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Abstract
Here, the concept of a new and interesting Riemann–Liouville type fractional
derivative operator is exploited. Treatment of a fractional derivative operator has been
made associated with the extended Appell hypergeometric functions of two
variables and Lauricella hypergeometric function of three variables. With a view on
analytic properties and application of new Riemann–Liouville type fractional
derivative operator, we have obtained new fractional derivative formulas for some
familiar functions and for Mellin transformation formulas. For the sake of justification
of our new operator, we have established some presumably new generating
functions for an extended hypergeometric function using the new definition of
fractional derivative operator.
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1 Introduction
Recently, many authors have participated in the development of the fractional calculus
(differentiation and integration of arbitrary order). The applications of fractional calcu-
lus often appeared in the fields such as generalized voltage dividers, engineering, capac-
itor theory, feedback amplifiers, electrode-electrolyte interface models, fractional order
Chua–Hartley systems, fractional order models of neurons, the electric conductance of
biological systems, fitting experimental data, medical, and analysis of special functions
(see, e.g., [1–17]).

The authors’ interests concerned a variety of applications of fractional calculus in seem-
ingly diverse fields of sciences and engineering (see, e.g., [7, 18–22]). One may be referred
to [20, 23–30] for the details of the development of fractional calculus.

In this paper, we launch a new Riemann–Liouville fractional derivative operator asso-
ciated with hypergeometric type function. Further, we investigate some properties of the
new fractional derivative operator. As concerns the properties of the fractional derivative
operator, we are interested in recalling some extended functions like extended beta and
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hypergeometric functions (see [31]), extended Appell functions of two variables (see [32]),
and extended Lauricella functions of three variables (see [32]).

2 Preliminaries
We begin by recalling the familiar beta function B(α,β) (see, e.g., [33, Sect. 1.1]),

B(α,β) =

⎧
⎨

⎩

∫ 1
0 tα–1(1 – t)β–1 dt (�(α) > 0;�(β) > 0),

�(α)�(β)
�(α+β) (α,β ∈C \Z–

0 ),
(1)

where � denotes the well-known gamma function. Here and in the following, let C, R+,
N, and Z

–
0 be the sets of complex numbers, positive real numbers, positive integers, and

non-positive integers, respectively, and let N0 := N∪ {0}.
The classical Gauss hypergeometric function 2F1 is defined by (see, e.g., [34] and [33,

Sect. 1.5])

2F1(a, b; c; z) =
∞∑

n=0

(a)n(b)n

(c)n

zn

n!
, (2)

where (λ)n is the Pochhammer symbol defined (for λ ∈C) by (see [33, p. 2 and pp. 4-6]):

(λ)ν :=
�(λ + ν)

�(λ)
=

⎧
⎨

⎩

1 (ν = 0;λ ∈C \ {0}),
λ(λ + 1) . . . (λ + n – 1) (ν = n ∈N;λ ∈C \Z–

0 ).
(3)

Parmar et al. [31, Eq. (13)] introduced another interesting extension of the generalized
beta function B(x, y; p) as follows:

Bp,ν(x, y) = Bν(x, y; p) =
√

2p
π

∫ 1

0
tx– 3

2 (1 – t)y– 3
2 Kν+ 1

2

[
p

t(1 – t)

]

dt,

(
min

{�(x),�(y),�(p)
}

> 0
)
, (4)

where Kν(z) is expressed in terms of the modified Bessel function Iν(z) (see [35, Entry
10.25.2]) as follows (see [35, Entry 10.27.4]; see also [36, p. 39, Eq. (22)]):

Kν(z) =
π

2 sin(νπ )
[
I–ν(z) – Iν(z)

]
. (5)

By using the identity (see [35, Entry 10.39.2])

K1/2(z) =
√

π

2z
e–z, (6)

the case ν = 0 of (4) is seen to reduce to the extended beta function [37]. In fact, (6) is an
obvious particular case of

Kn+1/2(z) =
√

π

2z
e–z

n∑

k=0

(2z)–k

k!
(n + k)!
(n – k)!

(n ∈ N0), (7)

which is obtained by combining [35, Entries 10.47.9 and 10.47.12] (see also [31, Eq. (5)]).
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Now, we recall the extended Gauss hypergeometric function defined by [31, Eq. (40)]).
Parmar et al. [31, Eq. (13)] introduced another interesting extension of the generalized

Gauss hypergeometric function Fp(a, b; c; z) as follows.
Extension of the Gauss hypergeometric function We have

Fp,q(a, b; c; z) :=
∞∑

n=0

(a)n
Bq(b + n, c – b; p)

B(b, c – b)
zn

n!
(
p ≥ 0; |z| < 1,�(c) > �(b) > 0

)
. (8)

Here, by using the generalized beta function Bν(x, y; p) in (4), we gave extensions of the
Appell functions of two variables F1 and F2 (see, e.g., [36, p. 53, Eqs. (4) and (5)]) and the
Lauricella function of three variables F (3)

D (see, e.g., [36, p. 60, Eq. (4)]) in [32], respectively,
as follows.

Extension of the Appell hypergeometric function For F1 we have

F1;p,q(a, b, c; d; x, y) :=
∞∑

n,m=0

Bq(a + m + n, d – a; p)(b)n(c)m

B(a, d – a)
xn

n!
ym

m!
(
max

{|x|, |y|} < 1
)
. (9)

Extension of the Appell hypergeometric function F2 We have

F2;p,q(a, b, c; d, e; x, y)

:=
∞∑

n,m=0

Bq(b + n, d – b; p)Bq(c + m, e – c; p)(a)m+n

B(b, d – b)B(c, e – c)
xn

n!
ym

m!
(|x| + |y| < 1

)
. (10)

Extension of the Lauricella function of three variables For F (3)
D we have

F (3)
D;p,q(a, b, c, d; e; x, y, z)

:=
∞∑

m,n,r=0

Bq(a + m + n + r, e – a; p)(b)m(c)n(d)r

B(a, e – a)
xn

n!
ym

m!
zr

r!
(
max

{|x|, |y|, |z|} < 1
)
. (11)

It is noted in passing that setting q = 0 in (9), (10), and (11) and then p = 0 in the respec-
tive resulting equations are seen to yield the Appell functions of two variables F1, F2, and
the Lauricella function of three variables F (3)

D .
The following integral representation appears in [31, p. 99, Eq. (42)]:

Fp,ν(a, b; c; z) =
√

2p
π

1
B(b, c – b)

∫ 1

0
tb– 3

2 (1 – t)c–b– 3
2 (1 – zt)–aKν+ 1

2

[
p

t(1 – t)

]

dt

(∣
∣arg(1 – z)

∣
∣ < π ; p = 0;ν = 0, p = 0,�(c) > �(b) > 0

)
. (12)
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The following integral representations appear in [32]:

F1;p,q(a, b, c; d; x, y)

=
√

2p
π

1
B(a, d – a)

∫ 1

0
ta– 3

2 (1 – t)d–a– 3
2 (1 – xt)–b(1 – yt)–cKq+ 1

2

(
p

t(1 – t)

)

dt

(
p ∈ R

+; p = 0,
∣
∣arg(1 – x)

∣
∣ < π ,

∣
∣arg(1 – y)

∣
∣ < π ;

�(d) > �(a) > 0,�(b) > 0,�(c) > 0,�(q) > 0
)
. (13)

We have

F2;p,q(a, b, c; d, e; x, y)

=
2p
π

1
B(b, d – b)B(c, e – c)

∫ 1

0

∫ 1

0
tb– 3

2 (1 – t)d–b– 3
2 sc– 3

2 (1 – s)e–c– 3
2 (1 – xt – ys)–a

× Kq+ 1
2

(
p

t(1 – t)

)

Kq+ 1
2

(
p

s(1 – s)

)

dt ds

(
p ∈ R

+; p = 0,
∣
∣arg(1 – x – y)

∣
∣ < π ;

�(d) > �(b) > 0,�(e) > �(c) > 0,�(a) > 0,�(q) > 0
)
. (14)

We have

F (3)
D;p,q(a, b, c, d; e; x, y, z)

=
√

2p
π

1
B(a, e – a)

×
∫ 1

0
ta– 3

2 (1 – t)e–a– 3
2 (1 – xt)–b(1 – yt)–c(1 – zt)–dKq+ 1

2

(
p

t(1 – t)

)

dt

(
p ∈ R

+; p = 0,
∣
∣arg(1 – x)

∣
∣ < π ,

∣
∣arg(1 – y)

∣
∣ < π ,

∣
∣arg(1 – z)

∣
∣ < π ;

�(e) > �(a) > 0,�(b) > 0,�(c) > 0,�(d) > 0,�(q) > 0
)
. (15)

3 New fractional derivative operator
In this section, we shall exploit the concept of our new Riemann–Liouville type fractional
derivative operator. For this purpose, we first consider the Riemann–Liouville fractional
derivative of f (z) of order v as follows:

D
v
z
{

f (z)
}

:=
1

�(–v)

∫ z

0
(z – t)–v–1f (t) dt

(�(v) < 0
)
, (16)

where the integration path is a line from 0 to z in the complex t-plane.
For the �(v) ≥ 0, let m ∈ N be the smallest integer greater than �(v) and so m – 1 ≤

�(v) < m, the Riemann–Liouville fractional derivative of f (z) of order v is defined as

D
v
z
{

f (z)
}

:=
dm

dzm D
v–m
z

{
f (z)

}

=
dm

dzm

{
1

�(–v + m)

∫ z

0
(z – t)–v+m–1f (t) dt

}

. (17)
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The new Riemann–Liouville fractional derivative of f (z) of order v is defined as

D
v;[p]q
z

{
f (z)

}
:=

√
2p
π

�(–v)

∫ z

0
f (t)(z – t)–v– 3

2 Kq+ 1
2

(
pz2

t(z – t)

)

dt

(�(v) < 0;�(p) > 0;�(q) > 0
)
. (18)

When �(v) ≥ 0, let m ∈N be the smallest integer greater than �(v) and so m–1 ≤ �(v) <
m, then a new Riemann–Liouville fractional derivative of f (z) of order v can be defined as
follows:

D
v;[p]q
z

{
f (z)

}
:=

dm

dzm D
v–m;[p]q
z

{
f (z)

}

=
dm

dzm

{
√

2p
π

�(–v + m)

∫ z

0
f (t)(z – t)–v+m– 3

2 Kq+ 1
2

(
pz2

t(z – t)

)

dt
}

(�(p) > 0;�(q) > 0
)
. (19)

Remark On setting p = 0, q = 0 in (18) and (19) we are left with the classical Riemann–
Liouville fractional derivative. In the case q = 0 in Eqs. (18) and (19) reduces to the well-
known fractional derivative operator given in [38].

4 Fractional derivative of some functions
Theorem 4.1 Let m – 1 ≤ �(v) < m < �(λ) for some m ∈N. Suppose that a function f (z) is
analytic at the origin with its Maclaurin expansion given by f (z) =

∑∞
n=0 anzn, (|z| < ζ ) for

some ζ ∈ R+. Then we have

D
v;[p]q
z

{
zλ– 3

2 f (z)
}

=
zλ–v–2

�(–v)

∞∑

n=0

anBp,q(λ + n, –v)zn. (20)

Proof Now applying (18) in the definition (19) to the function zλ– 3
2 f (z), and changing the

order of integration and summation, we obtain

D
v;[p]q
z

{
zλ– 3

2 f (z)
}

=

√
2p
π

�(–v)

∞∑

n=0

an

∫ z

0
tλ+n– 3

2 (z – t)–v– 3
2 Kq+ 1

2

(
pz2

t(z – t)

)

dt. (21)

Putting t = ξz in (21), we obtain

D
v;[p]q
z

{
zλ– 3

2 f (z)
}

=
zλ–v–2

√
2p
π

�(–v)

∞∑

n=0

anzn
∫ 1

0
ξλ+n– 3

2 (1 – ξ )–v– 3
2 Kq+ 1

2

(
p

ξ (1 – ξ )

)

dξ . (22)

Applying the definition of extended beta function, and after some simplification, we get
the desired result as follows:

D
v;[p]q
z

{
zλ– 3

2 f (z)
}

=
zλ–v–2

�(–v)

∞∑

n=0

anBp,q(λ + n, –v)zn, (23)

which completes the proof. �
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Theorem 4.2 Let m – 1 ≤ �(v) < m < �(λ) for some m ∈N. Suppose that a function f (z) is
analytic at the origin with its Maclaurin expansion given by f (z) =

∑∞
n=0 anzn, (|z| < ζ ) for

some ζ ∈ R+. Then we have

D
v;[p]q
z

{
zλ– 3

2 log zf (z)
}

=
∞∑

n=0

zλ+n–v–2{an log(z)Bp,q(λ + n, –v) + bnBp,q(λ + n, –v + 1)
}

. (24)

Proof Now applying (18) in the definition (19) to the function zλ– 3
2 log zf (z), and changing

the order of integration and summation, we obtain

D
v;[p]q
z

{
zλ– 3

2 log zf (z)
}

=

√
2p
π

�(–v)

∞∑

n=0

an

∫ z

0
tλ+n– 3

2 (z – t)–v– 3
2 Kq+ 1

2

(
pz2

t(z – t)

)

log t dt. (25)

Putting t = ξz in (25), we obtain

D
v;[p]q
z

{
zλ– 3

2 log zf (z)
}

=

√
2p
π

�(–v)

∞∑

n=0

anzλ+n–v–2

×
∫ 1

0
ξλ+n– 3

2 (1 – ξ )–v– 3
2 Kq+ 1

2

(
p

ξ (1 – ξ )

)

log(zξ ) dξ .

After applying the property of log-function, and some simplification, we get

D
v;[p]q
z

{
zλ– 3

2 log zf (z)
}

=

√
2p
π

�(–v)

∞∑

n=0

zλ+n–v–2
{

an log(z)
∫ 1

0
ξλ+n– 3

2 (1 – ξ )–v– 3
2 Kq+ 1

2

(
p

ξ (1 – ξ )

)

dξ

+ an log(2)
∫ 1

0
ξλ+n– 3

2 (1 – ξ )–v+m– 1
2 Kq+ 1

2

(
p

ξ (1 – ξ )

)

dξ

}

.

Applying the definition of extended beta function, and after some simplification, we get
the desired result as follows:

D
v;[p]q
z

{
zλ– 3

2 log zf (z)
}

=
∞∑

n=0

zλ+n–v–2{an log(z)Bp,q(λ + n, –v) + bnBp,q(λ + n, –v + 1)
}

, (26)

which completes the proof. �

Example 4.3 Let m – 1 ≤ �(v) < m < �(λ) for some m ∈N. Then we have

D
v;[p]q
z

{
zλ

}
=

Bp,q(λ + 3
2 , –v)

�(–v)
zλ–v–2. (27)
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Solution Now applying the definition of the new fractional derivative operator, we ob-
tain

D
v;[p]q
z

{
zλ

}
=

√
2p
π

�(–v)

∫ z

0
tλ(z – t)–v– 3

2 Kq+ 1
2

(
pz2

t(z – t)

)

dt. (28)

Putting t = ξz in (28), we obtain

D
v;[p]q
z

{
zλ

}
=

zλ–v– 1
2

√
2p
π

�(–v)

∫ 1

0
ξλ(1 – ξ )–v– 3

2 Kq+ 1
2

(
p

ξ (1 – ξ )

)

dξ . (29)

Applying the definition of the extended beta function, we obtain the desired solu-
tion.

Example 4.4 Let m – 1 ≤ �(v) < m < �(λ) for some m ∈N. Then we have

D
λ–v;[p]q
z

{
zλ– 3

2 (1 – z)–α
}

=
�(λ)
�(v)

Fp,q(α,λ; v; z)zv–2. (30)

Solution Now applying the definition of the new fractional derivative operator, we obtain

D
λ–v;[p]q
z

{
zλ– 3

2 (1 – z)–α
}

=

√
2p
π

�(v – λ)

∫ z

0
tλ– 3

2 (1 – t)–α(z – t)v–λ– 3
2 Kq+ 1

2

(
pz2

t(z – t)

)

dt. (31)

Putting t = ξz in (31), we obtain

D
λ–v;[p]q
z

{
zλ– 3

2 (1 – z)–α
}

=
zv–2

√
2p
π

�(v – λ)

∫ 1

0
ξλ– 3

2 (1 – ξ )v–λ– 3
2 (1 – zξ )–αKq+ 1

2

(
p

ξ (1 – ξ )

)

dξ . (32)

Applying the definition of the extended hypergeometric function, we get the desired so-
lution.

Example 4.5 Let m – 1 ≤ �(v) < m < �(λ) for some m ∈N. Then we have

D
λ–v;[p]q
z

{
zλ– 3

2 (1 – az)–α(1 – bz)–β
}

=
�(λ)
�(v)

F1;p,q(λ,α,β ; v; az, bz)zv–2. (33)

Solution Now applying the definition of new fractional derivative operator, we obtain

D
λ–v;[p]q
z

{
zλ– 3

2 (1 – az)–α(1 – bz)–β
}

=

√
2p
π

�(v – λ)

∫ z

0
tλ– 3

2 (1 – at)–α(1 – bt)–β (z – t)v–λ– 3
2 Kq+ 1

2

(
pz2

t(z – t)

)

dt. (34)
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Putting t = ξz in (34), we obtain

D
λ–v;[p]q
z

{
zλ– 3

2 (1 – az)–α(1 – bz)–β
}

=
zv–2

√
2p
π

�(v – λ)

×
∫ 1

0
ξλ– 3

2 (1 – ξ )v–λ– 3
2 (1 – azξ )–α(1 – bzξ )–βKq+ 1

2

(
p

ξ (1 – ξ )

)

dξ . (35)

Applying the definition of the extended hypergeometric definition, we get the desired so-
lution.

Example 4.6 Let m – 1 ≤ �(v) < m < �(λ) for some m ∈N. Then we have

D
λ–v;[p]q
z

{
zλ– 3

2 (1 – az)–α(1 – bz)–β (1 – cz)–γ
}

=
�(λ)
�(v)

F (3)
D;p,q(λ,α,β ,γ ; v; az, bz, cz)zv–2. (36)

Solution Now applying the definition of the new fractional derivative operator, we obtain

D
λ–v;[p]q
z

{
zλ– 3

2 (1 – az)–α(1 – bz)–β (1 – cz)–γ
}

=

√
2p
π

�(v – λ)

×
∫ z

0
tλ– 3

2 (1 – at)–α(1 – bt)–β(1 – ct)–γ (z – t)v–λ– 3
2 Kq+ 1

2

(
pz2

t(z – t)

)

dt. (37)

Putting t = ξz in (37), we obtain

D
λ–v;[p]q
z

{
zλ– 3

2 (1 – az)–α(1 – bz)–β (1 – cz)–γ
}

=
zv–2

√
2p
π

�v – λ

∫ 1

0
ξλ– 3

2 (1 – ξ )v–λ– 3
2 (1 – azξ )–α(1 – bzξ )–β (1 – czξ )–γ

× Kq+ 1
2

(
p

ξ (1 – ξ )

)

dξ . (38)

Applying the definition of the extended hypergeometric definition, we get the desired so-
lution.

Example 4.7 Let m – 1 ≤ �(v) < m < �(λ) for some m ∈N. Then we have

D
λ–v;[p]q
z

{

zλ–1(1 – z)–αFp,q

(

α,β ;γ ;
(

x
1 – z

))}

=
zv–1

B(β ,γ – λ)�(v – λ)
F2;p,q(α,β ,λ;γ , v; x, z). (39)
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Solution Applying the definition of the extended Gauss hypergeometric function, we ob-
tain

D
λ–v;[p]q
z

{

zλ–1(1 – z)–αFp,q

(

α,β ;γ ;
(

x
1 – z

))}

= D
λ–v;[p]q
z

{

zλ–1(1 – z)–α

∞∑

n=0

(α)n
Bp,q(β + n,γ – β)

B(β ,γ – β)n!

(
x

1 – z

)n
}

. (40)

Using the generalized binomial series

(1 – z)–α =
∞∑

n=0

(α)n
zn

n!
(|z| < 1

)
(41)

in (40), we obtain

D
λ–v;[p]q
z

{

zλ–1(1 – z)–αFp,q

(

α,β ;γ ;
(

x
1 – z

))}

=
1

B(β ,γ – β)

∞∑

n,m=0

Bp,q(β + n,γ – β)
(α)n(α + n)m

m!
xn

n!
D

λ–v;[p]q
z

{
zλ+m–1}. (42)

Applying the definition of the extended fractional derivative, we get the solution as fol-
lows:

D
λ–v;[p]q
z

{

zλ–1(1 – z)–αFp,q

(

α,β ;γ ;
(

x
1 – z

))}

=
1

B(β ,γ – β)�(μ – λ)

×
∞∑

n,m=0

(α)n+mBp,q(β + n,γ – β)Bp,q(λ + m,μ – λ)
zμ+m–1

m!
xn

n!
. (43)

Now using the definition of the extended Appell function F2;p,q, we get the desired solu-
tion.

5 Mellin transform of fractional derivative operator
The Mellin transform of a function f (t) is defined by (see, e.g. [39, p. 305 et seq.] and [40])

M
{

f (t) : t → s
}

:=
∫ ∞

0
ts–1f (t) dt, (44)

provided the improper integral in (44) exists.

Theorem 5.1 Let m – 1 ≤ �(v) < m < �(λ) for some m ∈N. Suppose that a function f (z) is
analytic at the origin with its Maclaurin expansion given by f (z) =

∑∞
n=0 anzn, (|z| < ζ ) for

some ζ ∈ R+. Then we have

M
{
D

v;[p]q
z

[
zλ– 3

2 f (z)
]

: s
}

=
2s–1�( s–q

2 )�( s+q+1
2 )

�(–v)�π

∞∑

n=0

anB(λ + n + s, s – v)zλ+n–v–2. (45)
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Proof We first recall here the definition of extended fractional derivative operator. Then
using the property of interchanging the order of summation and integration and substi-
tuting t = zξ , we get

D
v;[p]q
z

{
zλ– 3

2 f (z)
}

=

√
2p
π

�(–v)

∞∑

n=0

anzλ+n–v–2
∫ 1

0
ξλ+n– 3

2 (1 – ξ )–v– 3
2 Kq+ 1

2

(
p

ξ (1 – ξ )

)

dξ . (46)

Now applying the definition of the Mellin transform (44), and interchanging the order
of integrals, we obtain

M
{
D

v;[p]q
z

[
zλ– 3

2 f (z)
]}

=

√
2
π

�(–v)

∞∑

n=0

anzλ+n–v–2

×
∫ 1

0
ξλ+n– 3

2 (1 – ξ )–v– 3
2

{∫ ∞

0
ps– 1

2 Kq+ 1
2

(
p

ξ (1 – ξ )

)

dp
}

dξ . (47)

Substituting p
ξ (1–ξ ) = w and dp = ξ (1 – ξ ) dw

M
{
D

v;[p]q
z

[
zλ– 3

2 f (z)
]}

=
2s–1�( s–q

2 )�( s+q+1
2 )

�(–v)�π

∞∑

n=0

anzλ+n–v–2
∫ 1

0
ξλ+n+s–1(1 – ξ )–v+s–1 dξ . (48)

On applying the definition of the beta function in (48), we obtained the desired result. �

Theorem 5.2 Let m – 1 ≤ �(v) < m < �(λ) for some m ∈N. Suppose that a function f (z) is
analytic at the origin with its Maclaurin expansion given by f (z) =

∑∞
n=0 anzn, (|z| < ζ ) for

some ζ ∈ R+. Then we have

M
{
D

v;[p]q
z

[
zλ– 3

2 log zf (z)
]

: s
}

=
2s–1 log z�( s–q

2 )�( s+q+1
2 )

�(–v)�π

∞∑

n=0

anB(λ + n + s, s – v)zλ+n–v–2

+
2s–1�( s–q

2 )�( s+q+1
2 )

�(–v)�π

∞∑

n=0

anB(λ + n + s, s – v + m + 1)zλ+n–v–2. (49)

Proof We first recall here the definition of the extended fractional derivative operator.
Then using the property of interchanging the order of summation and integration and
substituting t = zξ , we get

{
D

v;[p]q
z

[
zλ– 3

2 log zf (z)
]

: s
}

=

√
2p
π

�(–v)

∞∑

n=0

anzλ+n–v–2
∫ 1

0
log(zξ )ξλ+n– 3

2 (1 – ξ )–v– 3
2 Kq+ 1

2

(
p

ξ (1 – ξ )

)

dξ . (50)
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Now, applying the property of the log-function in (50), we get

{
D

v;[p]q
z

[
zλ– 3

2 log zf (z)
]

: s
}

=

√
2p
π

�(–v)

∞∑

n=0

anzλ+n–v–2

×
[

log(z)
∫ 1

0
ξλ+n– 3

2 (1 – ξ )–v– 3
2 Kq+ 1

2

(
p

ξ (1 – ξ )

)

dξ

+
∫ 1

0
log(ξ )ξλ+n– 3

2 (1 – ξ )–v– 3
2 Kq+ 1

2

(
p

ξ (1 – ξ )

)

dξ

]

, (51)

{
D

v;[p]q
z

[
zλ– 3

2 log zf (z)
]

: s
}

=

√
2p
π

�(–v)

∞∑

n=0

anzλ+n–v–2 log(z)
∫ 1

0
ξλ+n– 3

2 (1 – ξ )–v– 3
2 Kq+ 1

2

(
p

ξ (1 – ξ )

)

dξ

+

√
2p
π

�(–v)

∞∑

n=0

bnzλ+n–v–2
∫ 1

0
ξλ+n– 3

2 (1 – ξ )–v+m+1– 3
2 Kq+ 1

2

(
p

ξ (1 – ξ )

)

dξ , (52)

where bn = an log 2.
Now applying the definition of the Mellin transform (44), and interchanging the order

of integrals, we obtain

M
{
D

v;[p]q
z

[
zλ– 3

2 log zf (z)
]

: s
}

=

√
2
π

�(–v)

∞∑

n=0

anzλ+n–v–2 log(z)
∫ 1

0
ξλ+n– 3

2 (1 – ξ )–v– 3
2

×
{∫ ∞

0
ps– 1

2 Kq+ 1
2

(
p

ξ (1 – ξ )

)

dp
}

dξ

+

√
2
π

�(–v)

∞∑

n=0

bnzλ+n–v–2
∫ 1

0
ξλ+n– 3

2 (1 – ξ )–v+m+1– 3
2

×
{∫ ∞

0
ps– 1

2 Kq+ 1
2

(
p

ξ (1 – ξ )

)

dp
}

dξ . (53)

On setting p
ξ (1–ξ ) = w and dp = ξ (1 – ξ ) dw in (53), we get

M
{
D

v;[p]q
z

[
zλ– 3

2 log zf (z)
]

: s
}

=

√
2
π

�(–v)

∞∑

n=0

anzλ+n–v–2 log(z)
∫ 1

0
ξλ+n+s–1(1 – ξ )–v+s– 3

2

{∫ ∞

0
ws– 1

2 Kq+ 1
2

(w) dw
}

dξ

+

√
2
π

�(–v)

∞∑

n=0

bnzλ+n–v–2
∫ 1

0
ξλ+n+s–1(1 – ξ )(–v+m+s+1)–1

×
{∫ ∞

0
ws– 1

2 Kq+ 1
2

(w) dw
}

dξ . (54)
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Applying the definition of the beta function and using the formula [35, Entry 10.43.19]),
we obtained the desired result (49). �

Example 5.3 Let m – 1 ≤ �(v) < m < �(λ) for some m ∈N. Then we have

M
{
D

v;[p]q
z

[
zλ

]
: s

}
=

2s–1�( s–q
2 )�( s+q+1

2 )
�(–v)�π

B
(

λ + s +
1
2

, s – v – 1
)

zλ–v–1. (55)

Solution We first recall here the definition of the extended fractional derivative operator,
and setting t = zξ , we get

{
D

v;[p]q
z

[
zλ

]
: s

}
=

√
2p
π

zλ–v– 1
2

�(–v)

∫ 1

0
ξλ(1 – ξ )–v– 3

2 Kq+ 1
2

(
p

ξ (1 – ξ )

)

dξ . (56)

Applying the definition of the Mellin transform (44), and interchanging the order of
integrals, we obtain

M
{
D

v;[p]q
z

[
zλ

]
: s

}

=

√
2p
π

zλ–v– 1
2

�(–v)

∫ 1

0
ξλ(1 – ξ )–v– 3

2

{∫ ∞

0
ps– 1

2 Kq+ 1
2

(
p

ξ (1 – ξ )

)

dp
}

dξ . (57)

On setting p
ξ (1–ξ ) = w and dp = ξ (1 – ξ ) dw in (57), and applying the formula [35, Entry

10.43.19]), we get

M
{
D

v;[p]q
z

[
zλ

]
: s

}
=

2s–1�( s–q
2 )�( s+q+1

2 )zλ–v– 1
2

�(–v)�π

∫ 1

0
ξλ+s– 1

2 (1 – ξ )–v+s–2 dξ . (58)

Using the definition of the beta function in (58), we get the desired solution.

Example 5.4 Let m – 1 ≤ �(v) < m < �(λ) for some m ∈N. Then we have

M
{
D

v;[p]q
z

[
(1 – z)–α

]
: s

}

=
2s–1�( s–q

2 )�( s+q+1
2 )

�(–v)�π

∞∑

n=0

(α)n

n!
B
(

n + s +
1
2

, s – v – 1
)

zv–1. (59)

Solution Applying the binomial theorem

(1 – z)–α =
∞∑

n=0

(α)n

n!
zn (60)

in the left hand side of (45), we get

M
{
D

v;[p]q
z

[
(1 – z)–α

]
: s

}
=

∞∑

n=0

(α)n

n!
M

{
D

v;[p]q
z

[
zn] : s

}
. (61)

Now, following the parallel lines of the solution of example 1 (see, e.g., (55)), we get the
desired solution. We omit the details.



Shadab et al. Advances in Difference Equations  (2018) 2018:167 Page 13 of 16

6 Application
In this section, we establish some linear and bilinear generating relations for the extended
hypergeometric function Fp,q (9).

Theorem 6.1 Let m – 1 ≤ �(v) < m < �(λ) for some m ∈ N. Then we have

∞∑

n=0

(λ)n

n!
Fp,q(λ + n,α;β ; z)tn = (1 – t)–λFp,q

(

λ,α;β ;
z

1 – t

)

. (62)

Proof Considering the elementary identity (see [36, p. 291] and [38, p. 1832])

[
(1 – z) – t

]–λ = (1 – t)–λ

[

1 –
z

1 – t

]–λ

. (63)

Now we expand the left hand side of (63) for |t| < |1 – z| using the generalized binomial
theorem (41) as follows:

∞∑

n=0

(λ)n

n!
(1 – z)–λ

(
t

1 – z

)n

= (1 – t)–λ

[

1 –
z

1 – t

]–λ

. (64)

Now multiplying by zα– 3
2 and applying the new fractional derivative operator Dα–β ;[p]q

z

on both sides of (64), we obtain

D
α–β ;[p]q
z

{ ∞∑

n=0

(λ)n

n!
(1 – z)–λ

(
t

1 – z

)n

zα– 3
2

}

= (1 – t)–λ
D

α–β ;[p]q
z

{

zα– 3
2

[

1 –
z

1 – t

]–λ}

. (65)

Under the guarantee of uniform convergence of the series, we exchange the summation
and the fractional operator as follows:

∞∑

n=0

(λ)ntn

n!
D

α–β ;[p]q
z

{
zα– 3

2 (1 – z)–λ–n} = (1 – t)–λ
D

α–β ;[p]q
z

{

zα– 3
2

[

1 –
z

1 – t

]–λ}

. (66)

Using the result (30), we get the desired result. �

Theorem 6.2 Let m – 1 ≤ �(v) < m < �(λ) for some m ∈ N. Then we have

∞∑

n=0

(λ)n

n!
Fp,q(ρ – n,α;β ; z)tn = (1 – t)–λF1;p,q

(

α,ρ,λ;β ; z,
–zt
1 – t

)

. (67)

Proof Considering the elementary identity (see [36, p. 291] and [37, p. 595])

[
1 – (1 – z)t

]–λ = (1 – t)–λ

[

1 +
zt

1 – t

]–λ

. (68)
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Now we expand the left hand side of (68) for |t| < |1 – z| as follows:

∞∑

n=0

(λ)n

n!
(1 – z)ntn = (1 – t)–λ

[

1 –
(–zt)
1 – t

]–λ

. (69)

Now multiplying by zα– 3
2 (1 – z)–ρ and applying the new fractional derivative operator

D
α–β ;[p]q
z on both sides of (51), we obtain

D
α–β ;[p]q
z

{ ∞∑

n=0

(λ)n

n!
(1 – z)–ρ+nzα– 3

2

}

tn

= (1 – t)–λ
D

α–β ;[p]q
z

{

zα– 3
2 (1 – z)–ρ

[

1 –
(–zt)
1 – t

]–λ}

. (70)

Under the guarantee of uniform convergence of the series, we exchange the summation
and the fractional operator as follows:

∞∑

n=0

(λ)n

n!
D

α–β ;[p]q
z

{
(1 – z)–(ρ–n)zα– 3

2
}

tn

= (1 – t)–λ
D

α–β ;[p]q
z

{

zα– 3
2 (1 – z)–ρ

[

1 –
(–zt)
1 – t

]–λ}

. (71)

Using the results (30) and (33), we get the desired result. �

Theorem 6.3 Let m – 1 ≤ �(v) < m < �(λ) for some m ∈ N. Then we have

∞∑

n=0

(λ)n

n!
Fp,q(γ , –n; δ; z)Fp,q(λ + n,α;β ; x)tn

= (1 – t)–λF2;p,q

(

λ,α,γ ;β , δ;
x

1 – t
,

–zt
1 – t

)

. (72)

Proof Replacing t by (1 – z)t in (63), we get

∞∑

n=0

(λ)n

n!
Fp,q(λ + n,α;β ; z)(1 – z)ntn

=
[
1 – (1 – z)t

]–λFp,q

(

λ,α;β ;
z

1 – (1 – z)t

)

. (73)

We multiply both sides by zα– 3
2 and D

γ –δ;[p]q
z in (73) as follows:

D
γ –δ;[p]q
z

{ ∞∑

n=0

(λ)n

n!
zα– 3

2 Fp,q(λ + n,α;β ; x)(1 – z)ntn

}

= D
γ –δ;[p]q
z

{

zα– 3
2
[
1 – (1 – z)t

]–λFp,q

(

λ,α;β ;
x

1 – (1 – z)t

)}

. (74)
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Interchanging the order of summation and fractional derivative under the conditions
|x| < 1, | 1–z

1–x t| < 1, and | x
1–t | + | zt

1–t | < 1, we obtain

∞∑

n=0

(λ)n

n!
D

γ –δ;[p]q
z

{
zα– 3

2 (1 – z)n}Fp,q(λ + n,α;β ; x)tn

= (1 – t)–λ
D

γ –δ;[p]q
z

{

zα– 3
2

(

1 –
–zt
1 – t

)–λ

Fp,q

(

λ,α;β ;
z

1 – (1 – z)t

)}

. (75)

�

7 Concluding remark
In this paper, we have defined an interesting Riemann–Liouville type fractional derivative
operator. Further, we have investigated some important properties of the new fractional
derivative operator. As an application and justification of our new operator, we have es-
tablished some interesting generating functions for the extended hypergeometric function
Fp,q using the new operator.
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