

a2

)
– αβ > 0, (3.1)

then A2(0, 0, b2
a2

) is globally attractive, that is,

lim
t→+∞ xi(t) = 0, i = 1, 2, lim

t→+∞ y(t) =
b2

a2
.

Proof For a small enough positive constant ε, it follows from (3.1) that

(
δ2 + d2(1 – k)

(
b2

a2
+ ε

))(
β + δ1 + d1(1 – k)

(
b2

a2
+ ε

))
– αβ > 0. (3.2)

Now let us consider the equation

dy
dt

= y(b2 – a2y). (3.3)

From Theorem 2.1 of [37] we know that the unique positive equilibrium y∗ = b2
a2

is globally
stable, that is,

lim
t→+∞ y(t) =

b2

a2
. (3.4)

Hence, for above ε > 0, there exists T > 0 such that

y(t) <
b2

a2
+ ε for all t ≥ T . (3.5)

Inequality (3.5), together with system (1.1), shows that, for t > T ,

dx1

dt
≤ αx2 – βx1 – δ1x1 – d1(1 – k)x1

(
b2

a2
+ ε

)
,

dx2

dt
≤ βx1 – δ2x2 – γ x2

2 – d2(1 – k)x2

(
b2

a2
+ ε

)
.

(3.6)
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Now let us consider the system

du1

dt
= αu2 – βu1 – δ1u1 – d1(1 – k)u1

(
b2

a2
+ ε

)
,

du2

dt
= βu1 – δ2u2 – γ u2

2 – d2(1 – k)u2

(
b2

a2
+ ε

)
.

(3.7)

It admits a boundary equilibrium O(0, 0). Now we show that, under assumption (3.1),
O(0, 0) is globally asymptotically stable. We prove this by constructing some suitable Lya-
punov function. Let us define the Lyapunov function

V1(u1, u2) =
β

β + δ1 + d1(1 – k)( b2
a2

+ ε)
u1 + u2. (3.8)

We can easily see that the function V1 is zero at the boundary equilibrium O(0, 0) and
is positive for all other positive values of u1 and u2. The time derivative of V1 along the
trajectories of (3.7) is

D+V1(t) =
β

β + δ1 + d1(1 – k)( b2
a2

+ ε)

×
(

αu2 – βu1 – δ1u1 – d1(1 – k)u1

(
b2

a2
+ ε

))

+ βu1 – δ2u2 – γ u2
2 – d2(1 – k)u2

(
b2

a2
+ ε

)

= ϒx2 – γ x2
2, (3.9)

where

ϒ =
αβ

β + δ1 + d1(1 – k)( b2
a2

+ ε)
– δ2 – d2(1 – k)

(
b2

a2
+ ε

)
.

From (3.2) we have ϒ < 0. It then follows from (3.1) and (3.9) that D+V1(t) < 0 strictly for
all u1, u2 > 0 except the boundary equilibrium O(0, 0), where D+V1(t) = 0. Thus, V1(u1, u2)
satisfies Lyapunov’s asymptotic stability theorem, and the boundary equilibrium O(0, 0) of
system (3.7) is globally asymptotically stable, that is, if (u1(t), u2(t)) is any positive solution
of system (3.7), then

lim
t→+∞ u1(t) = 0, lim

t→+∞ u2(t) = 0. (3.10)

Let (x1(t), x2(t), y(t)) be any positive solution of system (1.1) with initial condition
(x1(0), x2(0), y(0) = (x10, x20, y0), and let (u1(t), u2(t)) be the positive solution of system (3.7)
with initial condition (u1(0), u2(0)) = (x10, x20). It then follows from the differential inequal-
ity theory that

xi(t) ≤ ui(t) for all t ≥ 0. (3.11)
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The positivity of the solution of system (1.1), together with (3.10) and (3.11), leads to

0 ≤ lim inf
t→+∞ xi(t) ≤ lim sup

t→+∞
xi(t) ≤ lim

t→+∞ ui(t) = 0, i = 1, 2.

Hence

lim
t→+∞ xi(t) = 0, i = 1, 2. (3.12)

Relation (3.4), together with (3.12), ends the proof of Theorem 3.1. �

Remark 3.1 Under the assumption αβ < δ2(β +δ1), it follows from Lemma 2.1 that the first
species will be driven to extinction. In this case, for all 0 < k < 1, inequality (3.1) holds, and
it follows from Theorem 3.1 that A2(0, 0, b2

a2
) is globally attractive, which means that the

first species is still driven to extinction.

Remark 3.2 Under the assumption αβ > δ2(β +δ1), it follows from Lemma 2.1 that the first
species is globally asymptotically stable; however, if

k < 1 –
(

αβ

β + δ1
– δ2

)
a2

b2d2
, (3.13)

then inequality (3.1) holds, and it follows from Theorem 3.1 that A2(0, 0, b2
a2

) is globally
attractive, which means that the first species will be driven to extinction, that is, if the cover
for the first species is not large enough, then with the influence of the second species, the
first species will be driven to extinction.

Remark 3.3 At first sight, system (1.1) is not complicate, and we may conjecture that it
is easy to investigate the stability of the equilibrium by constructing a suitable Lyapunov
function as that of An and Lei [36]; however, this is impossible, since the term –d1(1–k)x1y
in the first equation of system (1.1) cannot be dealt with directly. Here, by combining the
differential inequality theory and the Lyapunov function we give a strict proof of Theo-
rem 3.1. Such a method possibly could be applied to other situations.

Theorem 3.2 If

αβ –
(

δ2 +
d2(1 – k)b2

a2

)(
β + δ1 +

d1(1 – k)b2

a2

)
> 0, (3.14)

then A4(x∗∗
1 , x∗∗

2 , y∗∗) is globally attractive.

Proof By (3.14) there exists an small enough positive constant ε1 > 0 (without loss of gen-
erality, we may assume that ε1 < b2

2a2
) such that

αβ –
(

δ2 + d2(1 – k)
(

b2

a2
+ ε1

))(
β + δ1 + d1(1 – k)

(
b2

a2
+ ε1

))
> 0 (3.15)

and

αβ –
(

δ2 + d2(1 – k)
(

b2

a2
– ε1

))(
β + δ1 + d1(1 – k)

(
b2

a2
– ε1

))
> 0. (3.16)
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Now let us consider the equation

dy
dt

= y(b2 – a2y). (3.17)

From Theorem 2.1 of [37] we know that the unique positive equilibrium y∗∗ = b2
a2

is globally
stable, that is,

lim
t→+∞ y(t) =

b2

a2
. (3.18)

Hence, for above ε1 > 0, there exists T1 > 0 such that

b2

a2
– ε1 < y(t) <

b2

a2
+ ε1 for all t ≥ T1. (3.19)

The right-hand side of (3.19), together with system (1.1), shows that, for t > T1,

dx1

dt
≤ αx2 – βx1 – δ1x1 – d1(1 – k)x1

(
b2

a2
+ ε1

)
,

dx2

dt
≤ βx1 – δ2x2 – γ x2

2 – d2(1 – k)x2

(
b2

a2
+ ε1

)
.

(3.20)

Now let us consider the system

du1

dt
= αu2 – βu1 – δ1u1 – d1(1 – k)u1

(
b2

a2
+ ε1

)
,

du2

dt
= βu1 – δ2u2 – γ u2

2 – d2(1 – k)u2

(
b2

a2
+ ε1

)
.

(3.21)

Since inequality (3.15) holds, system (3.21) admits a unique positive equilibrium M(u∗∗
1 ,

u∗∗
2 ), where

u∗∗
1 =

αu∗∗
2

β + δ1 + d1(1 – k)( b2
a2

+ ε1)
,

u∗∗
2 =

αβ – (δ2 + d2(1 – k)( b2
a2

+ ε1))(β + δ1 + d1(1 – k)( b2
a2

+ ε1))

(β + δ1 + d1(1 – k)( b2
a2

+ ε1))γ
.

(3.22)

Obviously, u∗∗
1 and u∗∗

2 satisfy the equations

αu∗∗
2 – βu∗∗

1 – δ1u∗∗
1 – d1(1 – k)u∗∗

1

(
b2

a2
+ ε1

)
= 0,

βu∗∗
1 – δ2u∗∗

2 – γ
(
u∗∗

2
)2 – d2(1 – k)u∗∗

2

(
b2

a2
+ ε1

)
= 0.

(3.23)

Now we show that M(u∗∗
1 , u∗∗

2 ) is globally asymptotically stable. We will prove this asser-
tion by constructing some suitable Lyapunov function. Let us define the Lyapunov func-
tion

V2(u1, u2) = k1

(
u1 – u∗∗

1 – u∗∗
1 ln

u1

u∗∗
1

)
+ k2

(
u2 – u∗∗

2 – u∗∗
2 ln

u2

u∗∗
2

)
,

where k1, k2 are some positive constants to be determined later.



Lei Advances in Difference Equations  (2018) 2018:272 Page 13 of 23

We can easily see that the function V2 is zero at the equilibrium M(u∗∗
1 , u∗∗

2 ) and is pos-
itive for all other positive values of u1 and u2. The time derivative of V2 along the trajec-
tories of (3.21) is

D+V2(t)

= k1
u1 – u∗∗

1
u1

u̇1 + k2
u2 – u∗∗

2
u2

u̇2

= k1
u1 – u∗∗

1
u1

(
αu2 –

(
β + δ1 + d1(1 – k)

(
b2

a2
+ ε1

))
u1

)

+ k2
u2 – u∗∗

2
u2

(
βu1 – δ2u2 – γ u2

2 – d2(1 – k)
(

b2

a2
+ ε1

)
u2

)
. (3.24)

Note that from the relationship of u∗∗
1 and u∗∗

2 (see (3.22) for more detail) we have

αu2 –
(

β + δ1 + d1(1 – k)
(

b2

a2
+ ε1

))
u1

=
α

u∗∗
1

(
u2u∗∗

1 – u1u∗∗
2

)
+ αu1

u∗∗
2

u∗∗
1

–
(

β + δ1 + d1(1 – k)
(

b2

a2
+ ε1

))
u1

=
α

u∗∗
1

(
u2u∗∗

1 – u2u1 + u2u1 – u1u∗∗
2

)

=
α

u∗∗
1

(
–u2

(
u1 – u∗∗

1
)

+ u1
(
u2 – u∗∗

2
))

. (3.25)

Also, from the expression of u∗∗
2 , we have

βu1 – δ2u2 – γ u2
2 – d2(1 – k)

(
b2

a2
+ ε1

)
u2

=
β

u∗∗
2

(
u1u∗∗

2 – u2u∗∗
1

)
+ βu2

u∗∗
1

u∗∗
2

–
(

δ2 + d2(1 – k)
(

b2

a2
+ ε1

))
u2 – γ u2

2

=
β

u∗∗
2

(
u1u∗∗

2 – u1u2 + u1u2 – u2u∗∗
1

)
– γ u2

2

+
(

αβ

β + δ1 + d1(1 – k)( b2
a2

+ ε1)
– δ2 – d2(1 – k)

(
b2

a2
+ ε1

))
u2

=
β

u∗∗
2

(
u1

(
u∗∗

2 – u2
)

+ u2
(
u1 – u∗∗

1
))

+ γ u∗∗
2 u2 – γ u2

2. (3.26)

Applying (3.25) and (3.26) to (3.24) leads to

D+V2(t) = k1
u1 – u∗∗

1
u1

α

u∗∗
1

(
–u2

(
u1 – u∗∗

1
)

+ u1
(
u2 – u∗∗

2
))

+ k2
u2 – u∗∗

2
u2

β

u∗∗
2

(
–u1

(
u2 – u∗∗

2
)

+ u2
(
u1 – u∗∗

1
))
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– k2γ
(
u2 – u∗∗

2
)2

= –
k1αu2

u1u∗∗
1

(
u1 – u∗∗

1
)2 +

(
k1α

u∗∗
1

+
k2β

u∗∗
2

)(
u1 – u∗∗

1
)(

u2 – u∗∗
2

)

–
k2βu1

u2u∗∗
2

(
u2 – u∗∗

2
)2 – k2γ

(
u2 – u∗∗

2
)2.

Now let us choose k2 = 1 and k1 = βu∗∗
1

u∗∗
2 α

. Then

D+V2(t) = –
β

u∗∗
2

[√
u2

u1

(
u1 – u∗∗

1
)

–
√

u1

u2

(
u2 – u∗∗

2
)]2

– γ
(
u2 – u∗∗

2
)2. (3.27)

Hence D+V2(t) < 0 strictly for all u1, u2 > 0 except the positive equilibrium M(u∗∗
1 , u∗∗

2 ),
where D+V2(t) = 0. Thus, V2(t) satisfies Lyapunov’s asymptotic stability theorem, and the
positive equilibrium M(u∗∗

1 , u∗∗
2 ) of system (3.21) is globally asymptotically stable, that is,

if (u1(t), u2(t)) is any positive solution of system (3.7), then

lim
t→+∞ u1(t) = u∗∗

1 , lim
t→+∞ u2(t) = u∗∗

2 . (3.28)

Let (x1(t), x2(t), y(t)) be any positive solution of system (1.1) with initial condition
(x1(0), x2(0), y(0) = (x10, x20, y0), and let (u1(t), u2(t)) be the positive solution of system
(3.21) with initial condition (u1(0), u2(0)) = (x10, x20). It then follows from the differential
inequality theory that

xi(t) ≤ ui(t) for all t ≥ 0. (3.29)

The positivity of the solution of system (1.1), together with (3.28) and (3.29), leads to

lim sup
t→+∞

xi(t) ≤ lim
t→+∞ ui(t) = u∗∗

i , i = 1, 2. (3.30)

On the other hand, the left-hand side of (3.19), together with system (1.1), shows that, for
t > T1,

dx1

dt
≥ αx2 – βx1 – δ1x1 – d1(1 – k)x1

(
b2

a2
– ε1

)
,

dx2

dt
≥ βx1 – δ2x2 – γ x2

2 – d2(1 – k)x2

(
b2

a2
– ε1

)
.

(3.31)

Now let us consider the system

dv1

dt
= αv2 – βv1 – δ1v1 – d1(1 – k)v1

(
b2

a2
– ε1

)
,

dv2

dt
= βv1 – δ2v2 – γ u2

2 – d2(1 – k)v2

(
b2

a2
– ε1

)
.

(3.32)
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Since inequality (3.16) holds, system (3.32) admits a unique positive equilibrium N(v∗∗
1 ,

v∗∗
2 ), where

v∗∗
1 =

αv∗∗
2

β + δ1 + d1(1 – k)( b2
a2

– ε1)
,

v∗∗
2 =

αβ – (δ2 + d2(1 – k)( b2
a2

– ε1))(β + δ1 + d1(1 – k)( b2
a2

– ε1))

(β + δ1 + d1(1 – k)( b2
a2

– ε1))γ
.

(3.33)

Obviously, v∗∗
1 and v∗∗

2 satisfy the equations

αv∗∗
2 – βv∗∗

1 – δ1v∗∗
1 – d1(1 – k)v∗∗

1

(
b2

a2
– ε1

)
= 0,

βv∗∗
1 – δ2v∗∗

2 – γ
(
v∗∗

2
)2 – d2(1 – k)v∗∗

2

(
b2

a2
– ε1

)
= 0.

(3.34)

Now we show that N(v∗∗
1 , v∗∗

2 ) is globally asymptotically stable. We will prove this assertion
by constructing some suitable Lyapunov function. Let us define the Lyapunov function

V3(v1, v2) = l1

(
v1 – v∗∗

1 – v∗∗
1 ln

v1

v∗∗
1

)
+ l2

(
v2 – v∗∗

2 – v∗∗
2 ln

v2

v∗∗
2

)
,

where l1, l2 are some positive constants to be determined later.
We easily see that the function V3 is zero at the equilibrium N(v∗∗

1 , v∗∗
2 ) and is positive

for all other positive values of v1 and v2. The time derivative of V3 along the trajectories
of (3.32) is

D+V3(t)

= l1
v1 – v∗∗

1
v1

(
αv2 –

(
β + δ1 + d1(1 – k)

(
b2

a2
– ε1

))
v1

)

+ l2
v2 – v∗∗

2
v2

(
βv1 – δ2v2 – γ v2

2 – d2(1 – k)
(

b2

a2
– ε1

)
v2

)
. (3.35)

Note that from the relationship of v∗∗
1 and v∗∗

2 (see (3.34) for more detail) we have

αv2 –
(

β + δ1 + d1(1 – k)
(

b2

a2
+ ε1

))
v1

=
α

v∗∗
1

(
–v2

(
v1 – v∗∗

1
)

+ v1
(
v2 – v∗∗

2
))

. (3.36)

Also, from the expression of v∗∗
2 we have

βv1 – δ2v2 – γ v2
2 – d2(1 – k)

(
b2

a2
– ε1

)
v2

=
β

v∗∗
2

(
v1

(
v∗∗

2 – v2
)

+ v2
(
v1 – v∗∗

1
))

+ γ v∗∗
2 v2 – γ v2

2. (3.37)
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Applying (3.36) and (3.37) to (3.35) leads to

D+V3(t) = –
l1αv2

v1v∗∗
1

(
v1 – v∗∗

1
)2 +

(
l1α

v∗∗
1

+
l2β

v∗∗
2

)(
v1 – v∗∗

1
)(

v2 – v∗∗
2

)

–
l2βv1

v2v∗∗
2

(
v2 – v∗∗

2
)2 – l2γ

(
v2 – v∗∗

2
)2.

Now let us choose l2 = 1 and l1 = βv∗∗
1

v∗∗
2 α

. Then

D+V3(t) = –
β

v∗∗
2

[√
v2

v1

(
v1 – v∗∗

1
)

–
√

v1

v2

(
v2 – v∗∗

2
)]2

– γ
(
v2 – v∗∗

2
)2. (3.38)

Hence D+V3(t) < 0 strictly for all v1, v2 > 0 except the positive equilibrium N(v∗∗
1 , v∗∗

2 ),
where D+V3(t) = 0. Thus, V3(t) satisfies Lyapunov’s asymptotic stability theorem, and the
positive equilibrium N(v∗∗

1 , v∗∗
2 ) of system (3.32) is globally asymptotically stable, that is, if

(v1(t), v2(t)) is any positive solution of system (3.32), then

lim
t→+∞ v1(t) = v∗∗

1 , lim
t→+∞ v2(t) = v∗∗

2 . (3.39)

Let (x1(t), x2(t), y(t)) be any positive solution of system (1.1) with initial condition
(x1(0), x2(0), y(0) = (x10, x20, y0), and let (v1(t), v2(t)) be the positive solution of system (3.32)
with initial condition (v1(0), v2(0)) = (x10, x20). It then follows from the differential inequal-
ity theory that

xi(t) ≥ vi(t) for all t ≥ 0. (3.40)

The positivity of the solution of system (1.1), together with (3.39) and (3.40), leads to

lim inf
t→+∞ xi(t) ≥ lim

t→+∞ vi(t) = v∗∗
i , i = 1, 2. (3.41)

Relation (3.30), together with (3.41), leads to

v∗∗
i ≤ lim inf

t→+∞ xi(t) ≤ lim sup
t→+∞

xi(t) ≤ u∗∗
i . (3.42)

Noting that ε1 is any small enough positive constant, from (2.8), (3.22), and (3.33) we have

u∗∗
i → x∗∗

i , v∗∗
i → x∗∗

i as ε1 → 0. (3.43)

Letting ε1 → 0 in (3.41), by (3.43) it immediately follows that

lim
t→+∞ xi(t) = x∗∗

i , i = 1, 2. (3.44)

Relation (3.44), together with (3.17), ends the proof of Theorem 3.2. �
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Remark 3.4 Condition (3.14) is necessary to ensure the existence of the positive equilib-
rium. Theorem 3.2 shows that if the positive equilibrium exists, then it is globally asymp-
totically stable, and hence it is impossible for the system to have the bifurcation phe-
nomenon.

Remark 3.5 If αβ > δ2(β + δ1), then for large enough k (k is close to 1) inequality (3.14) can
hold, and from Lemma 2.1 we know that in this case, system (2.1) admits a unique positive
equilibrium. In other words, if system (2.1) admits a unique positive equilibrium, then for
the amensalism model, if the influence of the second species to the first species is limited,
then the system still admits a unique globally asymptotically stable positive equilibrium.

4 The influence of the partial cover
From (2.8) we easily see that the final density of the immature and mature species are
relevant to the partial cover, and hence one interesting issue is to find out a relationship
between the final density of the species and the partial cover.

Note that from the second equality of (2.8) we have

x∗∗
2 =

1
γ

(
αβ

β + δ1 + d1(1–k)b2
a2

–
(

δ2 +
d2(1 – k)b2

a2

))
. (4.1)

Hence

dx∗∗
2 (k)
dk

=
1
γ

(
αβd1b2

(β + δ1 + d1(1–k)b2
a2

)2a2
+

d2b2

a2

)
> 0. (4.2)

Also, from the first equality of (2.8) and (4.2) we have

dx∗∗
1 (k)
dk

=
αd1b2x∗∗

2

(β + δ1 + d1(1–k)b2
a2

)2a2

+
α

β + δ1 + d1(1–k)b2
a2

dx∗∗
2 (k)
dk

> 0, (4.3)

that is, increasing the partial cover will increase both the immature and mature first
species density.

5 Example
Now let us consider the following example.

Example 5.1 Consider the two-species stage-structured amensalism model with a cover
for the first species:

dx1

dt
= 4x2 – x1 – x1 – (1 – k)x1y,

dx2

dt
= x1 – x2 – x2

2 – (1 – k)x2y,

dy
dt

= y(1 – y).

(5.1)
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Figure 1 Dynamics behavior of system (5.2), the initial conditions (x1(0), x2(0)) = (4, 0.1), (3, 2), (0.1, 2), (0.1, 1),
and (2, 0.1), respectively

Here we choose α = 4,β = δ1 = δ2 = γ = a2 = b2 = d1 = d2 = 1. Hence

αβ = 4 > 2 = δ2(β + δ1).

Then, for the subsystem

dx1

dt
= 4x2 – x1 – x1,

dx2

dt
= x1 – x2 – x2

2,
(5.2)

it follows from Lemma 2.1 that the unique positive equilibrium A(2, 1) of system (5.2) is
globally asymptotically stable, that is, without the influence of the second species, the first
species will be globally asymptotically stable (Fig. 1 supports this assertion).

System (5.1) has two equilibria O(0, 0, 1) and M(x∗
1(k), x∗

2(k), 1), where

x∗
1(k) = –

4(k2 – 5k + 2)
(k – 3)2 , x∗

2(k) =
k2 – 5k + 2

k – 3
. (5.3)

By simple computation we know that, for 0 < k < 0.43845, the boundary equilibrium
O(0, 0, 1) is globally attractive, and for 0.43845 < k < 1, the unique positive equilibrium
M(x∗

1(k), x∗
2(k), 1) is globally attractive.

(1) Now let us choose k = 0.9 in system (5.1). Then M(1.53288, 0.80476, 1) is globally
attractive. Figures 2–4 support this assertion.

(2) Now let us choose k = 0.2 in system (5.1). Then M(0, 0, 1) is globally attractive. Fig-
ures 5–7 support this assertion.
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Figure 2 Dynamics behavior of the first component x1(t) of system (5.1); here we take k = 0.9 and the initial
conditions (x1(0), x2(0), y(0)) = (0.5, 0.5, 0.5), (2, 2, 2), (1, 1, 1), and (3, 3, 3), respectively

Figure 3 Dynamics behavior of the second component x2(t) of system (5.1); here we take k = 0.9 and the
initial conditions (x1(0), x2(0), y(0)) = (0.5, 0.5, 0.5), (2, 2, 2), (1, 1, 1), and (3, 3, 3), respectively

6 Conclusion
During the lase decade, many scholars [13–19] studied the dynamic behavior of the amen-
salism model; however, only recently, scholars [14, 16, 18] studied the influence of the
partial cover to the traditional two-species amensalism model. In this paper, for first time,
we propose a two-species stage-structured amensalism model with a cover for the first
species.
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Figure 4 Dynamics behavior of the third component y(t) of system (5.1); here we take k = 0.9 and the initial
conditions (x1(0), x2(0), y(0)) = (0.5, 0.5, 0.5), (2, 2, 2), (1, 1, 1), and (3, 3, 3), respectively

Figure 5 Dynamics behavior of the first component x1(t) of system (5.1); here we take k = 0.2 and the initial
conditions (x1(0), x2(0), y(0)) = (0.5, 0.5, 0.5), (2, 2, 2), (1, 1, 1), and (3, 3, 3), respectively

Though at first sight, the system seems very simple, note that the third equation of sys-
tem (1.1) is independent of x1 and x2, and thus the Lyapunov method cannot be applied
directly to investigate the stability property of system (1.1). By combining the differential
inequality theory and the Lyapunov function method we are able to investigate the global
stability property of the boundary and positive equilibrium. Theorem 3.2 shows that if the
positive equilibrium exists, then it is globally attractive, and the final density of the first
species is an increasing function of the partial cover.



Lei Advances in Difference Equations  (2018) 2018:272 Page 21 of 23

Figure 6 Dynamics behavior of the second component x2(t) of system (5.1); here we take k = 0.2 and the
initial conditions (x1(0), x2(0), y(0)) = (0.5, 0.5, 0.5), (2, 2, 2), (1, 1, 1), and (3, 3, 3), respectively

Figure 7 Dynamics behavior of the third component y(t) of system (5.1); here we take k = 0.2 and the initial
conditions (x1(0), x2(0), y(0)) = (0.5, 0.5, 0.5), (2, 2, 2), (1, 1, 1), and (3, 3, 3), respectively

We mention here that the method used in this paper can be applied to investigate the
stability property of the other ecosystem. We leave this for the future study.
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