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Abstract
The aim of the present paper is to develop a new generalized form of the fractional
kinetic equation involving a generalized k-Mittag-Leffler function Eγ ,ρ

k,ζ ,η(·). The
solutions of fractional kinetic equations are discussed in terms of the Mittag-Leffler
function. Further, numerical values of the results and their graphical interpretation is
interpreted to study the behavior of these solutions. The results established here are
quite general in nature and capable of yielding both known and new results.
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1 Introduction and preliminaries
The fractional-order calculus (FOC) constitutes a branch of mathematics dealing with dif-
ferentiation and integration under an arbitrary order of the operation, that is, the order
can be any real or even complex number, not only the integer one [1–9]. Although the FOC
represents more than 300-year-old issue [10, 11], its great consequences in contemporary
theoretical research and real-world applications have been widely discussed relatively re-
cently. The idea of noninteger derivative was mentioned for the first time probably in a
letter from Leibniz to L’Hospital in 1695. Later on, the pioneering works related to FOC
were elaborated by personalities such as Euler, Fourier, Abel, Liouville, or Riemann. The
interested reader can find a more detailed historical background of the FOC, for example,
in [7].

According to [10, 12], the reason why FOC remained practically unexplored for engi-
neering applications and why only pure mathematics was privileged to deal with it for so
long time can be seen in multiple definitions of FOC, missing simple geometrical inter-
pretation, the absence of solution methods for fractional-order differential equations and
seeming adequateness of the integer-order calculus (IOC) for majority of problems. How-
ever, nowadays the situation is going better, and the FOC provides an efficient tool for
many issues related to fractal dimension, “infinite memory”, chaotic behavior, and so on.
Thus, the FOC has already came in useful in engineering areas such as bioengineering,
viscoelasticity, electronics, robotics, control theory, and signal processing [12]. Several
control applications are available, for example, in [13–15].
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A great number of additional results of fractional calculus were presented in the twen-
tieth century, but at this point, we only concentrate on that given by M. Caputo and first
used extensively in [16]. Given a function f with an (n – 1)th absolutely continuous deriva-
tive, Caputo defined the fractional derivative by

Dα
∗ f (x) =

1
�(n – α)

∫ t

0
(t – s)n–α–1

(
d
ds

)n

f (s) ds, (1.1)

today usually named the Caputo fractional derivative. The derivative (1.1) is strongly con-
nected to the Riemann–Liouville fractional derivative (see [17]) and is today frequently
used in applications. This is because, using the Caputo derivative, we can specify the ini-
tial conditions of fractional differential equations in classical form, that is,

y(k)(0) = bk , k = 0, 1, . . . , n – 1, (1.2)

in contrast to differential equations containing the Riemann–Liouville differential oper-
ator (see [17]). Although the operator Dα∗ is denoted today as the Caputo operator, Y.N.
Rabotnov had already introduced this differential operator into the Russian viscoelastic
literature in [18], a year before Caputo’s paper was published.

By the second half of the twentieth century the field of fractional calculus had grown to
such extent that in 1974 the first conference concerned solely with the theory and appli-
cations of fractional calculus was held in New Haven [19]. In the same year the first book
on fractional calculus by Oldham and Spanier [7] was published. A number of additional
books have appeared since then, the most popular by Miller and Ross [8], Samko et al. [20],
and Podlubny [9]. In 1998 the first issue of the mathematical journal Fractional Calculus
& Applied Analysis was printed. This journal is solely concerned with topics on the theory
of fractional calculus and its applications. Finally, in 2004 the large conference Fractional
Differentiation and its Applications was held in Bordeaux, where no less than 104 talks
were given in the field of fractional calculus.

From its birth—a simple question from L’Hospital to Leibniz—to its today’s wide use in
numerous scientific fields fractional calculus has come a long way. Even though it is nearly
as old as classical calculus itself, it flourished mainly over the last decades because of its
good applicability on models describing complex real-life problems (see recent works [21–
25]). Even though the term fractional calculus is a misnomer, we will use it throughout this
text, which will be concerned with theoretical and, more importantly, numerical aspects
of problems arising in this field.

The importance of fractional differential equations in the field of applied science has
gained more attention not only in mathematics but also in dynamical systems, physics,
control systems, and engineering, creating mathematical models of many physical phe-
nomena. Especially, the kinetic equations describe the continuity of motion of substance.
The extension and generalization of fractional kinetic equations involving fractional op-
erators can be found in [26–32].

In view of the effectiveness and great importance of the kinetic equation in certain astro-
physical problems, the authors develop a further generalized form of the fractional kinetic
equation.

The fractional differential equation between the rate of change of the reaction, the de-
struction rate, and the production rate was established by Haubold and Mathai [26] and
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is given as follows:

dN
dτ

= –d(Nτ ) + s(Nτ ), (1.3)

where N = N (τ ) is the rate of reaction, d = d(N ) is the rate of destruction, s = s(N ) is the
rate of production, and Nτ is the function defined by Nτ (τ ∗) = N (τ – τ ∗), τ ∗ > 0.

A particular case of (1.3) for spatial fluctuations and inhomogeneities in N (τ ) where the
quantities are neglected is the equation

dN
dτ

= –εiNi(τ ) (1.4)

with the initial condition Ni(τ = 0) = N0 representing the number density of the species i
at time τ = 0 and εi > 0. If we remove the index i and integrate the standard kinetic equation
(1.4), then we have

N (τ ) – N0 = –ε0D–1
τ N (τ ), (1.5)

where 0D–1
τ is the particular case of the Riemann–Liouville integral operator 0D–υ

τ defined
as

0D–υ
τ f (τ ) =

1
�(υ)

∫ τ

0
(τ – s)υ–1f (s) ds

(
τ > 0,�(υ) > 0

)
. (1.6)

A fractional generalization of the standard kinetic equation (1.5) is given by Haubold and
Mathai [26] as follows:

N (τ ) – N0 = –ευ
0D–1

τ N (τ ). (1.7)

They obtained the solution of (1.7) as

N (τ ) = N0

∞∑
k=0

(–1)k

�(υk + 1)
(ετ )υk . (1.8)

Saxena and Kalla [28] introduced the following fractional kinetic equation:

N (τ ) – N0f (τ ) = –ευ
0D–υ

τ N (τ )
(�(v) > 0

)
, (1.9)

where N (τ ) denotes the number density of a given species at time τ , N0 = N (0) is the
number density of that species at time τ = 0, ε is a constant, and f ∈L(0,∞). Applying the
Laplace transform to (1.9) (see [27]), we have

L
{
N (τ ); s

}
= N0

F(s)
1 + ευs–υ

= N0

( ∞∑
n=0

(
–ευ

)ns–υn

)
F(s)

(
n ∈N0,

∣∣∣∣εs
∣∣∣∣ < 1

)
, (1.10)

where the Laplace transform [33] is given by

F(s) = L
{
N (τ ); s

}
=

∫ ∞

0
e–sτ f (τ ) dτ

(�(s) > 0
)
. (1.11)
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We further need some additional definitions and functions. Recently, Diaz and Pariguan
[34] have introduced the k-Pochhammer symbol defined as follows:

(ξ )n,k = ξ (ξ + k)(ξ + 2k) · · · (ξ + (n – 1)k
)
, (1.12)

(ξ )(n+r)ρ,k = (ξ )rρ,k(ξ + ρrk)nρ,k , (1.13)

where ξ ∈C, k ∈R, and n ∈ N.

Proposition 1 Let ξ ∈C and k, s ∈R. Then

�s(ξ ) =
(

s
k

) ξ
s –1

�k

(
kξ

s

)
(1.14)

and, in particular,

�k(ξ ) = k
ξ
k –1�

(
ξ

k

)
. (1.15)

Proposition 2 Let ξ ∈C, k, s ∈R and ξ ∈C. Then

(ξ )nρ,s =
(

s
k

)nρ(
kξ

s

)
nρ

(1.16)

and, in particular,

(ξ )nρ,k = (k)nρ

(
ξ

k

)
nρ

. (1.17)

For more detail on the k-Pochhammer symbol, the k-special function, and the fractional
Fourier transform, we refer the reader to the papers by Romero et al. [35, 36].

Let k ∈R, ζ ,η, ξ ∈C,�(ζ ) > 0,�(η) > 0,�(ξ ) > 0, and ρ ∈ (0, 1)∪N. Then the generalized
k-Mittag-Leffler function, denoted by Eξ ,ρ

k,ζ ,η(z), is defined as

Eξ ,ρ
k,ζ ,η(z) =

∞∑
n=0

(ξ )nρ,kzn

�k(nζ + η)n!
, (1.18)

where (ξ )nρ,k denotes the k-Pochhammer symbol given by equation (1.17), and �k(x) is
the k-gamma function given by (1.15) (also see [37]).

The generalized Pochhammer symbol is defined as (see [38, p. 22])

(ξ )nρ =
�(ξ + nρ)

�(ξ )
= ρρn

ρ∏
r=1

(
ξ + r + 1

ρ

)
n

if ρ ∈N. (1.19)

We consider particular cases of Eξ ,ρ
k,ζ ,η(z):

(i) For ρ = 1, equation (1.18) reduces to the k-Mittag-Leffler function (see [39]) defined
as

Eξ ,1
k,ζ ,η(z) =

∞∑
n=0

(ξ )n,kzn

�k(nζ + η)n!
= Eξ

k,ζ ,η(z). (1.20)
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(ii) For k = 1, equation (1.18) reduces to the Mittag-Leffler function defined in [40]:

Eξ ,ρ
1,ζ ,η(z) =

∞∑
n=0

(ξ )nρzn

�(nζ + η)n!
= Eξ ,ρ

ζ ,η (z). (1.21)

(iii) For ρ = 1 and k = 1, (1.18) yields the Mittag-Leffler function defined by Dorrego and
Cerutti [39]:

Eξ ,1
1,ζ ,η(z) =

∞∑
n=0

(ξ )nzn

�(nζ + η)n!
= Eξ

ζ ,η(z). (1.22)

(iv) For ρ = 1, k = 1, and ξ = 1, (1.18) yields the Mittag-Leffler function (see [41]) defined
as

E1,1
1,ζ ,η(z) =

∞∑
n=0

zn

�(nζ + η)n!
= Eζ ,η(z). (1.23)

(v) For ρ = 1, k = 1, ξ = 1, and η = 1, (1.18) yields the Mittag-Leffler function (see [42])
defined as

E1,1
1,ζ ,1(z) =

∞∑
n=0

zn

�(nζ + 1)n!
= Eζ (z). (1.24)

Saxena et al. [43] introduce a detailed account of the Mittag-Leffler function and its
applications in their survey paper.

During the first half of the twentieth century, the Mittag-Leffler (M-L) function re-
mained almost unknown to the majority of scientists. They unjustly ignored it in many
treatises on special functions, including the most common ones (as, e.g., Abramowitz and
Stegun [44]). Successful applications of the Mittag-Leffler function and its generalizations,
their direct involvement in problems of physics, biology, chemistry, engineering, and other
applied sciences made it in the recent decades better known among the scientists. A con-
siderable amount of literature is devoted to the investigation of the analytical properties,
generalization, and the multiindex version of this function (for more detail, see [45–47]).

The objective of this paper is to derive the solution of the fractional kinetic equation
involving the generalized k-Mittag-Leffler function. The results obtained in terms of the
Mittag-Leffler function are rather general in nature, and we can easily construct various
known and new fractional kinetic equations.

2 Solution of generalized fractional kinetic equations
In this section, we investigated the solutions of the generalized fractional kinetic equations
by considering the generalized k-Mittag-Leffler function.

Remark 1 The solutions of the fractional kinetic equations in this section are obtained in
terms of the generalized Mittag-Leffler function Eζ ,η(x) given by [42]

Eζ ,η(x) =
∞∑

n=0

(x)n

�(ζn + η)
. (2.1)
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Theorem 1 If δ > 0,υ > 0, k ∈R, ζ ,η, ξ ∈C;�(ζ ) > 0,�(η) > 0,�(ξ ) > 0, and ρ ∈ (0, 1)∪N,
then the solution of the equation

N (τ ) – N0Eξ ,ρ
k,ζ ,η(τ ) = –δυ

0D–υ
τ N (τ ) (2.2)

is given by

N (τ ) = N0

∞∑
n=0

(ξ )nτ ,k

�k(nζ + η)
τ nEυ,n+1

(
–δυτυ

)
. (2.3)

Proof The Laplace transform of the Riemann–Liouville fractional integral operator is
given by [33, 48]

L
{

0D–υ
τ f (τ ); s

}
= s–υF(s), (2.4)

where F(s) is defined in (1.11). Now, applying the Laplace transform to both sides of (2.2)
gives

L
{
N (τ ); s

}
= N0L

{
Eξ ,ρ

k,ζ ,η(τ ); s
}

– δυL
{

0D–υ
τ N (τ ); s

}
, (2.5)

N (s) = N0

(∫ ∞

0
e–sτ

∞∑
n=0

(ξ )nτ ,k

�k(nζ + η)
τ n

n!
dτ

)
– δυs–υN (s), (2.6)

N (s) + δυs–υN (s) = N0

∞∑
n=0

(ξ )nτ ,k

�k(nζ + η)
1
n!

∫ ∞

0
e–sτ τ n dτ (2.7)

= N0

∞∑
n=0

(ξ )nτ ,k

�k(nζ + η)
1
n!

�(n + 1)
sn+1 , (2.8)

N (s) = N0

∞∑
n=0

(ξ )nτ ,k

�k(nζ + η)

{
s–(n+1)

∞∑
r=0

[
–
(

s
δ

)–υ]r
}

. (2.9)

Taking the Laplace inverse of (2.9) and using

L–1{s–υ ; τ
}

=
τυ–1

�(υ)
(�(υ) > 0

)
, (2.10)

we have

L–1{N (s)
}

= N0

∞∑
n=0

(ξ )nτ ,k

�k(nζ + η)
L–1

{ ∞∑
r=0

(–1)rδυrs–(n+1+υr)

}
, (2.11)

N (τ ) = N0

∞∑
n=0

(ξ )nτ ,k

�k(nζ + η)

{ ∞∑
r=0

(–1)rδυr τ (n+υr)

�(n + υr + 1)

}
(2.12)

= N0

∞∑
n=0

(ξ )nτ ,k

�k(nζ + η)
τ n

{ ∞∑
r=0

(–1)r δυrτυr

�(υr + n + 1)

}
, (2.13)

N (τ ) = N0

∞∑
n=0

(ξ )nτ ,k

�k(nζ + η)
τ nEυ,n+1

(
–δυτυ

)
. (2.14)

�
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Theorem 2 If δ > 0,υ > 0, k ∈R, ζ ,η, ξ ∈C;�(ζ ) > 0,�(η) > 0,�(ξ ) > 0, and ρ ∈ (0, 1)∪N,
then the solution of the equation

N (τ ) = N0Eξ ,ρ
k,ζ ,η

(
δυτυ

)
– δυ

0D–υ
τ N (τ ) (2.15)

is given by

N (τ ) = N0

∞∑
n=0

(ξ )nτ ,k

�k(nζ + η)
(
δυτυ

)nEυ,υn+1
(
–δυτυ

)
. (2.16)

Theorem 3 If σ > 0, δ > 0,υ > 0, k ∈ R, ζ ,η, ξ ∈ C;�(ζ ) > 0,�(η) > 0,�(ξ ) > 0, and ρ ∈
(0, 1) ∪N, then the solution of the equation

N (τ ) = N0Eξ ,ρ
k,ζ ,η

(
δυτυ

)
– συ

0D–υ
τ N (τ ) (2.17)

is given by

N (τ ) = N0

∞∑
n=0

(ξ )nτ ,k

�k(nζ + η)
(
δυτυ

)nEυ,υn+1
(
–συτυ

)
. (2.18)

Proof The proof of (2.16) and (2.18) is similar to that of (2.3). �

2.1 Numerical results
In this section, we establish a database for numerical solutions of the kinetic equations
(2.3), (2.16), and (2.18) for particular values of the parameters. Here we denote the so-
lutions of equations (2.3) as N (τ ) = N (N0, ξ ,ρ, k, ζ ,η, δ,υ, τ ) with N0 = 0.05, ξ = 2,ρ =
1, k = 2, ζ = 6,η = 7, δ = 3,υ = 1; for equation (2.16) as N (τ ) = N (N0, ξ ,ρ, k, ζ ,η, δ,υ, τ )
with N0 = 0.05, ξ = 2,ρ = 1, k = 2, ζ = 6,η = 7, δ = 3,υ = 5; and for equation (2.18) as
N (τ ) = N (N0, ξ ,ρ, k, ζ ,η, δ,σ ,υ, τ ) with N0 = 0.05, ξ = 2,ρ = 1, k = 2, ζ = 6,η = 7, δ =
3,σ = 3,υ = 7. We obtained the database (see Table 1) by using these values.

In our investigation, we find that N (τ ) > 0 and the behavior of the solutions for different
parameters and time intervals can be studied and observed very easily. From the database
we come to the conclusion that numerical solutions of equations (2.3), (2.16), and (2.18)
are approximately the same.

Table 1 Numerical values for equations (2.3), (2.16), and (2.18)

τ υ Solution of Eq. (2.3) Solution of Eq. (2.16) Solution of Eq. (2.18)

0 0 NaN NaN NaN
0.2 0.2 0.0239 0.0239 0.0248
0.4 0.4 0.0132 0.0132 0.0143
0.6 0.6 0.0093 0.0093 0.0106
0.8 0.8 0.0071 0.0071 0.0086
1 1 0.0055 0.0056 0.0073
1.2 1.2 0.0045 0.0045 0.0062
1.4 1.4 0.0039 0.0039 0.0052
1.6 1.6 0.0040 0.0040 0.0044
1.8 1.8 0.0051 0.0052 0.0034
2 2 0.0078 0.0079 0.0025
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3 Special cases
If we choose ρ = 1, then (2.3), (2.16), and (2.18) reduce to the following:

Corollary 1 If δ > 0,υ > 0, k ∈ R, ζ ,η, ξ ∈ C,�(ζ ) > 0,�(η) > 0, and �(ξ ) > 0, then the
solution of the equation

N (τ ) – N0Eξ

k,ζ ,η(τ ) = –δυ
0D–υ

τ N (τ ) (3.1)

is given by

N (τ ) = N0

∞∑
n=0

(ξ )n,k

�k(nζ + η)
τ nEυ,n+1

(
–δυτυ

)
. (3.2)

Corollary 2 If δ > 0,υ > 0, k ∈ R, ζ ,η, ξ ∈ C,�(ζ ) > 0,�(η) > 0, and �(ξ ) > 0, then the
solution of the equation

N (τ ) = N0Eξ

k,ζ ,η
(
δυτυ

)
– δυ

0D–υ
τ N (τ ) (3.3)

is given by

N (τ ) = N0

∞∑
n=0

(ξ )n,k

�k(nζ + η)
(
δυτυ

)nEυ,υn+1
(
–δυτυ

)
. (3.4)

Corollary 3 If σ > 0, δ > 0,υ > 0, k ∈ R, ζ ,η, ξ ∈ C,�(ζ ) > 0,�(η) > 0, and �(ξ ) > 0, then
the solution of the equation

N (τ ) = N0Eξ

k,ζ ,η
(
δυτυ

)
– συ

0D–υ
τ N (τ ) (3.5)

is given by

N (τ ) = N0

∞∑
n=0

(ξ )n,k

�k(nζ + η)
(
δυτυ

)nEυ,υn+1
(
–συτυ

)
. (3.6)

If we choose k = 1, then (2.3), (2.16), and (2.18) reduce to the following:

Corollary 4 If δ > 0,υ > 0, ζ ,η, ξ ∈ C,�(ζ ) > 0,�(η) > 0,�(ξ ) > 0, and ρ ∈ (0, 1) ∪N, then
the solution of the equation

N (τ ) – N0Eξ ,ρ
ζ ,η (τ ) = –δυ

0D–υ
τ N (τ ) (3.7)

is given by

N (τ ) = N0

∞∑
n=0

(ξ )nq,k

�k(nζ + η)
τ nEυ,n+1

(
–δυτυ

)
. (3.8)
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Corollary 5 If δ > 0,υ > 0, ζ ,η, ξ ∈ C,�(ζ ) > 0,�(η) > 0,�(ξ ) > 0, and ρ ∈ (0, 1) ∪N, then
the solution of the equation

N (τ ) – N0Eξ ,ρ
ζ ,η

(
δυτυ

)
= –δυ

0D–υ
τ N (τ ) (3.9)

is given by

N (τ ) = N0

∞∑
n=0

(ξ )nq,k

�k(nζ + η)
(
δυτυ

)nEυ,n+1
(
–δυτυ

)
. (3.10)

Corollary 6 If σ > 0, δ > 0,υ > 0, ζ ,η, ξ ∈C,�(ζ ) > 0,�(η) > 0,�(ξ ) > 0, and ρ ∈ (0, 1)∪N,
then the solution of the equation

N (τ ) – N0Eξ ,ρ
ζ ,η

(
δυτυ

)
= –συ

0D–υ
τ N (τ ) (3.11)

is given by

N (τ ) = N0

∞∑
n=0

(ξ )nq,k

�k(nζ + η)
(
δυτυ

)nEυ,n+1
(
–συτυ

)
. (3.12)

If we choose ρ = 1 and k = 1, then (2.3), (2.16), and (2.18) reduce to the following:

Corollary 7 If δ > 0,υ > 0, ζ ,η, ξ ∈C,�(ζ ) > 0,�(η) > 0, and �(ξ ) > 0, then the solution of
the equation

N (τ ) – N0Eξ
ζ ,η(τ ) = –δυ

0D–υ
τ N (τ ) (3.13)

is given by

N (τ ) = N0

∞∑
n=0

(ξ )n

�(nζ + η)
τ nEυ,n+1

(
–δυτυ

)
. (3.14)

Corollary 8 If δ > 0,υ > 0, ζ ,η, ξ ∈C,�(ζ ) > 0,�(η) > 0, and �(ξ ) > 0, then the solution of
the equation

N (τ ) = N0Eξ
ζ ,η

(
δυτυ

)
– δυ

0D–υ
τ N (τ ) (3.15)

is given by

N (τ ) = N0

∞∑
n=0

(ξ )n

�(nζ + η)
(
δυτυ

)nEυ,υn+1
(
–δυτυ

)
. (3.16)

Corollary 9 If σ > 0, δ > 0,υ > 0, ζ ,η, ξ ∈ C,�(ζ ) > 0,�(η) > 0, and �(ξ ) > 0, then the
solution of the equation

N (τ ) = N0Eξ
ζ ,η

(
δυτυ

)
– συ

0D–υ
τ N (τ ) (3.17)
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is given by

N (τ ) = N0

∞∑
n=0

(ξ )n

�(nζ + η)
(
δυτυ

)nEυ,υn+1
(
–συτυ

)
. (3.18)

If we choose ρ = 1, k = 1, and ξ = 1, then (2.3), (2.16), and (2.18) reduce to the following:

Corollary 10 If δ > 0,υ > 0, ζ ,η ∈C,�(ζ ) > 0,�(η) > 0, then the solution of the equation

N (τ ) – N0Eζ ,η(τ ) = –δυ
0D–υ

τ N (τ ) (3.19)

is given by

N (τ ) = N0

∞∑
n=0

τ n

�(nζ + η)
Eυ,n+1

(
–δυτυ

)
. (3.20)

Corollary 11 If δ > 0,υ > 0, ζ ,η ∈C,�(ζ ) > 0,�(η) > 0, then the solution of the equation

N (τ ) = N0Eζ ,η
(
δυτυ

)
– δυ

0D–υ
τ N (τ ) (3.21)

is given by

N (τ ) = N0

∞∑
n=0

(δυτυ )n

�(nζ + η)
Eυ,υn+1

(
–δυτυ

)
. (3.22)

Corollary 12 If σ > 0, δ > 0,υ > 0, ζ ,η ∈ C,�(ζ ) > 0,�(η) > 0, then the solution of the equa-
tion

N (τ ) = N0Eζ ,η
(
δυτυ

)
– συ

0D–υ
τ N (τ ) (3.23)

is given by

N (τ ) = N0

∞∑
n=0

(δυτυ )n

�(nζ + η)
Eυ,υn+1

(
–συτυ

)
. (3.24)

If we choose ρ = 1, k = 1, ξ = 1, and η = 1, then (2.3), (2.16), and (2.18) reduce to the
following:

Corollary 13 If δ > 0,υ > 0, ζ ∈C, �(ζ ) > 0, then the solution of the equation

N (τ ) – N0Eζ (τ ) = –δυ
0D–υ

τ N (τ ) (3.25)

is given by

N (τ ) = N0

∞∑
n=0

τ n

�(nζ + 1)
Eυ,n+1

(
–δυτυ

)
. (3.26)
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Corollary 14 If δ > 0,υ > 0, ζ ∈C,�(ζ ) > 0, then the solution of the equation

N (τ ) = N0Eζ

(
δυτυ

)
– δυ

0D–υ
τ N (τ ) (3.27)

is given by

N (τ ) = N0

∞∑
n=0

(δυτυ)n

�(nζ + 1)
Eυ,υn+1

(
–δυτυ

)
. (3.28)

Corollary 15 If σ > 0, δ > 0,υ > 0, ζ ∈C;�(ζ ) > 0, then the solution of the equation

N (τ ) = N0Eζ

(
δυτυ

)
– συ

0D–υ
τ N (τ ) (3.29)

is given by

N (τ ) = N0

∞∑
n=0

(δυτυ)n

�(nζ + 1)
Eυ,υn+1

(
–συτυ

)
. (3.30)

If we choose ρ = 1, k = 1, ξ = 1, ζ = 0, and η = 1, then (2.3), (2.16), and (2.18) reduce to
the following:

Corollary 16 If δ > 0,υ > 0, then the solution of the equation

N (τ ) – N0eτ = –δυ
0D–υ

τ N (τ ) (3.31)

is given by

N (τ ) = N0eτ Eυ,n+1
(
–δυτυ

)
. (3.32)

Corollary 17 If δ > 0,υ > 0, then the solution of the equation

N (τ ) = N0e(δυτυ ) – δυ
0D–υ

τ N (τ ) (3.33)

is given by

N (τ ) = N0e(δυτυ )n
Eυ,υn+1

(
–δυτυ

)
. (3.34)

Corollary 18 If σ > 0, δ > 0,υ > 0, then the solution of the equation

N (τ ) = N0e(δυτυ ) – συ
0D–υ

τ N (τ ) (3.35)

is given by

N (τ ) = N0e(δυτυ )n
Eυ,υn+1

(
–συτυ

)
. (3.36)
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