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1 Introduction
During the past decades, continuous and discrete integral inequalities have attracted the
attention of many researchers (see [1–59] and the references therein). Particularly, there
have been plenty of references focused on the Lyapunov-type inequality and many of its
generalizations due to its broad applications in the study of various properties of solu-
tions of differential and difference equations such as oscillation theory, disconjugacy, and
eigenvalue problems (see [1, 2, 5–7, 9, 13, 15, 21, 24, 27–29, 37, 39, 45, 48, 57, 59] and the
references therein).

Compared with a large number of references devoted to continuous Lyapunov-type in-
equalities, there is not much done for discrete Lyapunov-type inequalities (see [6, 13, 21,
29, 39, 59] and the references therein). For example, Zhang and Tang [29] considered the
following even order difference equation:

�2ku(n) + (–1)k–1q(n)u(n + 1) = 0, (1)

where � is the usual forward difference operator defined by �u(n) = u(n + 1) – u(n), k ∈N,
n ∈ Z and q(n) is a real-valued function defined on Z. Under the following boundary con-
ditions

�2iu(a) = �2iu(b) = 0, i = 0, 1, . . . , k – 1; u(n) �≡ 0, n ∈ Z[a, b], (2)

where a, b ∈ N, Z[a, b] = {a, a + 1, . . . , b – 1, b}, they obtained the following result:
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Assume that k ∈ N and q(n) is a real-valued function on Z. If (1) has a solution u(n)
satisfying the boundary conditions (2), then

b–1∑

n=a

[∣∣q(n)
∣∣(n – a + 1)(b – n – 1)

] ≥ 23(k–1)

(b – a)2k–3 . (3)

Recently, Liu and Tang [21] studied the following m-order difference equation:

∣∣�mu(n)
∣∣p–2�mu(n) + r(n)

∣∣u(n)
∣∣p–2u(n) = 0, (4)

where m ∈ N, n ∈ Z and r(n) is a real-valued function defined on Z, p > 1 is a constant,
and u(n) satisfies the following anti-periodic boundary conditions:

�iu(a) + �iu(b) = 0, i = 0, 1, . . . , m – 1; u(n) �≡ 0, n ∈ Z[a, b], (5)

and they obtained the following result:
If (4) has a nonzero solution u(n) satisfying the anti-periodic boundary conditions (5),

then

b–1∑

n=a

∣∣r(n)
∣∣q ≥ 2mp

(b – a)mp–1 , (6)

where q is a conjugate exponent of p.
In the present paper, we shall establish a new discrete Lyapunov-type inequality for the

following m-order difference equation with mixed nonlinearities:

∣∣�mu(n)
∣∣p–2�mu(n) +

m–1∑

i=0

ri(n)
∣∣�iu(n)

∣∣p–2�iu(n) = 0, (7)

with the anti-periodic boundary conditions (5), where m ∈ N, n ∈ Z, p > 1 is a constant
and ri(n) (i = 0, 1, . . . , m – 1) are real-valued functions defined on Z. Further, we will also
prove a new Lyapunov-type inequality for the 2m-order difference equation

∣∣�2mu(n)
∣∣p–2�2mu(n) + (–1)m–1r(n)

∣∣u(n + 1)
∣∣q–2u(n + 1) = 0, (8)

with the following boundary conditions:

�2iu(a) = �2iu(b) = 0, i = 0, 1, . . . , m – 1; u(n) �≡ 0, n ∈ Z[a, b], (9)

where m ∈ N, p ≥ q > 2 are constants, n ∈ Z and r(n) is a real-valued function defined
on Z. Our works extend the results in [21] and [29].

2 Main results
Lemma 2.1 ([1]) If A is positive and B, z are nonnegative, then

Az2τ – Bzσ + �στ A–σ /(2–σ )B2τ /(2–σ ) ≥ 0 (10)
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for any σ ∈ (0, 2τ ), where

�στ = (2τ – σ )σσ /(2τ–σ )τ–2τ /(2τ–σ )2–2τ /(2τ–σ ) > 0

with equality holding if and only if B = z = 0.

Lemma 2.2 ([29]) Assume that u(n) is a real-valued function on Z[a, b], u(a) = u(b) = 0.
Then

∣∣u(n)
∣∣ ≤ (n – a)(b – n)

b – a

b–1∑

s=a

∣∣�2u(s)
∣∣, ∀n ∈ Z(a, b – 1), (11)

b–1∑

n=a

∣∣u(n)
∣∣ ≤ 1

2

b–1∑

n=a

[
(n – a + 1)(b – n – 1)

∣∣�2u(n)
∣∣] ≤ (b – a)2

8

b–1∑

n=a

∣∣�2u(n)
∣∣. (12)

We now state the main theorem of this paper.

Theorem 2.1 If u(n) is a nonzero solution of Eq. (7) satisfying the anti-periodic boundary
conditions (5), then

m–1∑

i=0

(b – a)(m–i–1/p)(p–1)

2(m–i)(p–1)

( b–1∑

n=a

∣∣ri(n)
∣∣q

)1/q

≥ 1, (13)

where q is the Hölder conjugate exponent of p, i.e., 1/p + 1/q = 1.

Proof Since the nonzero solution u(n) of Eq. (7) satisfies the anti-periodic boundary con-
ditions (5), then u(a) + u(b) = 0. For n ∈ Z[a, b], we have

u(n) = u(n) –
1
2
[
u(a) + u(b)

]
=

1
2

n–1∑

k=a

[
u(k + 1) – u(k)

]
–

1
2

b–1∑

k=n

[
u(k + 1) – u(k)

]

=
1
2

n–1∑

k=a

�u(k) –
1
2

b–1∑

k=n

�u(k). (14)

Then

∣∣u(n)
∣∣ ≤ 1

2

b–1∑

k=a

∣∣�u(k)
∣∣. (15)

Applying discrete Hölder’s inequality

b–1∑

k=a

∣∣f (k)g(k)
∣∣ ≤

( b–1∑

k=a

∣∣f (k)
∣∣α

)1/α( b–1∑

k=a

∣∣g(k)
∣∣β

)1/β

(16)

to (15) with f (k) = 1, g(k) = |�u(k)|, α = q, and β = p, we obtain that

∣∣u(n)
∣∣ ≤ 1

2

b–1∑

k=a

∣∣�u(k)
∣∣ ≤ 1

2
(b – a)1/q

( b–1∑

k=a

∣∣�u(k)
∣∣p

)1/p

. (17)
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Similarly, we get

∣∣�iu(n)
∣∣ ≤ 1

2

b–1∑

k=a

∣∣�i+1u(k)
∣∣

≤ 1
2

(b – a)1/q

( b–1∑

k=a

∣∣�i+1u(k)
∣∣p

)1/p

, i = 1, 2, . . . , m – 1. (18)

Then

∣∣�iu(n)
∣∣p ≤

(
1
2

)p

(b – a)p/q
b–1∑

k=a

∣∣�i+1u(k)
∣∣p, i = 1, 2, . . . , m – 1. (19)

Summing (19) from a to b – 1, we have

b–1∑

n=a

∣∣�iu(n)
∣∣p ≤ (b – a)

(
1
2

)p

(b – a)p/q
b–1∑

k=a

∣∣�i+1u(k)
∣∣p, i = 1, 2, . . . , m – 1, (20)

i.e.,

( b–1∑

n=a

∣∣�iu(n)
∣∣p

)1/p

≤ b – a
2

( b–1∑

k=a

∣∣�i+1u(k)
∣∣p

)1/p

, i = 1, 2, . . . , m – 1. (21)

From (21), we obtain

( b–1∑

n=a

∣∣�iu(n)
∣∣p

)1/p

≤ b – a
2

( b–1∑

k=a

∣∣�i+1u(k)
∣∣p

)1/p

≤
(

b – a
2

)2
( b–1∑

k=a

∣∣�i+2u(k)
∣∣p

)1/p

≤ · · ·

≤
(

b – a
2

)m–i
( b–1∑

k=a

∣∣�mu(k)
∣∣p

)1/p

, i = 1, 2, . . . , m – 1. (22)

Then, from (17) and (22) for i = 1, we obtain

∣∣u(n)
∣∣ ≤ 1

2
(b – a)1/q

(
b – a

2

)m–1
( b–1∑

k=a

∣∣�mu(k)
∣∣p

)1/p

, (23)

and by (18) and (22), we get

∣∣�iu(n)
∣∣ ≤ 1

2
(b – a)1/q

(
b – a

2

)m–i–1
( b–1∑

k=a

∣∣�mu(k)
∣∣p

)1/p

, i = 1, 2, . . . , m – 1. (24)
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Multiplying (7) by �mu(n), we have

∣∣�mu(n)
∣∣p +

m–1∑

i=0

ri(n)
∣∣�iu(n)

∣∣p–2�iu(n)�mu(n) = 0. (25)

Then we get

∣∣�mu(n)
∣∣p = –

m–1∑

i=0

ri(n)
∣∣�iu(n)

∣∣p–2�iu(n)�mu(n)

≤
m–1∑

i=0

∣∣ri(n)
∣∣∣∣�iu(n)

∣∣p–2∣∣�iu(n)
∣∣∣∣�mu(n)

∣∣

=
m–1∑

i=0

∣∣ri(n)
∣∣∣∣�iu(n)

∣∣p–1∣∣�mu(n)
∣∣. (26)

Summing (26) from a to b – 1, we have

b–1∑

n=a

∣∣�mu(n)
∣∣p ≤

m–1∑

i=0

b–1∑

n=a

∣∣ri(n)
∣∣∣∣�iu(n)

∣∣p–1∣∣�mu(n)
∣∣

=
b–1∑

n=a

∣∣r0(n)
∣∣∣∣u(n)

∣∣p–1∣∣�mu(n)
∣∣

+
m–1∑

i=1

b–1∑

n=a

∣∣ri(n)
∣∣∣∣�iu(n)

∣∣p–1∣∣�mu(n)
∣∣. (27)

For the first summation on the right-hand side of (27), from (23) and Hölder’s inequality
(16), we obtain that

b–1∑

n=a

∣∣r0(n)
∣∣∣∣u(n)

∣∣p–1∣∣�mu(n)
∣∣

≤
(

1
2

)p–1

(b – a)(p–1)/q
(

b – a
2

)(m–1)(p–1)

·
( b–1∑

n=a

∣∣�mu(n)
∣∣p

)(p–1)/p b–1∑

n=a

∣∣r0(n)
∣∣∣∣�mu(n)

∣∣

=
(b – a)(m–1/p)(p–1)

2m(p–1)

( b–1∑

n=a

∣∣�mu(n)
∣∣p

)(p–1)/p b–1∑

n=a

∣∣r0(n)
∣∣∣∣�mu(n)

∣∣

≤ (b – a)(m–1/p)(p–1)

2m(p–1)

( b–1∑

n=a

∣∣�mu(n)
∣∣p

)(p–1)/p

·
( b–1∑

n=a

∣∣r0(n)
∣∣q

)1/q( b–1∑

n=a

∣∣�mu(n)
∣∣p

)1/p

=
(b – a)(m–1/p)(p–1)

2m(p–1)

( b–1∑

n=a

∣∣�mu(n)
∣∣p

)( b–1∑

n=a

∣∣r0(n)
∣∣q

)1/q

. (28)
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On the other hand, for the second summation on the right-hand side of (27), from (24)
and Hölder’s inequality (16), we have that

b–1∑

n=a

∣∣ri(n)
∣∣∣∣�iu(n)

∣∣p–1∣∣�mu(n)
∣∣

≤
(

1
2

)p–1

(b – a)(p–1)/q
(

b – a
2

)(m–i–1)(p–1)

·
( b–1∑

n=a

∣∣�mu(n)
∣∣p

)(p–1)/p b–1∑

n=a

∣∣ri(n)
∣∣∣∣�mu(n)

∣∣

=
(b – a)(m–i–1/p)(p–1)

2(m–i)(p–1)

( b–1∑

n=a

∣∣�mu(n)
∣∣p

)(p–1)/p b–1∑

n=a

∣∣ri(n)
∣∣∣∣�mu(n)

∣∣

≤ (b – a)(m–i–1/p)(p–1)

2(m–i)(p–1)

( b–1∑

n=a

∣∣�mu(n)
∣∣p

)(p–1)/p

·
( b–1∑

n=a

∣∣ri(n)
∣∣q

)1/q( b–1∑

n=a

∣∣�mu(n)
∣∣p

)1/p

=
(b – a)(m–i–1/p)(p–1)

2(m–i)(p–1)

( b–1∑

n=a

∣∣�mu(n)
∣∣p

)( b–1∑

n=a

∣∣ri(n)
∣∣q

)1/q

, i = 1, 2, . . . , m – 1, (29)

and then

m–1∑

i=1

b–1∑

n=a

∣∣ri(n)
∣∣∣∣�iu(n)

∣∣p–1∣∣�mu(n)
∣∣

≤
m–1∑

i=1

(b – a)(m–i–1/p)(p–1)

2(m–i)(p–1)

( b–1∑

n=a

∣∣�mu(n)
∣∣p

)( b–1∑

n=a

∣∣ri(n)
∣∣q

)1/q

=

( b–1∑

n=a

∣∣�mu(n)
∣∣p

) m–1∑

i=1

(b – a)(m–i–1/p)(p–1)

2(m–i)(p–1)

( b–1∑

n=a

∣∣ri(n)
∣∣q

)1/q

. (30)

By (27), (28), and (30), we get

b–1∑

n=a

∣∣�mu(n)
∣∣p

≤ (b – a)(m–1/p)(p–1)

2m(p–1)

( b–1∑

n=a

∣∣�mu(n)
∣∣p

)( b–1∑

n=a

∣∣r0(n)
∣∣q

)1/q

+

( b–1∑

n=a

∣∣�mu(n)
∣∣p

) m–1∑

i=1

(b – a)(m–i–1/p)(p–1)

2(m–i)(p–1)

( b–1∑

n=a

∣∣ri(n)
∣∣q

)1/q

. (31)

Now, we claim that
∑b–1

n=a |�u(n)|p > 0. In fact, if the above inequality is not true, we have
∑b–1

n=a |�u(n)|p = 0, then �u(n) = 0 for n ∈ Z[a, b – 1]. By the anti-periodic conditions (5),
we obtain u(n) = 0 for n ∈ Z[a, b], which contradicts u(n) �≡ 0, n ∈ Z[a, b]. From (22), we
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get
∑b–1

n=a |�mu(n)|p > 0. Thus, dividing both sides of (31) by
∑b–1

n=a |�mu(n)|p, we obtain

1 ≤ (b – a)(m–1/p)(p–1)

2m(p–1)

( b–1∑

n=a

∣∣r0(n)
∣∣q

)1/q

+
m–1∑

i=1

(b – a)(m–i–1/p)(p–1)

2(m–i)(p–1)

( b–1∑

n=a

∣∣ri(n)
∣∣q

)1/q

=
m–1∑

i=0

(b – a)(m–i–1/p)(p–1)

2(m–i)(p–1)

( b–1∑

n=a

∣∣ri(n)
∣∣q

)1/q

.

This completes the proof of Theorem 2.1. �

Remark If ri(n) ≡ 0, i = 1, 2, . . . , m–1, then Theorem 2.1 coincides with Theorem 1 in [21].

Let p = 2, m = 2k, k ∈N in Theorem 2.1, we have the following corollary.

Corollary 2.1 If u(n) is a nonzero solution of

�2ku(n) +
2k–1∑

i=0

ri(n)�iu(n) = 0 (32)

and satisfies the anti-periodic boundary conditions

�iu(a) + �iu(b) = 0, i = 0, 1, . . . , 2k – 1; u(n) �≡ 0, n ∈ Z[a, b], (33)

then

2k–1∑

i=0

(b – a)2k–i–1/2

22k–i

( b–1∑

n=a

∣∣ri(n)
∣∣2

)1/2

≥ 1.

Let p = 2, m = 2k – 1, k ∈N in Theorem 2.1, we have the following corollary.

Corollary 2.2 If u(n) is a nonzero solution of

�2k–1u(n) +
2k–2∑

i=0

ri(n)�iu(n) = 0 (34)

and satisfies the anti-periodic boundary conditions

�iu(a) + �iu(b) = 0, i = 0, 1, . . . , 2k – 2; u(n) �≡ 0, n ∈ Z[a, b], (35)

then

2k–2∑

i=0

(b – a)2k–i–3/2

22k–1–i

( b–1∑

n=a

∣∣ri(n)
∣∣2

)1/2

≥ 1.

Let m = 2 in Theorem 2.1, we have the following corollary.
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Corollary 2.3 If u(n) is a nonzero solution of

∣∣�2u(n)
∣∣p–2�2u(n) +

1∑

i=0

ri(n)
∣∣�iu(n)

∣∣p–2�iu(n) = 0 (36)

and satisfies the anti-periodic boundary conditions

�iu(a) + �iu(b) = 0, i = 0, 1; u(n) �≡ 0, n ∈ Z[a, b], (37)

then

1∑

i=0

(b – a)(2–i–1/p)(p–1)

2(2–i)(p–1)

( b–1∑

n=a

∣∣ri(n)
∣∣q

)1/q

≥ 1.

Next, we establish a Lyapunov-type inequality for Eq. (8).

Theorem 2.2 If u(n) is a nonzero solution of Eq. (8) satisfying the anti-periodic boundary
conditions (9), then

( b–1∑

n=a

∣∣r(n)
∣∣
)1/(p–1)

>
23m–2

(b – a)2m–1/(p–1)
1√

� q–1
p–1 1

, (38)

where

� q–1
p–1 1 =

(
2p – q – 1

p – 1

)(
q – 1
p – 1

)(q–1)/(2p–q–1)

22(1–p)/(2p–q–1). (39)

Proof Choose c ∈ Z[a, b] such that |u(c)| = maxn∈Z[a,b] |u(n)|. Since (9), it follows from
Lemma 2.2 that

∣∣u(c)
∣∣ ≤ (c – a)(b – c)

b – a

b–1∑

n=a

∣∣�2u(n)
∣∣ ≤ b – a

4

b–1∑

n=a

∣∣�2u(n)
∣∣ (40)

and

b–1∑

n=a

∣∣�2iu(n)
∣∣ ≤ (b – a)2

8

b–1∑

n=a

∣∣�2i+2u(n)
∣∣, i = 1, 2, . . . , m – 1. (41)

From (40) and (41), we obtain

∣∣u(c)
∣∣ ≤ b – a

4

b–1∑

n=a

∣∣�2u(n)
∣∣

≤ b – a
4

(b – a)2

8

b–1∑

n=a

∣∣�4u(n)
∣∣

≤ b – a
4

(
(b – a)2

8

)2 b–1∑

n=a

∣∣�6u(n)
∣∣
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≤ · · ·

≤ b – a
4

(
(b – a)2

8

)m–1 b–1∑

n=a

∣∣�2mu(n)
∣∣. (42)

Applying discrete Hölder’s inequality (16) to the summation on the right-hand side of (42)
with f (n) = 1, g(n) = |�2mu(n)|, α = p–1

p–2 , and β = p – 1, we obtain that

∣∣u(c)
∣∣ ≤ b – a

4

(
(b – a)2

8

)m–1

(b – a)(p–2)/(p–1)

( b–1∑

k=a

∣∣�2mu(n)
∣∣p–1

)1/(p–1)

=
(b – a)2m–1/(p–1)

23m–1

( b–1∑

k=a

∣∣�2mu(n)
∣∣p–1

)1/(p–1)

. (43)

On the other hand, from (8), we have

∣∣�2mu(n)
∣∣p–2�2mu(n) = (–1)mr(n)

∣∣u(n + 1)
∣∣q–2u(n + 1), (44)

then

∣∣�2mu(n)
∣∣p–1 =

∣∣r(n)
∣∣∣∣u(n + 1)

∣∣q–1. (45)

Summing (45) from a to b – 1, we have

b–1∑

n=a

∣∣�2mu(n)
∣∣p–1 =

b–1∑

n=a

∣∣r(n)
∣∣∣∣u(n + 1)

∣∣q–1, (46)

then

( b–1∑

n=a

∣∣�2mu(n)
∣∣p–1

)1/(p–1)

=

( b–1∑

n=a

∣∣r(n)
∣∣∣∣u(n + 1)

∣∣q–1
)1/(p–1)

. (47)

From (43) and (47), we have

∣∣u(c)
∣∣ ≤ (b – a)2m–1/(p–1)

23m–1

( b–1∑

n=a

∣∣r(n)
∣∣∣∣u(n + 1)

∣∣q–1
)1/(p–1)

≤ (b – a)2m–1/(p–1)

23m–1

( b–1∑

n=a

∣∣r(n)
∣∣
)1/(p–1)∣∣u(c)

∣∣(q–1)/(p–1)

≤K
∣∣u(c)

∣∣(q–1)/(p–1), (48)

where

K =
(b – a)2m–1/(p–1)

23m–1

( b–1∑

n=a

∣∣r(n)
∣∣
)1/(p–1)

. (49)
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Using inequality (10) in Lemma 2.1 with A = B = 1, z = |u(c)|, τ = 1, σ = q–1
p–1 , we have

∣∣u(c)
∣∣2 –

∣∣u(c)
∣∣(q–1)/(p–1) + � q–1

p–1 1 > 0. (50)

From (48) and (50), we get

∣∣u(c)
∣∣2 –

1
K

∣∣u(c)
∣∣ + � q–1

p–1 1 > 0. (51)

This is possible only if

1
K2 – 4� q–1

p–1 1 < 0, (52)

i.e.,

K >
1

2
√

� q–1
p–1 1

. (53)

From (49) and (53), we obtain

(b – a)2m–1/(p–1)

23m–1

( b–1∑

n=a

∣∣r(n)
∣∣
)1/(p–1)

>
1

2
√

� q–1
p–1 1

. (54)

Thus, (38) holds. This completes the proof of Theorem 2.2. �

For p > q = 2, using a method similar to Theorem 2.2, we have the following theorem.

Theorem 2.3 If u(n) is a nonzero solution of

∣∣�2mu(n)
∣∣p–2�2mu(n) + (–1)m–1r(n)u(n + 1) = 0, (55)

satisfying the anti-periodic boundary conditions (9), then

( b–1∑

n=a

∣∣r(n)
∣∣
)1/(p–1)

>
23m–2

(b – a)2m–1/(p–1)
1√

� 1
p–1 1

, (56)

where

� 1
p–1 1 =

(
2p – 3
p – 1

)(
1

p – 1

)1/(2p–3)

22(1–p)/(2p–3). (57)

Remark For p = q = 2, using a method similar to Theorem 2.2, we have that the result
coincides with Corollary 2.3 in [29].

Let m = 1 in Theorem 2.2, we have the following corollary.



Liu Advances in Difference Equations  (2018) 2018:229 Page 11 of 14

Corollary 2.4 If u(n) is a nonzero solution of

∣∣�2u(n)
∣∣p–2�2u(n) + r(n)

∣∣u(n + 1)
∣∣q–2u(n + 1) = 0 (58)

and satisfies the anti-periodic boundary conditions

u(a) = u(b) = 0, u(n) �≡ 0, n ∈ Z[a, b], (59)

then

( b–1∑

n=a

∣∣r(n)
∣∣
)1/(p–1)

>
2

(b – a)2–1/(p–1)
1√

� q–1
p–1 1

,

where � q–1
p–1 1 is defined as in (39).

Let m = 1 in Theorem 2.3, we have the following corollary.

Corollary 2.5 If u(n) is a nonzero solution of

∣∣�2u(n)
∣∣p–2�2u(n) + r(n)u(n + 1) = 0 (60)

and satisfies the anti-periodic boundary conditions

u(a) = u(b) = 0, u(n) �≡ 0, n ∈ Z[a, b], (61)

then

( b–1∑

n=a

∣∣r(n)
∣∣
)1/(p–1)

>
2

(b – a)2–1/(p–1)
1√

� 1
p–1 1

,

where � 1
p–1 1 is defined as in (57).

3 Applications
In this section, we investigate the nonexistence and uniqueness for solutions of certain
BVPs. First, we consider the nonexistence for solutions of the BVP consisting of (7) and
the boundary conditions (5).

Theorem 3.1 Assume

m–1∑

i=0

(b – a)(m–i–1/p)(p–1)

2(m–i)(p–1)

( b–1∑

n=a

∣∣ri(n)
∣∣q

)1/q

< 1, (62)

where q is the Hölder conjugate exponent of p, i.e., 1/p + 1/q = 1. Then BVP (7), (5) has no
nontrivial solution.
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Proof Assume the contrary. Then BVP (7), (5) has a nontrivial solution u(n). By Theo-
rem 2.1, inequality (13) holds. This contradicts assumption (62). �

Next, we consider the uniqueness for solutions of nonhomogeneous BVP consisting of
the equation

�2ku(n) +
2k–1∑

i=0

ri(n)�iu(n) = f (n), n ∈ Z[A, B], (63)

and the boundary conditions

�iu(a) + �iu(b) = Mi, i = 0, 1, . . . , 2k – 1; n ∈ Z[a, b], (64)

where k ∈ N, n ∈ Z, and f , ri(n) (i = 0, 1, . . . , 2k – 1) are real-valued functions defined on Z,
A, B, a, b ∈N, A < a < b < B, and Mi ∈R, i = 0, 1, . . . , 2k – 1.

Theorem 3.2 Assume

2k–1∑

i=0

(B – A)(2k–i–1/2)

2(2k–i)

(B–1∑

n=A

∣∣ri(n)
∣∣2

)1/2

< 1. (65)

Then BVP (63), (64) has at most one solution on (A, B) for any a, b ∈ (A, B), Mi ∈ R,
i = 0, 1, . . . , 2k – 1.

Proof Let u1(n) and u2(n) be two solutions of BVP (63), (64) in (A, B). Define u(n) =
u1(n) – u2(n). Then u(n) is a solution of BVP (32), (33). Then, by Theorem 3.1 with p = 2
and m = 2k, we have u(n) ≡ 0, i.e., u1(n) ≡ u2(n). This shows that BVP (63), (64) has at
most one solution on (A, B). �
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