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Abstract
In this article, we mainly investigate some properties of two types of difference
equations

Y(� z) + Y(z) + Y
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)
=

ξ z + o
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( z

�

)
=

ξ z + o

Y(z)
+

v

Y2(z)
.

MSC: 30D35; 39B12

Keywords: Rational functions; Complex difference equations; Value distribution;
Finite order

1 Introduction
Halburd and Korhonen [4] used Nevanlinna theory to single out difference equations in
this form

Y (z + 1) + Y (z – 1) = R(z, Y ), (1.1)

where R(z, Y ) is rational in O and meromorphic in z, has an admissible meromorphic so-
lution of finite order, then either O satisfies a difference Riccati equation

Y (z + 1) =
p(z + 1)Y (z) + q(z)

Y (z) + p(z)
, (1.2)

where p(z), q(z) ∈ S(Y ), where S(Y ) denotes the field of small functions with respect to Y ,
or Eq. (1.1) can be transformed to one of the following equations:

Y (z + 1) + Y (z) + Y (z – 1) =
ς1z + ς2

Y (z)
+ κ1, (1.3)

Y (z + 1) – Y (z) + Y (z – 1) =
ς1z + ς2

Y (z)
+ (–1)zκ1, (1.4)
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Y (z + 1) + Y (z – 1) =
ς1z + ς3

Y (z)
+ ς2, (1.5)

Y (z + 1) + Y (z – 1) =
ς1z + κ1

Y (z)
+

ς2

Y 2(z)
, (1.6)

Y (z + 1) + Y (z – 1) =
(ς1z + κ1)Y (z) + ς2

(–1)–z – Y 2(z)
, (1.7)

Y (z + 1) + Y (z – 1) =
(ς1z + κ1)Y (z) + ς2

1 – Y 2(z)
, (1.8)

Y (z + 1)Y (z) + Y (z)Y (z – 1) = p, (1.9)

Y (z + 1) + Y (z – 1) = pY (z) + q, (1.10)

where ςk ,κk ∈ S(Y ) are arbitrary finite order periodic functions with period k.
Eqs. (1.3), (1.5), and (1.6) are known alternative forms of difference Painlevé I equation,

Eq. (1.8) is a difference Painlevé II, and (1.9) and (1.10) are linear difference equations.
Chen and Shon [2, 3] considered some value distribution problems of finite order mero-
morphic solutions of Eqs. (1.2), (1.5), (1.6), and (1.8). A natural question is: What is the
result if we give q-difference analogues of (1.3) and (1.6)? For this question, we consider
the following equations:

Y (� z) + Y (z) + Y
(

z
�

)
=

ξz + o
Y (z)

+ v, (1.11)

Y (� z) + Y
(

z
�

)
=

ξz + o
Y (z)

+
v

Y 2(z)
. (1.12)

Theorem 1.1 Let Y (z) be a transcendental meromorphic solution with zero order of
Eq. (1.11) and ξ , o, v be three constants such that ξ , o cannot vanish simultaneously. Then

(i) Y (z) has infinitely many poles.
(ii) For any finite value B, if ξ �= 0, then Y (z) – B has infinitely many zeros.

(iii) If ξ = 0 and Y (z) – A has finite zeros, then A is a solution of 3z2 – o – vz = 0.
We assume that the reader is familiar with the basic notions of Nevanlinna theory (see,

e.g., [5, 6]).

Theorem 1.2 Let c ∈C \ {0}, |� | �= 1, and V (z) = X(z)
B(z) be an irreducible rational function,

where X(z) and B(z) are polynomials with deg X(z) = x and deg B(z) = b.
(i) Suppose that x ≥ b and x – b is zero or an even number. If the equation

Y (� z) + Y (z) + Y
(

z
�

)
=

V (z)
Y (z)

+ c (1.13)

has an irreducible rational solution Y (z) = I(z)
J(z) , where i(z) and J(z) are polynomials

with deg i(z) = i and deg J(z) = j, then

i – j =
x – b

2
.

(ii) Suppose that x < b. If Eq. (1.13) has an irreducible rational solution Y (z) = i(z)
J(z) , then

Y (z) satisfies one of the following two cases:
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(1) Y (z) = i(z)
J(z) = c

3 + T(z)
D(z) , where T(z) and D(z) are polynomials with deg T(z) = t

and deg D(z) = d, and b – x = d – t.
(2) i – j = x – b.

Theorem 1.3 Let Y (z) be a transcendental meromorphic solution with zero order of
Eq. (1.12) and ξ , o, v be three constants such that ξ , o cannot vanish simultaneously. Then

(i) Y (z) has infinitely many poles.
(ii) For any finite value B, if ξ �= 0 and v �= 0, then Y (z) – B has infinitely many zeros.

(iii) If ξ = 0 and Y (z) – A has finite zeros, then A is a solution of 2z2 – oz – v = 0.

Theorem 1.4 Let ξ , o, π be constants with ξπ �= 0 and |� | �= 1. Suppose that a rational
function

Y (z) =
F(z)
U(z)

=
μ0zm + μ1zm–1 + · · · + μm

λ0zn + λ1zn–1 + · · · + λn

is a solution of (1.12), where F(z) and U(z) are relatively prime polynomials, μ0 �= 0,
μ1, . . . ,μm, and λ0 �= 0, λ1, . . . ,λn are constants. Then n = m + 1 and μ0 = – π

ξ
λ0.

2 Some lemmas
Lemma 2.1 ([1]) Let Y (z) be a non-constant zero order meromorphic solution of

Y (z)nP(z, Y ) = Q(z, Y ),

where P(z, Y ) and Q(z, Y ) are � -difference polynomials in Y (z). If the degree of Q(z, Y ) as
a polynomial in Y (z) and its � -shifts is at most n, then

m
(
r, P(z, Y )

)
= o

(
T(r, Y )

)

on a set of logarithmic density 1.

Lemma 2.2 ([1]) Let Y (z) be a non-constant zero order meromorphic solution of

H(z, Y ) = 0,

where H(z, O) is a � -difference polynomial in Y (z). If H(z, Y ) �≡ 0 for a slowly moving target
a(z), then

m
(

r,
1

Y – a

)
= o

(
T(r, Y )

)

on a set of logarithmic density 1.

Lemma 2.3 ([7]) Let Y (z) be a zero order meromorphic function, and � ∈C \ {0}. Then

T
(
r, Y (� z)

)
=

(
1 + o(1)

)
T

(
r, Y (z)

)
;

N
(
r, Y (� z)

)
=

(
1 + o(1)

)
N

(
r, Y (z)

)
.
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3 Proof of Theorem 1.1
(i): Suppose that Y (z) is a zero order transcendental meromorphic solution of (1.11). By
(1.11), we have

Y (z)P(z, Y ) = Q(z, Y ), (3.1)

where P(z, Y ) = Y (� z) + Y (z) + Y ( z
�

), Q(z, Y ) = ξz + o + vY (z). Lemma 2.1 implies that

m
(
r, P(z, Y )

)
= o

(
T(r, Y )

)
(3.2)

on a set of logarithmic density 1. By the Valiron–Mohon’ko theorem, we obtain that

T
(

r, Y (� z) + Y (z) + Y
(

z
�

))
= T(r, Y ) + S(r, Y ). (3.3)

By Lemma 2.3, we obtain

N
(

r, Y (� z) + Y (z) + Y
(

z
�

))
≤ N

(
r, Y (� z)

)
+ N(r, Y ) + N

(
r, Y

(
z
�

))

= 3
(
1 + o(1)

)
N(r, Y ). (3.4)

(3.2), (3.3), and (3.4) imply that

T(r, Y ) ≤ 3
(
1 + o(1)

)
N(r, Y ) + S(r, Y ) (3.5)

on a set of logarithmic density 1. Hence, Y (z) has infinitely many poles.
(ii): For any finite value B, and let

Y1(z) = Y (z) – B.

Substituting Y1(z) = Y (z) – B into (3.1), we obtain

(
Y1(z) + B

)(
Y1(� z) + Y1(z) + Y1

(
z
�

)
+ 3B

)
= ξz + o + v

(
Y1(z) + B

)
.

Let

P
(
z, Y1(z)

)
=

(
Y1(z) + B

)(
Y1(� z) + Y1(z) + Y1

(
z
�

)
+ 3B

)
– ξz – o – v

(
Y1(z) + B

)
. (3.6)

If ξ �= 0, by (3.6), we have P(z, 0) = 3B2 – ξz – o – vB �≡ 0. Lemma 2.2 implies that

m
(

r,
1

Y1

)
= o

(
T(r, Y1)

)

on a set of logarithmic density 1. Hence

N
(

r,
1

Y – B

)
= N

(
r,

1
Y1

)
= T(r, Y1)

(
1 + o(1)

)
= T(r, Y )

(
1 + o(1)

)

on a set of logarithmic density 1. Hence, Y (z) has infinitely many finite values.
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(iii): If ξ = 0 and B is not a solution of 3z2 – o – vz = 0, then P(z, 0) = 3B2 – o – vB �≡ 0.
Using a similar method as above, we can obtain that

N
(

r,
1

Y – B

)
= T(r, Y )

(
1 + o(1)

)
,

which contradicts the assumption of Theorem 1.1, hence the conclusion holds.

4 Proof of Theorem 1.2
By (1.13) and Y (z) = I(z)

J(z) , we have

B(z)I(z)I(� z)J(z)J
(

z
�

)
+ B(z)I2(z)J

(
z
�

)
J(� z) + B(z)I(z)I

(
z
�

)
J(� z)J(z)

– cB(z)I(z)J(� z)J
(

z
�

)
J(z) = X(z)J(� z)J

(
z
�

)
J2(z). (4.1)

Obviously, we have

deg

(
B(z)I(z)I(� z)J(z)J

(
z
�

)
+ B(z)I2(z)J

(
z
�

)
J(� z)

+ B(z)I(z)I
(

z
�

)
J(� z)J(z)

)
= b + 2i + 2j; (4.2)

deg

(
cB(z)I(z)J(� z)J

(
z
�

)
J(z)

)
= b + i + 3j; (4.3)

deg

(
X(z)J(� z)J

(
z
�

)
J2(z)

)
= x + 4j. (4.4)

(i): Suppose first that x > b and x – b is an even number. If deg i(z) = i < j = deg J(z), then
(4.1)–(4.4) imply that x + 4j = b + i + 3j, that is, 0 > i – j = x – b > 0. This is impossible.

If i = j, then we use a similar method as above, we can obtain 0 < x – b = i – j = 0, this is
impossible. So, i > j. By (4.1), we have x + 4j = b + 2i + 2j, that is, i – j = x–b

2 .
(ii): Suppose that x < b. If i > j, then (4.1)–(4.4) yield that x + 4j = b + 2i + 2j, that is,

0 > x – b = 2(i – j) > 0, which is a contradiction.
If i = j, then we can assume

Y (z) = ι0 +
T(z)
D(z)

, (4.5)

where ι0 �= 0, T(z) and D(z) are polynomials, and deg T(z) = t < deg D(z) = d. Thus, as z →
∞, (1.13) and (4.5) imply that

3ι0
(
1 + o(1)

)
=

o(1)
ι0(1 + o(1))

+ c, (4.6)

which implies ι0 = c
3 . Hence,

Y (z) =
c
3

+
T(z)
D(z)

. (4.7)
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Substituting (4.7) into (1.13), we get

B(z)
(

c
3

D(z) + T(z)
)(

T(z)D(� z)D
(

z
�

)
+ T(� z)D(z)D

(
z
�

)

+ T
(

z
�

)
D(z)D(� z)

)
= X(z)D2(z)D(� z)D

(
z
�

)
.

Obviously,

deg

[
B(z)

(
c
3

D(z) + T(z)
)(

T(z)D(� z)D
(

z
�

)
+ T(� z)D(z)D

(
z
�

)

+ T
(

z
�

)
D(z)D(� z)

)]
= 3d + b + t;

deg X(z)D2(z)D(� z)D
(

z
�

)
= x + 4d.

Hence, b – x = d – t.
If i < j, by i < j, x < b, (4.1)–(4.4), then we have

i – j = x – b.

5 Proof of Theorem 1.3
(i). Suppose that Y (z) is a zero order transcendental meromorphic solution of (1.12). By
(1.12), we have

Y 2(z)
(

Y (� z) + Y
(

z
�

))
= (ξz + o)Y + v. (5.1)

Lemma 2.1 implies that

m
(

r, Y (� z) + Y
(

z
�

))
= o

(
T(r, Y )

)
(5.2)

on a set of logarithmic density 1. By the Valiron–Mohon’ko theorem, we get that

T
(

r, Y (� z) + Y
(

z
�

))
= T(r, Y ) + S(r, Y ). (5.3)

By Lemma 2.3, we obtain

N
(

r, Y (� z) + Y
(

z
�

))
≤ N

(
r, Y (� z)

)
+ N

(
r, Y

(
z
�

))
= 2

(
1 + o(1)

)
N(r, Y ). (5.4)

(5.2), (5.3), and (5.4) yield that

T(r, Y ) ≤ 2
(
1 + o(1)

)
N(r, Y ) + S(r, Y ) (5.5)

on a set of logarithmic density 1. Hence, Y (z) has infinitely many poles.
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(ii). For any finite value B, let

Y1(z) = Y (z) – B.

Substituting Y1(z) = Y (z) – B into (5.1), we obtain

(
Y1(z) + B

)2
(

Y1(� z) + Y1

(
z
�

)
+ 2B

)
= (ξz + o)

(
Y1(z) + B

)
+ v.

Let

P
(
z, Y1(z)

)
=

(
Y1(z) + B

)2
(

Y (� z) + Y
(

z
�

)
+ 2B

)
– (ξz + o)

(
Y1(z) + B

)
– v. (5.6)

By (5.6), we have P(z, 0) = 2B2 – (ξz + o)B – π .
If B = 0 and π �= 0, then we obtain that P(z, 0) = –v �≡ 0.
If B �= 0, then we have P(z, 0) = 2B2 – (ξz + o)B – v �≡ 0 since ξ �= 0. Using a method similar

to Theorem 1.1, we can obtain that

N
(

r,
1

Y – A

)
= N

(
r,

1
Y1

)
= T(r, Y1)

(
1 + o(1)

)
= T(r, Y )

(
1 + o(1)

)

on a set of logarithmic density 1. Hence, Y (z) has infinitely many finite values.
(iii). If ξ = 0 and A is not a solution of 2z2 – oz – π = 0, then using a method similar to

Theorem 1.1, we also obtain that

N
(

r,
1

Y – A

)
= T(r, Y )

(
1 + o(1)

)
,

which contradicts the assumption of Theorem 1.3, hence the conclusion holds.

6 Proof of Theorem 1.4
Assume that (1.12) has a rational solution Y (z) and has poles t1, t2, . . . , tk . Next, let

cjλj

(z – tj)λj
+ · · · +

cj1
(z – tj)

(j = 1, . . . , k)

be the principal parts of Y at tj, respectively, where cjλj , . . . , cj1 are constants, cjλj �= 0. Hence

Y (z) =
F(z)
U(z)

=
k∑

j=1

[ cjλj

(z – tj)λj
+ · · · +

cj1
(z – tj)

]
+ τ0 + τ1z + · · · + τszs, (6.1)

where τ0, . . . , τs are constants. Assume that τs �= 0 (s ≥ 1). When z → ∞,

Y (z) = τszs(1 + o(1)
)
, Y (� z) = � sτszs(1 + o(1)

)
, (6.2)

Y
(

z
�

)
=

1
� s τszs(1 + o(1)

)
. (6.3)
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By (1.12), we have

Y 2(z)
(

Y (� z) + Y
(

z
�

))
= (ξz + o)Y + v. (6.4)

When z → ∞, (6.2), (6.3), and (6.4) imply that

(
� s +

1
� s

)
τ 3

s z3s(1 + o(1)
)

= (ξz + o)
(
τszs(1 + o(1)

))
+ v,

which is a contradiction since τs �= 0 and s ≥ 1. Assume that τ0 �= 0, as z → ∞,

Y (z) = τ0
(
1 + o(1)

)
, Y (� z) = τ0

(
1 + o(1)

)
, (6.5)

Y
(

z
�

)
= τ0

(
1 + o(1)

)
. (6.6)

By (6.4) together with (6.5) and (6.6), we obtain that

(ξz + o)
(
τ0

(
1 + o(1)

))
= 2τ 3

s – π .

This is impossible since ξ �= 0 and τ0 �= 0. Hence

Y (z) =
F(z)
U(z)

, (6.7)

where deg F(z) = m < deg U(z) = n. Equation (6.7) and (1.12) imply that

F2(z)F(� z)U
(

z
�

)
+ F2(z)F

(
z
�

)
U(� z)

= (ξz + o)F(z)U(z)U(� z)U
(

z
�

)
+ vU2(z)U(� z)U

(
z
�

)
.

Hence we have n = m + 1. By (1.12) and n = m + 1, we obtain

F(� z)
U(� z)

+
F( z

�
)

U( z
�

)
=

(ξz + o)F(z)U(z) + vU2(z)
F2(z)

.

Since as z → ∞, we have

F(� z)
U(� z)

+
F( z

�
)

U( z
�

)
→ 0;

and

(ξz + o)F(z)U(z) + vU2(z)
F2(z)

=
(ξμ0λ0 + vλ2

0)z2n(1 + o(1))
μ2

0z2n–2(1 + o(1))
,

we obtain ξμ0λ0 + πλ2
0 = 0.
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