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Abstract
In this paper, a May cooperative system with strong and weak cooperative partners is
proposed. First, by using differential inequality theory, we obtain the permanence and
non-permanence of the system. Second, we discuss the existence of the positive
equilibrium point and boundary equilibrium point, after that, by constructing suitable
Lyapunov functions, it is shown that the equilibrium points are globally
asymptotically stable in the positive octant. Finally, examples together with their
numerical simulations show the feasibility of the main results.
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1 Introduction
Cooperative system is an important system in the field of biology, and the importance of
the system is the same as for prey–predator and competitive systems. Many scholars have
done research on the cooperative ecosystem (see [1–12]). May [1] described a cooperative
system with the following equations:

dx1

dt
= r1x1

(
1 –

x1

a1 + b1x2
– c1x1

)
,

dx2

dt
= r2x2

(
1 –

x2

a2 + b2x1
– c2x2

)
,

(1.1)

where x1, x2 are the densities of the species x1, x2 at time t, respectively, ri refers to the
intrinsic rate of population xi, i = 1, 2, and bi, i = 1, 2, refers to the coefficients of cooper-
ation, ri, ai, bi, ci, i = 1, 2 are positive constants. His research shows that the cooperative
system has a unique positive equilibrium point and it is globally asymptotically stable.

Cui and Chen [2] think that a non-autonomous form is more reasonable. They put for-
ward the following cooperation system:

dx1

dt
= r1(t)x1

(
1 –

x1

a1(t) + b1(t)x2
– c1(t)x1

)
,

dx2

dt
= r2(t)x2

(
1 –

x2

a2(t) + b2(t)x1
– c2(t)x2

)
,

(1.2)
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where the function ri(t), ai(t), bi(t), ci(t), i = 1, 2 are continuous functions and bounded
above and below by positive constants. Under the premise of ri(t), ai(t), bi(t), ci(t),
i = 1, 2 are periodic function, they get the sufficient conditions which guarantee the global
asymptotic stability of positive periodic solutions of this system.

In view of the influence of time delay, species interactions and feedback, Chen, Liao and
Huang [3] proposed the following n-species cooperation system:

dxi(t)
dt

= ri(t)xi(t)
[

1 –
xi(t)

ai(t) +
∑n

j=1,j �=ibij(t)
∫ 0

–Tij
Kij(s)xj(t + s) ds

– ci(t)xi(t)
]

– di(t)ui(t)xi(t) – ei(t)xi(t)
∫ 0

–τi

Hi(s)ui(t + s) ds,

dui(t)
dt

= –αi(t)ui(t) + βi(t)xi(t) + ri(t)
∫ 0

–ηi

Gi(s)xi(t + s) ds,

(1.3)

where xi(t), i = 1, . . . , n is the density of cooperation species Xi, ui(t), i = 1, . . . , n, is the feed-
back control variable. The authors obtained the sufficient conditions which guarantee the
permanence by using differential inequality theory. For more work as regards the system,
we can refer to [4–6].

In the real world, individual organisms are associated with a strong and weak differential.
Mohammadi [13] proposed a Leslie–Gower predator–prey model:

dH1

dt
= (r1 – bH1 – αH2)H1,

dH2

dt
= (αH1 – c1 – c2P)H2,

dP
dt

=
(

r2 –
a2P
H2

)
P,

(1.4)

where r1, b1, α, c1, c2, r2, a2 are positive constants, the predators can distinguish between
strong and weak prey and predator eats only weak prey, when a prey becomes weak, it
does not become strong again; by constructing a suitable Lyapunov function, it is shown
that the unique equilibrium point is stable in the positive octant.

Conversely, in many cooperative ecosystems, partners like strong partners, because the
strong partners are more conducive to their survival. This shows that the cooperative ob-
ject should only be part instead of the whole.

There are two populations:
The partner H , whose total density is H , is divided into two categories H1, H2. H1 de-

notes the strong partner density and H2 denotes the weak. Of the other partner, the total
density is P.

The May cooperative model (1.1) is our basic model and we consider the following as-
sumptions to improve the model:

(A1) The partner P can distinguish between strong partner H1 and weak partner H2 and
the partner P cooperates only with strong partner H1.

(A2) When provided with food resources, the weak partner H2 has no negative influence
on the stronger partner, that is to say, the weak partners can only eat the food after
the strong ones have used enough.
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(A3) Due to the lack of sufficient food resources, once it becomes weak, the weak partner
H2 and their descendants will no longer be strong.

(A4) The rate of becoming weak is described by the simple mass action αH1H2.
By the above assumptions, we propose a model as follows:

dH1

dt
= r1H1

(
1 –

H1

a1 + b1P
– c1H1 –

αH2

r1

)
,

dH2

dt
= H2(αH1 + d – eH2),

dP
dt

= r2P
(

1 –
P

a2 + b2H1
– c2P

)
,

(1.5)

where ri, ai, bi, ci, d, i = 1, 2 are positive constants.
The structure of this article as follows. In Sect. 2 we will introduce several useful lemmas

and prove permanence and non-permanence. In Sect. 3 we will discuss the existence of
the equilibrium point. In Sect. 4 global stability of equilibrium points is studied. In Sect. 5
two examples are given to show the feasibility of our results. We end this paper by a brief
discussion.

2 Permanence and non-permanence
In view of the actual ecological implications of system (1.5), we assume that the initial
value Hi(0) > 0, i = 1, 2, P(0) > 0 in system (1.5). Obviously, any solution of system (1.5)
remains positive for all t ≥ 0.

Lemma 2.1 (see [14]) Let a > 0, b > 0.
(I) If dx

dt ≥ x(b – ax), then lim inft→+∞ x(t) ≥ b
a for t ≥ 0 and x(0) > 0.

(II) If dx
dt ≤ x(b – ax), then lim supt→+∞ x(t) ≤ b

a for t ≥ 0 and x(0) > 0.

Lemma 2.2 (see [15]) Let a > 0, b > 0.
If dx

dt ≤ x(–b – ax), then limt→+∞ x(t) = 0 for t ≥ 0 and x(0) > 0.

Theorem 2.1 If the assumptions (B1) and (B2) hold,
(B1) M = 1 – αd

r1e > 0,

(B2) 1 > α2(a1c2+b1)
r1e(a1c1c2+b1c1+c2) ,

then system (1.5) is permanent.

Proof Let (H1(t), H2(t), P(t))T be any positive solution of system (1.5), from the second
equation of system (1.5), it follows that

dH2

dt
≥ H2(d – eH2).

According to Lemma 2.1, we have

lim inf
t→+∞ H2(t) ≥ d

e
def= Hi

2 > 0. (2.1)
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For any positive constant ε small enough, it follows from (2.1) that there exists a large
enough T1 > 0 such that

H2(t) > Hi
2 – ε, t ≥ T1. (2.2)

From the third equation, we have

dP
dt

≤ r2P(1 – c2P).

According to Lemma 2.1, we have

lim sup
t→+∞

P(t) ≤ 1
c2

def= Ps > 0. (2.3)

For any positive constant ε small enough, it follows from (2.3) that there exists a large
enough T2 > T1 such that

P(t) ≤ Ps + ε, t ≥ T2. (2.4)

By applying (2.2) and (2.4), from the first equation of system (1.5), we have

dH1

dt
≤ r1H1

(
1 –

H1

a1 + b1(Ps + ε)
– c1H1 –

α(Hi
2 – ε)
r1

)
, t ≥ T2.

According to Lemma 2.1, we have

lim sup
t→+∞

H1(t) ≤
(

1 –
α(Hi

2 – ε)
r1

)
a1 + b1(Ps + ε)

1 + a1c1 + b1c1(Ps + ε)
.

Letting ε → 0 and by applying (2.1) and (2.3)

lim sup
t→+∞

H1(t) ≤ a1c2 + b1

a1c1c2 + b1c1 + c2
M def= Hs

1 > 0. (2.5)

For any positive constant ε small enough, it follows from (2.5) that there exists a large
enough T3 > T2 such that

H1(t) ≤ Hs
1 + ε, t ≥ T3. (2.6)

Then the second equation of (1.5) leads to

dH2

dt
≤ H2

(
α
(
Hs

1 + ε
)

+ d – eH2
)
, t ≥ T3.

According to Lemma 2.1, we have

lim sup
t→+∞

H2(t) ≤ α(Hs
1 + ε) + d

e
.



Zhao et al. Advances in Difference Equations  (2018) 2018:172 Page 5 of 13

Letting ε → 0 in the above inequality leads to

lim sup
t→+∞

H2(t) ≤ αHs
1 + d
e

def= Hs
2. (2.7)

For any positive constant ε small enough, it follows from (2.7) that there exists a large
enough T4 > T3 such that

H2(t) ≤ Hs
2 + ε, t ≥ T4. (2.8)

Then substituting (2.8) into the first equation of (1.5), we have

dH1

dt
≥ r1H1

(
1 –

H1

a1
– c1H1 –

α(Hs
2 + ε)
r1

)
, t ≥ T4.

According to Lemma 2.1, we have

lim inf
t→+∞ H1(t) ≥

(
1 –

α(Hs
2 + ε)
r1

)
a1

a1c1 + 1
.

Letting ε → 0 and by applying (2.5) and (2.7)

lim inf
t→+∞ H1(t) ≥ M –

α2Hs
1

r1e
def= Hi

1 > 0. (2.9)

From the third equation of system(1.5), it follows that

dP
dt

≥ r2P
(

1 –
P
a2

– c2P
)

.

According to Lemma 2.1, we have

lim inf
t→+∞ P(t) ≥ a2

a2c2 + 1
def= Pi. (2.10)

(2.1), (2.3), (2.5), (2.7), (2.9) and (2.10) show that if the assumptions (B1), (B2) hold, then
system (1.5) is permanent. �

Theorem 2.2 If the assumption (B3) holds,
(B3) M = 1 – αd

r1e < 0,
then the weak partners H2 and partners P are permanent, the strong partners H1 are non-
permanent.

Proof Let (H1(t), H2(t), P)T be any positive solutions of system (1.5) for t ≥ 0.
From the proof Theorem 2.1, we know

dH1

dt
≤ r1H1

(
1 –

H1

a1 + b1(Ps + ε)
– c1H1 –

α(Hi
2 – ε)
r1

)
, t ≥ T2.

Noting that condition (B3) implies that 1 – α(Hi
2–ε)

r1
< 0.
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According to Lemma 2.2, we have

lim
t→+∞ H1(t) = 0. (2.11)

By applying (2.11), from the second equation of system (1.5), it is easy to prove that

lim
t→+∞ H2(t) =

d
e

. (2.12)

(2.3), (2.10), (2.11) and (2.12) show that if the assumptions (B3) hold, then the weak part-
ners H2 and partners P are permanent, the strong partners H1 are non-permanent. �

3 Existence of equilibrium point
Theorem 3.1 If the assumption (B1) holds, then system (1.5) have a unique positive equi-
librium point.

Proof We determine the positive equilibrium of the system (1.5) through solving the fol-
lowing equations:

⎧⎪⎨
⎪⎩

1 – H1
a1+b1P – c1H1 – αH2

r1
= 0,

αH1 + d – eH2 = 0,
1 – P

a2+b2H1
– c2P = 0.

(3.1)

Here we transform Eqs. (3.1) into the following form:

⎧⎪⎨
⎪⎩

1 – H1
a11+b11P – c11H1 = 0,

1 – P
a2+b2H1

– c2P = 0,
αH1 + d – eH2 = 0,

(3.2)

where a11 = Ma1, b11 = Mb1, c11 = (c1 + αd
r1e )/M, from the first and second equations of (3.2),

we have

DH2
1 + EH1 + F = 0, (3.3)

where

D = b2(a11c11c2 + b11c11 + c2), F = –a11(a2c2 + b2 + 1),

E =
[
(a2c2 + 1) + c11(a11 + a11a2c2 + a2b11) – b2(a11c2 + b11)

]
.

From the terms D and F of (3.3), we know that there is a unique positive solutions H∗
1 .

Substitute H∗
1 into the second and third equations of (3.1). Then system (1.5) has a unique

positive equilibrium point E1(H∗
1 , H∗

2 , P∗). �

Theorem 3.2 Clearly, the system (1.5) has an equilibrium point E2(0, H2∗, P∗).
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4 Global stability
Theorem 4.1 If the assumptions (B1) and (B4) hold,

(B4) α2 < a2r1c1e
a2+b2Hs

1
,

then the positive equilibrium of system (1.5) is globally asymptotically stable.

Proof Inspired by the idea of Li, Han and Chen [7] and Leon [8], the following Lyapunov
function is presented:

We define L : {(H1, H2, P) ∈ R3
+ : H1 > 0, H2 > 0, P > 0} → R by

L(H1, H2, P) = η1

∫ H1

H∗
1

(θ – H∗
1 )

(a2 + b2θ )θ
dθ + η2

∫ P

P∗

(θ – P∗)
(a1 + b1θ )θ

dθ

+ η3

(
H2 – H∗

2 – H∗
2 ln

H2

H∗
2

)
,

where η1 = 1, η2 = r1b1H∗
1 (a2 + b2H∗

1 )/r2b2P∗(a1 + b1P∗), η3 = 1/a2. The function
L(H1, H2, P) is defined, continuous and positive definite for all H1, H2, P > 0. and the mini-
mum L(H1, H2, P) = 0 occurs at the equilibrium point (H∗

1 , H∗
2 , P∗)T . Calculating the deriva-

tive of L along the solution (H1(t), H2(t), P(t))T of the system (1.5), we have

dL
dt

=
η1r1(H1 – H∗

1 )
a2 + b2H1

(
1 –

H1

a1 + b1P
– c1H1 –

αH2

r1

)

+ η3
(
H2 – H∗

2
)
(αH1 + d – eH2) +

η2r2(P – P∗)
a1 + b1P

(
1 –

P
a2 + b2H1

– c2P
)

=
η1r1(H1 – H∗

1 )
a2 + b2H1

(
–

α(H2 – H∗
2 )

r1
– c1

(
H1 – H∗

1
)

+
H∗

1
a1 + b1P∗ –

H1

a1 + b1P

)

+ η3
(
H2 – H∗

2
)(

α
(
H1 – H∗

1
)

– e
(
H2 – H∗

2
))

+
η2r2(P – P∗)

a1 + b1P

(
–c2

(
P – P∗) +

P∗

a2 + b2H∗
1

–
P

a2 + b2H1

)

=
η1r1(H1 – H∗

1 )
a2 + b2H1

(
–

α(H2 – H∗
2 )

r1
– c1

(
H1 – H∗

1
)

–
(H1 – H∗

1 )
a1 + b1P

+
b1H∗

1 (P – P∗)
(a1 + b1P)(a1 + b1P∗)

)
+ η3

(
H2 – H∗

2
)(

α
(
H1 – H∗

1
)

– e
(
H2 – H∗

2
))

+
η2r2(P – P∗)

a1 + b1P

(
–c2

(
P – P∗) –

(P – P∗)
a2 + b2H1

+
b2P∗(H1 – H∗

1 )
(a2 + b2H∗

1 )(a2 + b2H1)

)

≤ A(t) + B(t),

where

A(t) =
1

(a1 + b1P)(a2 + b2H1)

(
–η1r1

(
H1 – H∗

1
)2 – η2r2

(
P – P∗)2

+
(

η1r1b1H∗
1

a1 + b1P∗ +
η2r2b2P∗

a2 + b2H∗
1

)(
H1 – H∗

1
)(

P – P∗)),

B(t) = –
α

a2 + b2H1

(
H1 – H∗

1
)(

H2 – H∗
2
)

–
c1r1

a2 + b2H1

(
H1 – H∗

1
)2

+ η3α
(
H1 – H∗

1
)(

H2 – H∗
2
)

– η3e
(
H2 – H∗

2
)2.

Now, we prove A(t), B(t) are negative definite.



Zhao et al. Advances in Difference Equations  (2018) 2018:172 Page 8 of 13

Let A(t) def= 1
(a1+b1P)(a2+b2H1) Y T AY where Y = ((H1 – H∗

1 ), (P – P∗))T and

A =

⎛
⎝ –η1r1

η1r1b1H∗
1

2(a1+b1P∗) + η2r2b2P∗
2(a2+b2H∗

1 )
η1r1b1H∗

1
2(a1+b1P∗) + η2r2b2P∗

2(a2+b2H∗
1 ) –η2r2

⎞
⎠ . (4.1)

Note first that both of the off-diagonal elements of matrix A are negative and

η1η2r1r2 –
(

η1r1b1H∗
1

2(a1 + b1P∗)
+

η2r2b2P∗

2(a2 + b2H∗
1 )

)2

= η1η2r1r2

(
1 –

b1H∗
1

a1 + b1P∗
b2P∗

a2 + b2H∗
1

)
+

(
η1r1b1H∗

1
2(a1 + b1P∗)

–
η2r2b2P∗

2(a2 + b2H∗
1 )

)2

= η1η2r1r2

(
1 –

b1H∗
1

a1 + b1P∗
b2P∗

a2 + b2H∗
1

)
> 0,

thus A(t) ≤ 0.
Noting that ab ≤ θa2

2 + b2

2θ
, θ > 0, it follows

B(t) ≤ α

a2 + b2H1

(
1

2θ1

(
H1 – H∗

1
)2 +

θ1

2θ1

(
H2 – H∗

2
)2 – r1c1

(
H1 – H∗

1
)2

)

+
η3α

2θ2

(
H1 – H∗

1
)2 +

η3αθ2

2
(
H2 – H∗

2
)2 – η3e

(
H2 – H∗

2
)2

≤ –
(

r1c1

a2 + b2Hs
1

–
α

2a2θ1
–

η3α

2θ2

)(
H1 – H∗

1
)2

–
(

η3e –
η3αθ2

2
–

αθ1

2a2

)(
H2 – H∗

2
)2.

Denote δ1 = r1c1
a2+b2Hs

1
– α

2a2θ1
– η3α

2θ2
and δ2 = η3c2 – η3αθ2

2 – αθ1
2a2

. Then taking

η3 =
1
a2

, θ1 = θ2 =
2αea2 + 2αeb2Hs

1
a2r1c1c2 + a2α2 + b2Hs

1α
2

gives

δ1 =
e(a2r1c1e – a2α

2 – b2Hs
1α

2)
a2(a2r1c1e + a2α2 + b2Hs

1α
2)

, δ2 =
a2r1c1e – a2α

2 – b2Hs
1α

2

2a2e(a2 + b2Hs
1)

.

From (B4), we know that δi > 0, i = 1, 2. It is easy to see that B(t) ≤ 0.
Obvious, dL

dt < 0 for all H1 > 0, H2 > 0, P > 0 except the equilibrium point (H∗
1 , H∗

2 , P∗)
where dL

dt = 0. According to the Lyapunov asymptotic stability theorem [9], the equilibrium
point (H∗

1 , H∗
2 , P∗) is globally asymptotically stable in the interior of R3

+. This completes the
proof. �

Theorem 4.2 If the assumptions (B3) and (B5) hold,
(B5) α2 < r1c1e,

then the equilibrium point E2(0, H2∗, P∗) system is globally asymptotically stable.
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Proof We define L : {(H1, H2, P) ∈ R3
+ : H1 > 0, H2 > 0, P > 0} → R by

L(H1, H2, P) = η1

∫ H1

0

1
(a2 + b2θ )

dθ + η2

∫ P

P∗

(θ – P∗)
(a1 + b1θ )θ

dθ

+ η3

(
H2 – H2∗ – H2∗ ln

H2

H2∗

)
,

where η1 = 1, η2 = r1a2
2/r2b2

2P2∗ , η3 = 1/a2. The function L(H1, H2, P) is defined, continu-
ous and positive definite for all H1, H2, P > 0. and the minimum L(H1, H2, P) = 0 occurs
at the equilibrium point (H∗

1 , H∗
2 , P∗)T . Calculating the derivative of L along the solution

(H1(t), H2(t), P(t))T of the system (1.5), we have

dL
dt

=
η1r1H1

a2 + b2H1

(
1 –

H1

a1 + b1P
– c1H1 –

αH2

r1

)
+ η3(H2 – H2∗)(αH1 + d – eH2)

+
η2r2(P – P∗)

a1 + b1P

(
1 –

P
a2 + b2H1

– c2P
)

=
η1r1H1

a2 + b2H1

(
–

α(H2 – H2∗)
r1

– c1H1 –
H1

a1 + b1P

)

+ η3(H2 – H2∗)
(
αH1 – e(H2 – H2∗)

)

+
η2r2(P – P∗)

a1 + b1P

(
–c2(P – P∗) +

P∗
a2

–
P

a2 + b2H1

)

=
η1r1H1

a2 + b2H1

(
–

α(H2 – H2∗)
r1

– c1H1 –
H1

a1 + b1P

)

+ η3(H2 – H2∗)
(
αH1 – e(H2 – H2∗)

)

+
η2r2(P – P∗)

a1 + b1P

(
–c2(P – P∗) –

(P – P∗)
a2 + b2H1

+
b2P∗H1

a2(a2 + b2H1)

)

≤ C(t) + D(t),

where

C(t) =
1

(a1 + b1P)(a2 + b2H1)

(
–η1r1H2

1 – η2r2(P – P∗)2 +
η2r2b2P∗

a2
H1(P – P∗)

)
,

D(t) =
(

η3α –
α

a2 + b2H1

)
H1(H2 – H2∗) –

c1r1

a2 + b2H1
H2

1 – η3e(H2 – H2∗)2.

Now, we prove C(t), D(t) is negative definite.
Let C(t) def= 1

(a1+b1P)(a2+b2H1) Y T CY where Y = ((H1), (P – P∗))T

C =

(
–η1r1

η2r2b2P∗
2a2

η2r2b2P∗
2a2

–η2r2

)
. (4.2)

Note first that both of the off-diagonal elements of matrix A are negative and

η1η2r1r2 –
(

η2r2b2P∗

2a2

)2

= η2r2

(
η1r1 –

η2r2b2
2P2∗

4a2
2

)
=

3η2r1r2

4
> 0,

thus C(t) ≤ 0.
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Noting that ab ≤ θa2

2 + b2

2θ
, θ > 0, from (2.11), for sufficiently small constant ε0 > 0, there

is an integer T > 0 such that if t > T , b2H1(t) < ε0, it follows that

B(t) ≤ α

a2 + b2H1

(
1

2θ1
H2

1 +
θ1

2
(H2 – H2∗)2 – r1c1H2

1

)

+
η3α

2θ2
H2

1 +
η3αθ2

2
(H2 – H2∗)2 – η3e(H2 – H2∗)2

≤ –
(

r1c1

a2 + ε0
–

α

2a2θ1
–

η3α

2θ2

)
H2

1

–
(

η3e –
η3αθ2

2
–

αθ1

2a2

)(
H2 – H∗

2
)2.

Denote δ1 = r1c1
a2+ε0

– α
2a2θ1

– η3α

2θ2
and δ2 = η3c2 – η3αθ2

2 – αθ1
2a2

. Then taking

η3 =
1
a2

, θ1 = θ2 =
2αea2 + 2αeε0

a2r1c1c2 + a2 + α2ε0
,

gives

δ1 =
e(a2r1c1e – a2α

2 – α2ε0)
a2(a2r1c1e + a2α2 + α2ε0)

, δ2 =
a2r1c1e – a2α

2 – α2ε0

2a2e(a2 + ε0)
.

From (B5), we know that, for sufficiently small constant ε0 > 0, δi > 0, i = 1, 2. It is easy to
see that D(t) ≤ 0.

Obviously, dL
dt < 0 for all H1 > 0, H2 > 0, P > 0 except the equilibrium point (0, H2∗, P∗)

where dL
dt = 0. According to the Lyapunov asymptotic stability theorem [9], the equilibrium

point (0, H2∗, P∗) is globally asymptotically stable in the interior of R3
+. This completes the

proof. �

5 Example and numeric simulation
Consider the following system:

dH1

dt
= 3H1

(
1 –

H1

2 + 2P
– 2H1 –

H2

10

)
,

dH2

dt
= H2(0.3H1 + 2 – 2H2),

dP
dt

= 2P
(

1 –
P

2 + 0.8H1
– 1.5P

)
.

(5.1)

By calculation, we have M = 1 – αd
r1e = 0.9 > 0, α2 = 0.09 < 8 < a2r1c1e

a2+b2Hs
1

, and it is easy to see
that the conditions (B1) and (B4) are verified. It follows from Theorem 4.1 that there is a
unique positive equilibrium point (H∗

1 , H∗
2 , P∗) = (0.383868, 1.057580, 0.517211) of system

(5.1) and it is globally asymptotically stable. Our numerical simulation supports our result
(see Fig. 1).
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Figure 1 Dynamical behavior of system (5.1) with initial values (0.4, 1.2, 0.7)T , (0.1, 0.8, 0.2)T and (0.25, 0.6, 0.3)T

Consider the following system:

dH1

dt
= 3H1

(
1 –

H1

2 + 2P
– 2H1 –

3.5H2

3

)
,

dH2

dt
= H2(3.5H1 + 2 – 2H2),

dP
dt

= 2P
(

1 –
P

2 + 0.8H1
– 1.5P

)
.

(5.2)

By calculation, we have M = 1 – αd
r1e = –0.1 < 0, α2 = 10.89 < a2r1c1e

a2+b2Hs
1

= 12, it is easy to
see that the conditions (B3) and (B5) are verified. It follows from Theorem 3.1 that there
is a unique positive equilibrium point (H1∗, H2∗, P∗) = (0, 1, 0.5) of system (5.2) and it is
globally asymptotically stable. Our numerical simulation supports our result (see Fig. 2).

6 Discussion
In this paper, a May cooperative system with strong and weak cooperative partners
is studied. We obtained the sufficient conditions that guarantee the permanence, non-
permanence and the global stability of the equilibrium points. By comparing the condi-
tions of (B1) and (B3), we found that as α becomes larger and larger, the strong partner
changes from persistent to extinct. The ecological explanation is that more and more the
strong partner become a weak partner, thus we have extinction of the strong. The above
numerical simulations also supports this conclusion.

At the end of this paper, we point out that conditions (B1) and (B3) can be weakened or
even are unnecessary. This problem is very interesting and worthy of further study in the
future.
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Figure 2 Dynamical behavior of system (5.2) with initial values (0.4, 1.4, 0.8)T , (0.1, 0.9, 0.3)T and (1.2, 0.5, 0.1)T
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