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Abstract
In this paper, we focus on the study of the Crank–Nicolson finite difference (CNFD)
scheme for the Riesz space fractional-order parabolic-type sine-Gordon equation
(RSFOPTSGE). For this purpose, we first establish the CNFD scheme for RSFOPTSGE.
Then, we discuss the existence, uniqueness, stability, and convergence of the CNFD
solutions. Finally, we supply a numerical experiment to validate the correctness of
theoretical results. This indicates that the CNFD scheme is very effective for solving
RSFOPTSGE.
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1 Introduction
The fractional-order differential equations have become a research hot-spot in science and
engineering in recent years (see, e.g., [1, 2]). Unfortunately, there are very few researches of
numerical solutions for the standard Riesz space fractional-order sine-Gordon equation
(see, e.g., [3–5]). However, the Riesz space fractional-order parabolic-type sine-Gordon
equation (RSFOPTSGE) with the first-order time derivative is not studied. Therefore, this
paper mainly focuses on the study of the Crank–Nicolson finite difference (CNFD) scheme
for RSFOPTSGE with first-order time derivative.

For convenience and without loss of generality, we consider the following RSFOPTSGEs
on the bounded domain [0, T] × [0, L]:

∂u(t, x)
∂t

= K
∂αu(t, x)
∂|α|α + sin

(
u(t, x)

)
, (t, x) ∈ (0, T) × (0, L), (1)

u(t, 0) = u(t, L) = g(t), t ∈ (0, T), (2)

u(0, x) = ϕ(x), x ∈ (0, L), (3)

where K is the dispersion coefficient, 1 < α ≤ 2, g(t) is a given boundary value function,
ϕ(t, x) is a given initial function, and ∂αu(t, x)/∂|α|α is known as the Riesz space fractional-
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order derivative defined by

∂αu(t, x)
∂|α|α = S(α)

∂2

∂x2

(∫ x

0
(x – y)1–αu(t, y) dy +

∫ L

x
(y – x)1–αu(t, y) dy

)
, (4)

where S(α) = –[2 cos( απ
2 )�(2 – α)]–1, and �(·) is the Euler gamma function. For conve-

nience and without loss of generality, we further assume that g(t) = 0.
The RSFOPTSGEs (1)–(3), which is substantially a parabolic-type Riesz space fractional-

order partial differential equation with nonlinear source term sin(u), just as the standard
Riesz space fractional-order differential equations in [3–5], also hold very important
physical background, such as phenomena in seepage hydraulics groundwater hydraulics,
groundwater dynamics, and fluid dynamics in porous media (see, e.g., [1–5]). However,
they usually have no analytic solution, so that we mainly depend on numerical solu-
tions (see, e.g., [4, 5]). Some finite difference (FD) schemes for the standard Riesz space
fractional-order differential equations have been established in [4, 5], but there is no any
theoretical analysis about the stability and convergence and error estimates for their FD
solutions. Therefore, in this paper, we establish a CNFD scheme for the RSFOPTSGEs
(1)–(3) and provide theoretical analysis about the stability and convergence and error
estimates for the CNFD solutions. We also use a numerical experiment to validate the
correctness of the theoretical results.

Though there have been many studies for the standard sine-Gordon equations (see, e.g.,
[6–10]), because RSFOPTSGEs not only include a first-order time derivative and the Riesz
space fractional-order derivative, but also contain a nonlinear source term sin(u), the es-
tablishment of the CNFD scheme for the RSFOPTSGEs (1)–(3) and theoretical analysis of
the stability and convergence and error estimates for the CNFD solutions are faced with
more difficulties and require more techniques than the standard sine-Gordon equations.
However, RSFOPTSGEs with first-order time derivative have some special applications;
for example, they can be used to describe the sin-waves attenuation phenomenon. There-
fore our work is interesting, is different from the existing others, and is a development and
improvement of the latter.

The rest of this paper is arranged as follows. In Sect. 2, we first establish the CNFD
scheme for the RSFOPTSGEs (1)–(3). Then, in Sect. 3, we discuss the existence, stability,
and convergence of the CNFD solutions for the RSFOPTSGEs (1)–(3). Next, in Sect. 4,
we use a numerical experiment to validate the correctness of the theoretical analysis and
show that the CNFD scheme is very efficient for solving RSFOPTSGEs. Finally, Sect. 5
provides the main conclusions and discussions.

2 Establishment of the CNFD scheme for RSFOPTSGEs
Let N and M be two positive integers, let τ = T/N be the time step-size, and let h = L/M
be the spatial step-size. Thus, the CNFD scheme with the predictor-corrector for the
RSFOPTSGEs (1)–(3) is stated as follows:

ūn
i = un–1

i + γ

[ i+1∑

k=0

ω
(α)
k un–1

i–k+1 +
M–i+1∑

k=0

ω
(α)
k un–1

i+k–1

]

+ τ sin
(
un–1

i
)
, (5)
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un
i = un–1

i + γ

[ i+1∑

k=0

ω
(α)
k un–1

i–k+1 +
M–i+1∑

k=0

ω
(α)
k un–1

i+k–1

]

+
τ

2
sin

(
un–1

i
)

+ γ

[ i+1∑

k=0

ω
(α)
k ūn–1

i–k+1 +
M–i+1∑

k=0

ω
(α)
k ūn–1

i+k–1

]

+
τ

2
sin

(
ūn–1

i
)
, (6)

where un
i ’s are approximate solutions of u(tn, xi) (i = 1, 2, . . . , M), γ = –τK/[2hα cos(απ/2)],

ω
(α)
0 = αg(α)

0 /2, ω(α)
k = αg(α)

k /2 + (2 – α)g(α)
k–1/2, g(α)

0 = 1, g(α)
k = [1 – (1 + α)/k]g(α)

k–1 (k = 1, 2, . . .).
The sequences {ω(α)

k }∞k=0 and {g(α)
k }∞k=0 have the following properties (see, e.g., [2, 9]).

Lemma 1 When 1 < α ≤ 2, the sequences {ω(α)
k }∞k=0 and {g(α)

k }∞k=0 satisfy

g(α)
0 = 1, g(α)

1 = –α, g(α)
2 = α(α – 1)/2 > 0,

1 ≥ g(α)
2 ≥ g(α)

3 ≥ · · · ≥ 0,
∞∑

k=0

g(α)
k = 0,

m∑

k=0

g(α)
k < 0 (m ≥ 1);

ω
(α)
0 = α/2, ω

(α)
1 =

(
2 – α – α2)/2 < 0, ω

(α)
2 = α

(
α2 + α – 4

)
/4 > 0,

1 ≥ ω
(α)
3 ≥ ω

(α)
4 ≥ · · · ≥ 0,

∞∑

k=0

ω
(α)
k = 0,

m∑

k=0

ω
(α)
k < 0 (m ≥ 2).

Set

A =

⎡

⎢
⎢⎢
⎢⎢
⎢⎢⎢
⎢
⎣

ω
(α)
1 ω

(α)
0 0 · · · 0 0

ω
(α)
2 ω

(α)
1 ω

(α)
0 · · · 0 0

ω
(α)
3 ω

(α)
2 ω

(α)
1 · · · 0 0

...
...

...
. . .

...
...

ω
(α)
M–2 ω

(α)
M–3 ω

(α)
M–4 · · · ω

(α)
1 ω

(α)
0

ω
(α)
M–1 ω

(α)
M–2 ω

(α)
M–3 · · · ω

(α)
2 ω

(α)
1

⎤

⎥
⎥⎥
⎥⎥
⎥⎥⎥
⎥
⎦

, F
(
Un–1) =

⎡

⎢
⎢⎢
⎢⎢
⎢⎢⎢
⎢
⎣

sin(un–1
1 )

sin(un–1
2 )

sin(un–1
3 )

...
sin(un–1

M–2)
sin(un–1

M–1)

⎤

⎥
⎥⎥
⎥⎥
⎥⎥⎥
⎥
⎦

,

Un =
[
un

1, un
2, . . . , un

M–2, un
M–1

]T , Ūn =
[
ūn

1, ūn
2, . . . , ūn

M–2, ūn
M–1

]T ,

D = –γ
[
A + AT]

.

Thus, the CNFD scheme (5)–(6) can rewritten in the following matrix form:

Ūn = Un–1 + DUn–1 + τF
(
Un–1), (7)

Un = Un–1 +
1
2

D
(
Un–1 + Ūn–1) +

τ

2
[
F
(
Un–1) + F

(
Ūn–1)]. (8)

Further, the vector form CNFD scheme (7)–(8) can be simplified as follows:

Un = Un–1 +
1
2

D
(
2Un–1 + DUn–1 + τF

(
Un–1))

+
τ

2
[
F
(
Un–1) + F

(
Un–1 + DUn–1 + τF

(
Un–1))], n = 1, 2, . . . , N , (9)

subject to the initial condition

U0 =
[
u0

1, u0
2, . . . , u0

M–2, u0
M–1

]T , u0
i = ϕ(0, ih), i = 1, 2, . . . , M – 1. (10)
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3 The existence, stability, and convergence of the CNFD solutions
Obviously, the vector form CNFD scheme (9)–(10) has a unique series of solution vec-
tors {Un}N

n=1. To analyze the stability and convergence of the CNFD solutions, we review
the max-norms of matrices and vectors (for more details, see [11]), which are, respec-
tively, defined by ‖Ã‖∞ = max1≤i≤m

∑m
j=1 |ai,j| (for any matrix Ã = (ai,j)m×m ∈ R

m × R
m)

and ‖Ui‖∞ = max1≤j≤m |ui
j| (for any Ui = (ui

1, ui
2, . . . , ui

m)T ∈ R
m).

We hold the following result on the stability and convergence of the series for the CNFD
solutions {Un}N

n=1.

Theorem 2 When ‖I + D‖∞ ≤ 1, the series of solutions {Un}N
n=1 for the CNFD scheme (9)–

(10) is stable and convergent. Furthermore, the errors between the series of the CNFD solu-
tions {Un}N

n=1 for the CNFD scheme (9)–(10) and Un
a = [u(tn, x1), u(tn, x2), . . . , u(tn, xM–1)]T

(n = 1, 2, . . . , N) formed by the analytical solution for the RSFOPTSGEs (1)–(3) satisfy the
estimate

∥∥Un – Un
a
∥∥∞ = O

(
τ 2, h2), n = 1, 2, . . . , N , (11)

where I represents the unit matrix.

Proof
(1) The stability and convergence of the CNFD solutions {Un}N

n=1

When ‖I + D‖∞ ≤ 1, we have
∥∥
∥∥I + D +

1
2

D2
∥∥
∥∥∞

=
∥∥
∥∥

1
2
[
I + (I + D)2]

∥∥
∥∥∞

≤ 1
2
(
1 + ‖I + D‖∞

) ≤ 1. (12)

By the differential mean value theorem we have

∥∥F
(
U(ti)

)
– F

(
Ui)∥∥∞ ≤ ∥∥U(ti) – Ui∥∥∞, (13)

∥∥F
(
Ui)∥∥∞ ≤ ∥∥Ui∥∥∞. (14)

Hence, by (12)–(14) from (9) we have

∥∥Un∥∥∞ ≤
∥
∥∥
∥Un–1 +

1
2

D
(
2Un–1 + DUn–1)

∥
∥∥
∥∞

+
∥
∥∥
∥
τ

2
DF

(
Un–1)

∥
∥∥
∥∞

+
∥∥
∥∥
τ

2
[
F
(
Un–1) + F

(
Un–1 + DUn–1 + τF

(
Un–1))]

∥∥
∥∥∞

≤
∥
∥∥
∥I + D +

1
2

D2
∥
∥∥
∥∞

∥∥Un–1∥∥∞ +
τ

2
‖D‖∞

∥∥F
(
Un–1)∥∥∞

+
τ

2
[∥∥F

(
Un–1)∥∥∞ +

∥∥F
(
Un–1 + DUn–1 + τF

(
Un–1))∥∥∞

]

≤ ∥
∥Un–1∥∥∞ +

τ

2
‖D‖∞

∥
∥Un–1∥∥∞ +

τ

2
∥
∥Un–1∥∥∞

+
τ

2
∥∥(I + D)Un–1 + τF

(
Un–1)∥∥∞

≤ ∥
∥Un–1∥∥∞ +

τ

2
‖D‖∞

∥
∥Un–1∥∥∞ + τ

∥
∥Un–1∥∥∞ +

τ 2

2
∥
∥Un–1∥∥∞

= (1 + βτ )
∥∥Un–1∥∥∞, n = 1, 2, . . . , N , (15)



Zhou and Luo Advances in Difference Equations  (2018) 2018:216 Page 5 of 7

where β = 1 + τ /2 + ‖D‖∞/2. Because ‖D‖∞ = ‖I + D – I‖∞ ≤ ‖I + D‖∞ + ‖I‖∞ ≤ 2,
β ≤ 2 + τ /2 ≤ 2 + τ . Thus, by iterating (15) we have

∥∥Un∥∥∞ ≤ (1 + βτ )n∥∥U0∥∥∞ ≤ ∥∥U0∥∥∞ exp
[
(2 + τ )nτ

]

≤ ∥
∥U0∥∥∞ exp

[
(2 + τ )T

]
, n = 1, 2, . . . , N , (16)

which shows that the CNFD solutions {Un}N
n=1 are stable and convergent according

to the Lax stability theorem (see [11]).
(2) The error estimates (11) of the CNFD solutions {Un}N

n=1

Let Un
a = [u(tn, x1), u(tn, x2), . . . , u(tn, xM–1)]T , as mentioned before, be formed by

the analytical solution for the RSFOPTSGEs (1)–(3), and let en = Un – Un
d . By

subtracting (9) from RSFOPTSGEs (1)–(3), by Taylor’s formula (see, e.g., [11]) we
have

en = en–1 +
1
2

D
(
2en–1 + Den–1 + τF

(
Un–1) – τF

(
Un–1

a
))

+
τ

2
[
F
(
Un–1)

+ F
(
Un–1 + DUn–1 + τF

(
Un–1))

– F
(
Un–1

a
)

– F
(
Un–1

a + DUn–1
a + τF

(
Un–1

a
))]

+ O
(
τ 3 + τh2)

=
τ

2
[
F
(
Un–1 + DUn–1 + τF

(
Un–1)) – F

(
Un–1

a + DUn–1
a + τF

(
Un–1

a
))]

+
(

I + D +
1
2

D2
)

en–1 +
τ

2
(I + D)

[
F
(
Un–1) – F

(
Un–1

a
)]

+ O
(
τ 3 + τh2). (17)

By using (13)–(14), ‖I + D‖∞ ≤ 1, and ‖I + D + D2/2‖∞ ≤ 1, from (17) we have

‖en‖∞ ≤
∥
∥∥
∥I + D +

1
2

D2
∥
∥∥
∥∞

‖en–1‖∞ +
τ

2
‖D‖∞‖en–1‖∞

+
τ

2
[‖en–1‖∞ + ‖I + D‖∞‖en–1‖∞ + τ‖en–1‖∞

]
+ C

(
τ 3 + τh2)

≤ (1 + βτ )‖en–1‖∞ + C
(
τ 3 + τh2)

≤ (
1 + 2τ + τ 2)‖en–1‖∞ + C

(
τ 3 + τh2), (18)

where C is a generic positive constant. Thus, iterating (18) and using e0 = 0, we have

‖en‖∞ ≤ (
1 + 2τ + τ 2)n‖e0‖∞ + Cn

(
τ 3 + τh2)

≤ CT
(
τ 2 + h2) exp

[
nτ (2 + τ )

]

≤ CT
(
τ 2 + h2) exp

[
T(2 + τ )

]
, n = 1, 2, . . . , N . (19)

This attains (11) and accomplishes the demonstration of Theorem 2. �

Remark 3 From Lemma 1 we easily see that the condition ‖I + D‖∞ ≤ 1 is reasonable.

4 Numerical experiment
In this section, we give a numerical experiment to validate the correctness of the theoret-
ical results of the CNFD scheme for the RSFOPTSGEs (1)–(3).



Zhou and Luo Advances in Difference Equations  (2018) 2018:216 Page 6 of 7

In the RSFOPTSGEs (1)–(3), we take T = 2000 (i.e., 0 ≤ t ≤ 2000), L = 16,000 (i.e., 0 ≤
x ≤ 16,000), K = 1, α = 1.5, τ = h = 0.01, the boundary value function g(t) = 0.22, and the
initial function

u(0, x) = ϕ(x) =

⎧
⎨

⎩
0.22 + sin(πx/2000), x ∈ [6000, 8000],

0.22, x ∈ [0, 600] ∪ [8000, 16,000].

In this case, it is very difficult to find the analytical solution for RSFOPTSGEs, so that we
can only find their numerical solutions. By the CNFD scheme we compute out the CNFD
solution for (t, x) ∈ [0, 2000]× [0, 16,000] and depict it in Fig. 1. They should coincide with
the physical model rules.

In addition, according to Theorem 2, the theoretical errors of the CNFD solutions should
be O(τ 2 + h2) = O(10–4), whereas the numerical errors of the CNFD solutions are com-
puted out by ‖Un – Un–1‖∞ (due to ‖Un – Un–1‖∞ ≤ ‖Un – Un

a‖∞ +‖Un
a – Un–1

a ‖∞ +‖Un–1 –
Un–1

a ‖∞), which are shown in Fig. 2 and can also attain O(10–4). This shows that the nu-
merical conclusions coincide with theoretical results. Further, it is shown that the CNFD
scheme is very efficient and feasible for solving the RSFOPTSGEs (1)–(3).

Figure 1 The classical CNFD solutions for 0 ≤ x ≤ 16,000 and 0≤ t ≤ 2000

Figure 2 The absolute error photo of the CNFD solution for 0≤ x ≤ 16,000 and 0≤ t ≤ 2000
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5 Conclusions and discussion
In this work, we have established the CNFD scheme for the RSFOPTSGEs (1)–(3) and
analyzed the existence, uniqueness, stability, and convergence of the CNFD solutions. We
have also used a numerical experiment to check the feasibility and effectiveness of the
CNFD scheme and to verity that the numerical computing consequences are in accor-
dance with theoretical analysis. Moreover, it is shown that the CNFD scheme is very valid
and feasible for solving the RSFOPTSGEs (1)–(3).

Even if we only study CNFD scheme for the RSFOPTSGEs (1)–(3) in the one-di-
mensional space, the CNFD scheme can be easily and effectively used to solve the
RSFOPTSGEs in two- and three-dimensional spaces.
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