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Abstract
This paper is devoted to establishing the existence theory for at least one solution to
a coupled system of fractional order differential equations (FDEs). The problem under
consideration is subjected to movable type integral boundary conditions over a finite
time interval. Furthermore, we investigate the approximate solutions to the
considered problem with the help of the differential transform. Moreover, some
necessary conditions for the Hyers–Ulam type stability to the solution of the
proposed problem are developed. The whole investigation has been illustrated by
providing some suitable examples.
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1 Introduction
The study of FDEs is a vital area for research both theoretically and in application point of
view. For the recent applications of FDEs in the field of physics, biophysics, bioengineering,
control theory, aerodynamics, biochemistry viscoelasticity, electrochemistry, mathemati-
cal biology, economic, signal and image processing etc. (see [1–6]). In last few decades the
area related to the existence theory of solutions/positive solutions of the aforesaid equa-
tions has been got much attentions from researchers. Plenty of results can be traced out
in literature concerning with existence theory for solutions to FDEs, for more discussion
and results see [7–21]. Since most of the applied phenomenons and process can be mod-
eled in the form of coupled systems of classical/non-integer order differential equations.
Therefore, many authors have been concentrated to establish the existence theory of so-
lutions for the mentioned systems. In this regard, plenty of research articles can be found
in literature, few of them are [22–28]. Recently, Sudsutad and Tariboon [22], studied the
following class with three point integral boundary conditions:

⎧
⎨

⎩

CDαu(t) = φ(t, u(t)), t ∈ J := [0, 1],

u(0) = 0, u(1) = δ
�(θ )

∫ η

0 (η – s)θ–1u(s) ds.
(1)
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Here α ∈ (1, 2], η, δ ∈ (0, 1) and we have the nonlinear functions φ ∈ (J × R, R+); CD is the
Caputo fractional derivative. Sufficient conditions for existence of solutions were formed
to the class (1) of FDEs.

Recently another aspects devoted to the stability and numerical analysis of FDEs have
been attracted by many researchers. Since in most of the situations, to find exact solu-
tions to nonlinear problems is a challenging task and often it is quite difficult job to search
out the exact solution. Therefore, strong motivations have been observed from the re-
searchers to find best approximate solutions to nonlinear problems. For the mentioned
task, they used different techniques like decomposition methods [29], homotopy meth-
ods [30], and integral transform methods [31], etc. One of the most powerful tools for
numerical solutions to nonlinear and linear problems of (DEs) and FDEs is devoted to the
generalized differential transform method (GDTM). The mentioned transform has been
applied in various articles to treat nonlinear problems of FDEs for numerical solutions;
see [32–35]. It is to be noted that there is no classical method to handle the nonlinear
problems of FDEs for getting explicit solutions. This is due to the complexity of fractional
calculus involved in the considered problems. Therefore, we need a reliable approach to
find approximate solutions in the form of series to the proposed problems. On the other
hand it is also important and interesting task if corresponding to the approximate solu-
tions stability is achieved. Very recently stability analysis of FDEs has attracted great at-
tention. Various type of stability analysis like Lyapunov type stability, Mittag Leffler type
stability has been considered in many papers; see [36–38]. In last few years Hyers–Ulam
type stability has given much attention. Because, it is quit useful in many applications like
as numerical analysis, optimization, biology, economics, physics, dynamics, where finding
the exact solution is quite difficult. For more information about Hyers–Ulam stability, we
refer [39–45].

The class of FDEs devoted to integral boundary conditions has been studied by many
authors; see [46–48]. This is due to the fact that integral boundary conditions have var-
ious applications in applied fields including blood flow problems, chemical engineering,
thermo-elasticity, underground water flow, population dynamics, and so forth. Further
the concerned differential equations under movable type integral boundary conditions
are connected with mathematical physics, mechanics, engineering, economics and so on.
They come up when values of the function on the boundary are connected to its value in-
side the domain. Sometimes, it is better to impose integral conditions because they lead to
more precise measure than the local conditions. Therefore in last few years many authors
have paid more and more attention to investigate the existence of solutions to FDEs under
movable type boundary conditions; see [49–51]. For FDEs with integral boundary condi-
tions and comments on their importance, we refer the reader to [52, 53] and the references
therein.

Inspired from the aforesaid work, the aims and objectives of this paper is concerning to
establish the existence theory to the following movable type boundary value problem of
FDEs:

⎧
⎨

⎩

CDαu(t) = φ(t, v(t)), CDβv(t) = ψ(t, u(t)), t ∈ J ,

u(0) = 0, v(0) = 0, u(1) =
∫ η

0 u(s) ds, v(1) =
∫ ξ

0 v(s) ds,
(2)

where α,β ∈ (1, 2] and η, ξ ∈ (0, 1) and φ,ψ ∈ (J × [0,∞), [0,∞)). It is to be noted that
boundary conditions in system (2) are movable over the interval J . Then by using various
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tools of fixed point theory to obtain sufficient conditions for existence and uniqueness of
positive solution. Furthermore, the approximate solutions are obtained by using (GDTM).
Also, the Hyers–Ulam stability analysis is carried out for the corresponding numerical so-
lutions about an exact (unique) solution. The established analysis and theory is demon-
strated by providing examples. Further we remark that the considered coupled system
include two, three, multi point, and nonlocal boundary value problems as special cases.

2 Background materials
In this section, we recall some basic results needed for our investigations.

Definition 2.1 ([2–5]) The fractional integral of order q ∈ R+ of a function x : (0,∞) → R
is defined as

Iqx(t) =
1

�(q)

∫ t

a
(t – s)q–1x(s) ds

provided the integral converges on R+.

Definition 2.2 ([2–5]) The derivative for a function x ∈ R+ → R defined by

CDqx(t) =
1

�(m – q)

∫ t

a
(t – s)m–q–1x(m)(s) ds,

where m = [q]+1 and [q] represents the integer part of q, is called Caputo fractional deriva-
tive.

Lemma 2.3 ([1, 6]) The solution of the homogeneous FDE

CDqx(t) = 0

is given by

x(t) = k0 + k1t + k2t2 + · · · + km–1tm–1,

such that ki ∈ R, j = 0, 1, 2, . . . , m – 1. In view of this result, the solutions of the non-
homogeneous FDE

CDqx(t) = y(t)

is given by

x(t) = Iqy(t) + k0 + k1t + k2t2 + · · · + km–1tm–1,

for some ki ∈ R, j = 0, 1, 2, . . . , m – 1.

Lemma 2.4 ([1, 6]) For q > 0, the following result holds:

Iq[CDqx(t)
]

= x(t) + k0 + k1t + k2t2 + · · · + km–1tm–1,

where ki ∈ R, j = 0, 1, 2, . . . , m – 1.
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Definition 2.5 ([32–34]) For a function x(t), the generalized differential transform (GDT)
is defined by

x(k) =
1

�(kq + 1)

[
dkqx(t)

dtkq

]

, at t = t0, k = 1, 2, . . . .

The inverse differential transform of x(k) is given by

x(t) =
∞∑

k=0

x(k)(t – t0)qk .

In real world problems, the solution x(t) is formulated in the finite series form as

x(t) =
i∑

k=0

x(k)(t – t0)qk .

Let E = {u(t) : u(t) ∈ C(J )} be the Banach space endowed with norm ‖u‖E =
maxt∈J |u(t)|. Then obviously the product E × E is also a Banach space endowed with
a norm ‖(u, v)‖E×E = max{‖u‖E,‖v‖E}.

Definition 2.6 ([40, 41]) Let E be a Banach space and N : E → E be an operator. Then
the operator equation given by

x = N x (3)

is said to be Hyers–Ulam stable if for the inequality given as

|x – N x| ≤ ε, t ∈ J ,

there exists a constant KN > 0 such that for each solution x ∈ C(J , R), of (3), we have a
unique solution z ∈ C(J , R) of the operator equation (3) satisfying the given relation

∣
∣x(t) – z(t)

∣
∣ ≤KN ε, t ∈ J .

Consider Ni : E → E, for i = 1, 2 be two operators, then in view of Definition 2.6, the
coupled system of operators equations given as

u(t) = N1v(t),

v(t) = N2u(t),
(4)

is said to be Hyers–Ulam stable if for the system of inequalities

∣
∣u(t) – N1v(t)

∣
∣ ≤ ε1, t ∈ J ,

∣
∣v(t) – N2u(t)

∣
∣ ≤ ε2, t ∈ J ,

(5)
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there exist constants ε1, ε2, such that for any solution (u, v) of (4) there is a unique solution
(x, y) of system (4) with KN1 > 0, KN2 > 0, which satisfy the following result:

∣
∣u(t) – x(t)

∣
∣ ≤ KN1ε1, t ∈ J ,

∣
∣v(t) – y(t)

∣
∣ ≤ KN2ε2, t ∈ J .

3 Existence results
In this section we obtain the equivalent coupled system of integral equations of the con-
sidered problem (2). Further we also establish the required conditions for the existence of
at least one solution for the proposed problem.

Theorem 3.1 For h ∈ C(J , R), the linear fractional order boundary value problem

CDαu(t) = h(t), 1 < α ≤ 2, t ∈ J ,

u(0) = 0, u(1) =
∫ η

0
u(s) ds, η ∈ (0, 1)

(6)

has a solution given by

u(t) =
1

�(α)

∫ t

0
(t – s)α–1h(s) ds

–
2t

(2 – η2)�(α)

[∫ 1

0
(1 – s)α–1h(s) ds –

∫ η

0

(∫ s

0
(s – τ )α–1

)

h(τ ) dτ ) ds
]

. (7)

Proof Thanks to Lemma 2.4 and upon application of Iα on both sides of (6) yields

u(t) = Iαh(t) – k0 – k1t, k0, k1 ∈ R. (8)

From which we get

∫ η

0
u(s) ds =

1
�(α)

∫ η

0

(∫ s

0
(s – τ )α–1h(τ ) dτ

)

ds – k0η – k1
η2

2
. (9)

In view of condition u(0) = 0 from (9), we get k0 = 0. Further using the boundary condition
u(1) =

∫ η

0 u(s) ds, then (9) produces

k1 =
2

(2 – η2)�(α)

[∫ 1

0
(1 – s)α–1h(s) ds –

∫ η

0

(∫ s

0
(s – τ )α–1h(τ ) dτ

)

ds
]

.

Plugging the values of k0 and k1 in (8), we receive the solution (7) of linear boundary value
problems (6). �

In view of Theorem 3.1, we get the following lemma.
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Lemma 3.2 The system of boundary value problems (2) under consideration is equivalent
to the following coupled system of nonlinear integral equations:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u(t) = 1
�(α)

∫ t
0 (t – s)α–1φ(s, v(s)) ds

– 2t
(2–η2)�(α) [

∫ 1
0 (1 – s)α–1φ(s, v(s)) ds

–
∫ η

0 (
∫ s

0 (s – τ )α–1)φ(τ , v(τ )) dτ ) ds],
v(t) = 1

�(β)
∫ t

0 (t – s)β–1ψ(s, u(s)) ds
– 2t

(2–ξ2)�(β) [
∫ 1

0 (1 – s)β–1ψ(s, u(s)) ds
–

∫ ξ

0 (
∫ s

0 (s – τ )β–1)ψ(τ , u(τ )) dτ ) ds].

(10)

Further, define N1 : E → E and N2 : E → E by

N1v(t) =
1

�(α)

∫ t

0
(t – s)α–1φ

(
s, v(s)

)
ds

–
2t

(2 – η2)�(α)

[∫ 1

0
(1 – s)α–1φ

(
s, v(s)

)
ds

–
∫ η

0

(∫ s

0
(s – τ )α–1

)

φ
(
τ , v(τ )

)
dτ ) ds

]

,

N2u(t) =
1

�(β)

∫ t

0
(t – s)β–1ψ

(
s, u(s)

)
ds

–
2t

(2 – ξ 2)�(β)

[∫ 1

0
(1 – s)β–1ψ

(
s, u(s)

)
ds

–
∫ ξ

0

(∫ s

0
(s – τ )β–1

)

ψ
(
τ , u(τ )

)
dτ ) ds

]

.

(11)

Thanks to Lemma 3.2, the corresponding coupled system of operators equations to cou-
pled system (10) of integral equations is

⎧
⎨

⎩

u(t) = N1v(t),

v(t) = N2u(t).
(12)

Therefore, we define N : E×E → E×E by N (u, v) = (N1v,N2u). Therefore we investigate
the fixed points of the operator N which are the corresponding solutions of the proposed
problem (10).

Lemma 3.3 (Krasnoselskii’s fixed point theorem) If C ⊂ E be a closed convex and
nonempty set and T, S be two operators such that

(i) Tw1 + Sw2 ∈ C for every w1, w2 ∈ C;
(ii) T is compact and continuous;

(iii) S is contraction mapping,
then one can find at least one w ∈ C with w = Tw + Sw.

The given notations are adopted for easiness

�1 =
1

�(α + 1)

(

1 +
2[α + 1 + ηα+1]
(α + 1)(2 – η2)

)

and �2 =
1

�(β + 1)

(

1 +
2[β + 1 + ξβ+1]
(β + 1)(2 – ξ 2)

)

.
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We assume that the following hypotheses hold:
(C1) φ,ψ : J × [0,∞) → [0,∞) are continuous, for t ∈ J , u, v, ū, v̄ ∈ R;
(C2) There exists a constant �φ > 0 such that

∣
∣φ(t, u) – φ(t, ū)

∣
∣ ≤ �φ|u – ū|,

for t ∈ J , u, ū ∈ R;
(C3) There exists a constant �ψ > 0 such that

∣
∣ψ(t, v) – ψ(t, v̄)

∣
∣ ≤ �ψ |v – v̄|,

for t ∈ J , v, v̄ ∈ R.
Fist of all, we prove uniqueness of the solutions via the Banach contraction theorem.

Theorem 3.4 If assumptions (C1)–(C3) hold together with �1�φ < 1 and �2�ψ < 1, then
the BVP (2) under our consideration has a unique solution.

Proof Let us take A = maxt∈J |φ(t, 0)| and B = maxt∈J |ψ(t, 0)| and choose

r ≥ max

{
�1A

1 – �1�φ

,
�2B

1 – �2�ψ

}

.

Let

C =
{

(u, v) ∈ E × E :
∥
∥(u, v)

∥
∥

E×E ≤ r
} ⊂ E × E

be a closed bounded and convex set. Then, under the assumptions (C1) and (C2), taking
(u, v) ∈ C, we have

∣
∣N1v(t)

∣
∣ ≤ 1

�(α)

∫ t

0
(t – s)α–1∣∣φ

(
s, v(s)

)∣
∣ds +

|2t|
(2 – η2)�(α)

∫ 1

0
(1 – s)α–1∣∣φ

(
s, v(s)

)∣
∣ds

+
|2t|

(2 – η2)�(α)

∫ η

0

(∫ s

0
(s – τ )α–1∣∣φ

(
τ , v(τ )

)∣
∣dτ

)

ds

≤ 1
�(α)

∫ t

0
(t – s)α–1(∣∣φ

(
s, v(s)

)
– φ(s, 0)

∣
∣ +

∣
∣φ(s, 0)

∣
∣
)

ds

+
|2t|

(2 – η2)�(α)

∫ 1

0
(1 – s)α–1(∣∣φ

(
s, v(s)

)
– φ(s, 0)

∣
∣ +

∣
∣φ(s, 0)

∣
∣
)

ds

+
|2t|

(2 – η2)�(α)

∫ η

0

(∫ s

0
(s – τ )α–1(∣∣φ

(
τ , v(τ )

)
– φ(τ , 0)

∣
∣ +

∣
∣φ(τ , 0)

∣
∣
)

dτ

)

ds

≤ 1
�(α)

∫ t

0
(t – s)α–1(�φr + A) ds +

|2t|
(2 – η2)�(α)

∫ 1

0
(1 – s)α–1(�φr + A) ds

+
|2t|

(2 – η2)�(α)

∫ η

0

(∫ s

0
(s – τ )α–1(�φr + A) dτ

)

ds,

which yields

∣
∣N1v(t)

∣
∣ ≤ (�φr + A)

�(α + 1)

(

tα +
|2t|

(2 – η2)
+

|2t|
(2 – η2)(α + 1)

ηα+1
)

.
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Therefore, on using t ≤ 1, we have

‖N1v‖E ≤ (�φr + A)
�(α + 1)

(

1 +
2(α + 1 + ηα+1)
(2 – η2)(α + 1)

)

≤ (�φr + A)�1 ≤ r. (13)

Along the same lines, one has

‖N2u‖E ≤ (�ψr + B)�2 ≤ r. (14)

Thus taking (13) and (14) together, we get

∥
∥N (u, v)

∥
∥

E×E ≤ r.

Also, taking (u, v), (ū, v̄) ∈ C, t ∈ J , we consider

∣
∣N1v(t) – N1v̄(t)

∣
∣ ≤ 1

�(α)

∫ t

0
(t – s)α–1∣∣φ

(
s, v(s)

)
– φ

(
s, v̄(s)

)∣
∣ds

+
|2t|

(2 – η2)�(α)

∫ 1

0
(1 – s)α–1∣∣φ

(
s, v(s)

)
– φ

(
s, v̄(s)

)∣
∣ds

+
|2t|

(2 – η2)�(α)

∫ η

0

(∫ 1

0
(s – τ )α–1∣∣φ

(
s, v(s)

)
– φ

(
s, v̄(s)

)∣
∣dτ

)

ds

≤ 1
�(α)

∫ t

0
(t – s)α–1�φ

∣
∣v(s) – v̄(s)

∣
∣ds

+
|2t|

(2 – η2)�(α)

∫ 1

0
(1 – s)α–1�φ

∣
∣v(s) – v̄(s)

∣
∣ds

+
|2t|

(2 – η2)�(α)

∫ η

0

(∫ 1

0
(1 – s)α–1�φ

∣
∣v(s) – v̄(s)

∣
∣dτ

)

ds,

which implies that

‖N1v – N1v̄‖E ≤ �φ

�(α + 1)

[

‖v – v̄‖E +
2‖v – v̄‖E

(2 – η2)
+

2ηα+1‖v – v̄‖E

(2 – η2)(α + 1)

]

≤ �1�φ‖v – v̄‖E.

In the same fashion, we can also get

‖N2u – N2ū‖E ≤ �2�ψ‖u – ū‖E. (15)

Thanks to the conditions �1�φ < 1 and �2�ψ < 1

∥
∥N (u, v) – N (ū, v̄)

∥
∥

E×E ≤ ∥
∥(u, v) – (ū, v̄)

∥
∥

E×E.

Thus N is a contraction operator. In view of the Banach contraction theorem, the consid-
ered BVP (2) has a unique solution. �
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Further, we define the operators T1, S1 : E → E and T2, S2 : E → E by

T1v(t) =
1
α

∫ t

0
(t – s)α–1φ

(
s, v(s)

)
ds,

S1v(t) = –
2t

�(α)(2 – η2)

[∫ η

0

(∫ s

0
(s – τ )α–1φ

(
τ , v(τ )

)
dτ

)

ds

–
∫ 1

0
(1 – s)α–1φ

(
s, v(s)

)
ds

]

,

T2u(t) =
1
β

∫ t

0
(t – s)β–1ψ

(
s, u(s)

)
ds,

S2u(t) = –
2t

�(β)(2 – ξ 2)

[∫ ξ

0

(∫ s

0
(s – τ )β–1ψ

(
τ , u(τ )

)
dτ

)

ds

–
∫ 1

0
(1 – s)β–1ψ

(
s, u(s)

)
ds

]

.

(16)

In view of (16), we may write N1 = T1 + S1, N2 = T2 + S2 and, consequently, the operator
N can be expressed as

N = T + S, such that T(u, v) = (T1v, T2u), S(u, v) = (S1v, S2u).

Assume that for the positive constants Mφ , Mψ , �φ , �ψ , the growth conditions provided
by

(C4) |φ(t, v(t))| ≤Mφ‖v‖E +�φ over J ×E and |ψ(t, u(t))| ≤Mψ‖u‖E +�ψ over J ×E
are satisfied.

Theorem 3.5 Under the hypotheses (C1), (C4) and conditions

2�φ(α + 1 + ηα+1)
�(α + 2)(2 – η2)

< 1,
2�ψ (β + 1 + ξβ+1)
�(β + 2)(2 – ξ 2)

< 1,

hold. Then the BVP (2) proposed by us has at least one solution.

Proof The continuity of φ and ψ implies that the operator N is continuous. Let D ⊂ C ⊆
E × E be bounded set. Then, for all (u, v) ∈ D and using (C4), one has

∣
∣(T1v)(t)

∣
∣ =

∣
∣
∣
∣

1
�(α)

∫ t

0
(t – s)α–1φ

(
s, v(s)

)
ds

∣
∣
∣
∣ ≤ 1

�(α)

∫ t

0
(t – s)α–1(�φ‖v‖E + Mφ

)
ds,

which implies that

‖T1v‖E ≤ (�φ‖v‖E + Mφ)
�(α + 1)

.

In the same fashion, we get

‖T2u‖E ≤ (�ψ‖u‖E + Mψ )
�(β + 1)

.

Therefore the boundedness of T(D) follows.
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To show that S is equi-continuous, let t, t̂ ∈ [0, 1] with t < t̂ and any (u, v) ∈ E × E, we
have

∣
∣T1v(t1) – T1v(t2)

∣
∣ =

1
�(α)

∣
∣
∣
∣

∫ t

0

[
(t2 – s)α–1 – (t1 – s)α–1]φ

(
s, v(s)

)
ds

+
∫ t̂

t
(t2 – s)α–1φ

(
s, v(s)

)
ds

∣
∣
∣
∣,

which implies that

∥
∥T1v(t1) – T1v(t2)

∥
∥

E ≤ (�φ‖v‖E + Mφ)
�(α + 1)

∣
∣2(t̂ – t)α + tα – t̂α

∣
∣. (17)

Repeating the same arguments, we have

∥
∥T2u(t1) – T2u(t2)

∥
∥

E ≤ (�ψ‖u‖E + Mψ )
�(β + 1)

∣
∣2(t̂ – t)β + tβ – t̂β

∣
∣. (18)

As in the right hand sides of (17) and (18), when t → t̂, then the right hand sides of the
mentioned relations approach to zero. Therefore using Arzela–Ascoli’s theorem, T is equi-
continuous and compact.

Further, we need to prove that S is a contraction. Taking v, v̄ ∈ E, we get

∣
∣S1v(t) – S1v̄(t)

∣
∣ ≤ |2t|

(2 – η2)�(α)

∫ 1

0
(1 – s)α–1∣∣φ

(
s, v(s)

)
– φ

(
s, v̄(s)

)∣
∣ds

+
|2t|

(2 – η2)�(α)

∫ η

0

(∫ 1

0
(s – τ )α–1∣∣φ

(
s, v(s)

)
– φ

(
s, v̄(s)

)∣
∣dτ

)

ds

≤ 2|t|�φ |v – v̄|(α + 1 + ηα+1)
|2 – η2|�(α + 2)

,

which yields ‖S1v – S1v̄‖E ≤ 2�φ (α+1+ηα+1)
(2–η2)�(α+2) ‖v – v̄‖E. Along the same lines, one can get

‖S2u – S2ū‖E ≤ 2�ψ (β + 1 + ξβ+1)
(2 – ξ 2)�(β + 2)

‖u – ū‖E.

Therefore S is a contraction, using Lemma 3.3, we see that N has at least one fixed point
which is the corresponding solution of (2). �

4 Numerical solutions for the problem (2)
Numerical methods play a key role in the area of nonlinear mathematics. To find an ex-
act solution to every BVP of classical nonlinear differential equations is nearly impossible.
Thus, it would be quite impossible to solve BVPs of nonlinear FDEs equations for their
exact solutions. Therefore without implementing numerical methods it is not possible to
obtain good numerical solution to a BVP of FDEs. Further numerical methods are pow-
erful tools to be used to find approximate solutions of aforementioned problems. Some of
these methods use transformation in order to reduce equations into simpler equations or
systems of equations and some other methods give the solution in a series form which con-
verges to the exact solution of an equation or system of equations. There are large number
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of numerical methods which have been used to find approximate solutions to nonlinear
BVPs of DEs and FDEs in literature. One of them is the differential transform method.
The said method was first introduced by Zhou [54] who solved linear and nonlinear initial
value problems in electric circuit analysis. Further the aforesaid transform was extended
to generalized form in [55]. The authors named this new version the generalized differen-
tial transform (GDTM). With the help of this method one constructs an analytical solution
in the form of a polynomial. It is different from the traditional higher order Taylor series
method, which requires symbolic computation of the necessary derivatives of the data
functions. The Taylor series method computationally takes a long time for large orders
and its computational cost is also high. The GDTM is an iterative procedure for obtain-
ing analytic Taylor series solutions to FDEs with boundary or initial conditions. Keeping
in mind the mentioned point, we will use generalized differential transform (GDTM) to
obtain numerical solutions to the considered BVP (2). In view of (GDTM), the kth order
approximate solution of the proposed problem is given as

u(t) =
i∑

k=0

U(k)tkσ , v(t) =
i∑

k=0

V (k)tkσ . (19)

Here σ is the order of the differential transform. σ must be selected such that it is com-
patible with both orders α, β , that is, there exist l, m, n ∈ N such that lσ = 1, mσ = α,
and nσ = β . U(k) and V (k) are the generalized differential transforms of u(t) and v(t), and
satisfies the relation

U(k + m) =
�((m + k)σ – α + 1)

�((m + k)σ + 1)
F
(
k, V (k)

)
,

V (k + n) =
�((n + k)σ – β + 1)

�((n + k)σ + 1)
G

(
k, U(k)

)
.

(20)

Here F(k, V (k)) and G(k, U(k)) are the sigma order differential transform of φ(t, v(t) and
ψ(t, u(t), respectively, and can be calculated using theorems developed in [32].

Using the first initial condition, we have U(0) = 0 and V (0) = 0. Further, for initial con-
ditions, we have

U(k) = 0, for all k such that kσ < 1,

V (k) = 0, for all k such that kσ < 1,

U(l) = c1, V (l) = c2,

U(k) = 0, for l < k < m,

V (k) = 0, for l < k < n.

(21)

Here c1 and c2 are unknown constants, which can be obtained using the moving boundary
conditions. Using the recurrence relation (20), we can obtain a solution in the following
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form:

u(t) =
i∑

k=0

U(c1,c2)(k)tkσ ,

v(t) =
i∑

k=0

V(c1,c2)(k)tkσ .

(22)

Here U(c1,c2)(k), V(c1,c2)(k) are coefficients still depending on c1 and c2. Using the moving
boundary conditions, we may write

u(1) =
i∑

k=0

U(c1,c2)(k), v(1) =
i∑

k=0

V(c1,c2)(k),

∫ η

0
u(t) dt =

i∑

k=0

U(c1,c2)(k)
�(1 + kσ )
�(2 + kσ )

ηkσ+1,

∫ ξ

0
v(t) dt =

i∑

k=0

V(c1,c2)(k)
�(1 + kσ )
�(2 + kσ )

ξ kσ+1.

(23)

From (23), we can easily get two relations of the unknown c1 and c2 in the form

i∑

k=0

U(c1,c2)(k)
(

1 –
�(1 + kσ )
�(2 + kσ )

ηkσ+1
)

= 0,

i∑

k=0

V(c1,c2)(k)
(

1 –
�(1 + kσ )
�(2 + kσ )

ξ kσ+1
)

= 0.

(24)

Equation (24) can be solved for c1 and c2 and using the values of c1 and c2 in Eq. (22), we
get the approximate solution of the proposed problem (2).

5 Hyers–Ulam stability
In this section, we provide some sufficient conditions for Hyers–Ulam type stability re-
sults to the solutions of BVPs (2) with movable type integral boundary conditions. The
method which was provided by Hyers, and which produces the additive mapping is called
a direct method. This method is the most important and most powerful tool for studying
the stability of various differential, functional and integral equations. The classical concept
of Hyers–Ulam stability has applicable significance since it means that if we are dealing
with Hyers–Ulam stable system then one does not seek the exact solution. All what is re-
quired is to find a function which satisfies a suitable approximation inequations. It is quite
remarkable that Hyers–Ulam stability concept is very useful in many applications, such
as numerical analysis, optimization, etc., where finding the exact solution is quite diffi-
cult or impossible for a problem of differential and integral equations. We find sufficient
conditions to guarantee the movable integrable sample path is Hyers–Ulam stable. To de-
rive the formal results about the Hyers–Ulam stability for BVPs (2), we give the following
conditions first.

Let there exist functions w, z ∈ C(J , R) which depend upon u, v, respectively, such that
(i) |w(t)| ≤ ε1, |z(t)| ≤ ε2, t ∈ J ;
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(ii)

{
CDαu(t) = φ(t, v(t)) + w(t), t ∈ J ,
CDβv(t) = ψ(t, u(t)) + z(t), t ∈ J .

Lemma 5.1 Let (u, v) ∈ C(J , R) × C(J , R) be any solution of the system of inequalities (5),
then the following inequalities hold for K1 = ε1[(2–η2)(α+1)+2]

(2–η2)�(α+1) , K2 = ε2[(2–ξ2)(β+1)+2]
(2–ξ2)�(β+1) :

⎧
⎨

⎩

|u(t) – N1v(t)| ≤ K1ε1, t ∈ J ,

|v(t) – N2u(t)| ≤ K2ε2, t ∈ J ,

where N1v(t), N2u(t) are given in (11).

Proof From the Condition (ii), we have

⎧
⎪⎪⎨

⎪⎪⎩

CDαu(t) = φ(t, v(t)) + w(t), t ∈ J ,
CDβv(t) = ψ(t, u(t)) + z(t), t ∈ J ,

u(0) = v(0) = 0, u(1) =
∫ η

0 u(s) ds, v(1) =
∫ ξ

0 v(s) ds.

(25)

Then, in view of Lemma 3.2, the solution of (25) is given by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u(t) = 1
�(α)

∫ t
0 (t – s)α–1φ(s, v(s)) ds

– 2t
(2–η2)�(α) [

∫ 1
0 (1 – s)α–1φ(s, v(s)) ds

–
∫ η

0 (
∫ s

0 (s – τ )α–1)φ(τ , v(τ )) dτ ) ds]
+ 1

�(α)
∫ t

0 (t – s)α–1w(s) ds
– 2t

(2–η2)�(α) [
∫ 1

0 (1 – s)α–1w(s) ds
–

∫ η

0 (
∫ s

0 (s – τ )α–1)w(τ )) dτ ) ds],
v(t) = 1

�(β)
∫ t

0 (t – s)β–1ψ(s, u(s)) ds
– 2t

(2–ξ2)�(β) [
∫ 1

0 (1 – s)β–1ψ(s, u(s)) ds
–

∫ ξ

0 (
∫ s

0 (s – τ )β–1)ψ(τ , u(τ )) dτ ) ds]
+ 1

�(β)
∫ t

0 (t – s)β–1z(s) ds
– 2t

(2–ξ2)�(β) [
∫ 1

0 (1 – s)β–1z(s) ds –
∫ ξ

0 (
∫ s

0 (s – τ )β–1)z(τ ) dτ ) ds].

(26)

From the first equation of system (26) and ηα+1 < 1, t ≤ 1, we have

∣
∣
∣
∣u(t) –

[
1

�(α)

∫ t

0
(t – s)α–1φ

(
s, v(s)

)
ds

–
2t

(2 – η2)�(α)

(∫ 1

0
(1 – s)α–1φ

(
s, v(s)

)
ds

–
∫ η

0

(∫ s

0
(s – τ )α–1

)

φ
(
τ , v(τ )

)
dτ

)

ds)
]∣
∣
∣
∣

≤
∣
∣
∣
∣

1
�(α)

∫ t

0
(t – s)α–1w(s) ds –

2t
(2 – η2)�(α)

∫ 1

0
(1 – s)α–1w(s) ds

∣
∣
∣
∣

+
∣
∣
∣
∣

2t
(2 – ξ 2)�(β)

∫ η

0

(∫ s

0
(s – τ )α–1

)

w(τ )) dτ ) ds
∣
∣
∣
∣

≤
∣
∣
∣
∣

1
�(α)

∫ t

0
(t – s)α–1w(s) ds

∣
∣
∣
∣ +

∣
∣
∣
∣

2t
(2 – ξ 2)�(β)

∫ η

0

(∫ s

0
(s – τ )α–1

)

w(τ )) dτ ) ds
∣
∣
∣
∣,
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from which we have

∣
∣u(t) – N1v(t)

∣
∣ ≤ K1ε1, where K1 =

ε1[(2 – η2)(α + 1) + 2]
(2 – η2)�(α + 1)

. (27)

Along the same lines, we can also obtain

∣
∣
∣
∣v(t) –

(
1

�(β)

∫ t

0
(t – s)β–1ψ

(
s, u(s)

)
ds

–
2t

(2 – ξ 2)�(β)

[∫ 1

0
(1 – s)β–1ψ

(
s, u(s)

)
ds

–
∫ ξ

0

(∫ s

0
(s – τ )β–1

)

ψ
(
τ , u(τ )

)
dτ

)

ds
]

)
∣
∣
∣
∣

≤
∣
∣
∣
∣

1
�(β)

∫ t

0
(t – s)β–1z(s) ds

∣
∣
∣
∣ +

∣
∣
∣
∣

2t
(2 – ξ 2)�(β)

∫ ξ

0

(∫ s

0
(s – τ )β–1

)

z(τ )) dτ ) ds
∣
∣
∣
∣,

which yields

∣
∣v(t) – N2u(t)

∣
∣ ≤ K2ε2, where K2 =

ε2[(2 – ξ 2)(β + 1) + 2]
(2 – ξ 2)�(β + 1)

. (28)

�

Theorem 5.2 Under the assumptions (C2), (C3), the solutions of the coupled system (10) is
Hyers–Ulam stable if

max

{
K1ε1 + �1�φK2ε2

�
,

K2ε2 + �2�ψK1ε1

�

}

< 1,

where �1�2λφ�ψ 
= 1.

Proof Let (u, v) ∈ C(J , R) × C(J , R) be any solution of the system of inequalities given by

∣
∣CDαu(t) – φ

(
t, v(t)

)∣
∣ ≤ ε1, t ∈ J ,

∣
∣CDβv(t) – ψ

(
t, u(t)

)∣
∣ ≤ ε2, t ∈ J ,

(29)

and (x, y) ∈ C(J , R) × C(J , R) be the unique solution of the following coupled system:

⎧
⎪⎪⎨

⎪⎪⎩

CDαx(t) – φ(t, y(t)) = 0, t ∈ J ,
CDβy(t) – ψ(t, x(t)) = 0, t ∈ J ,

x(0) = y(0) = 0, x(1) =
∫ η

0 x(s) ds, y(1) =
∫ ξ

0 y(s) ds.

(30)

Then, in view of Lemma 3.2 and (11), the solutions of (30) can be written as

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x(t) = 1
�(α)

∫ t
0 (t – s)α–1φ(s, y(s)) ds – 2t

(2–η2)�(α)

∫ 1
0 (1 – s)α–1φ(s, y(s)) ds

+ 2t
(2–η2)�(α)

∫ η

0 (
∫ s

0 (s – τ )α–1)φ(τ , y(τ )) dτ ) ds = N1y(t),
y(t) = 1

�(β)
∫ t

0 (t – s)β–1ψ(s, x(s)) ds – 2t
(2–ξ2)�(β)

∫ 1
0 (1 – s)β–1ψ(s, x(s)) ds

+ 2t
(2–ξ2)�(β)

∫ ξ

0 (
∫ s

0 (s – τ )β–1)ψ(τ , x(τ )) dτ ) ds = N2x(t).

(31)
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Thanks to Lemma 5.1, we consider

∣
∣u(t) – x(t)

∣
∣ =

∣
∣u(t) – N1y(t)

∣
∣

≤ ∣
∣u(t) – N1y(t)

∣
∣ +

∣
∣N1v(t) – N1y(t)

∣
∣.

This, upon computation, yields

‖u – x‖E ≤ K1ε1 + �1�φ‖v – y‖E. (32)

Repeating in the same fashion the second part of the system (31), we have

‖v – y‖E ≤ K2ε2 + �2�ψ‖u – x‖E. (33)

Re-arranging and writing inequations (32) and (33) as

‖u – x‖E – �1�φ‖v – y‖E ≤ K1ε1,

‖v – y‖E – �2�ψ‖u – x‖E ≤ K2ε2,
(

1 –�1�φ

–�2�ψ 1

)(
‖u – x‖E

‖v – y‖E

)

≤
(

K1ε1

K2ε2

)

.

(34)

After computation, and using � = 1 – �1�2�φ�ψ , (34) implies that

‖u – x‖E ≤ K1ε1 + �1�φK2ε2

�
,

‖v – y‖E ≤ K2ε2 + �2�ψK1ε1

�
,

(35)

from which we have

∥
∥(u, v) – (x, y)

∥
∥

E×E ≤ max

{
K1ε1 + �1�φK2ε2

�
,

K2ε2 + �2�ψK1ε1

�

}

. (36)

Hence the solution of the coupled system (10) is Hyers–Ulam stable. �

6 Examples
Example 6.1 Taking the given BVP with integral boundary conditions

CD 7
4 u(t) =

|v(t)|
(t + 3)3(1 + |v(t)|) , CD 3

2 v(t) =
9|u(t)|

32π (1 + 4|u(t)|) , t ∈ J ,

u(0) = v(0) = 0, u(1) =
∫ η

0
u(s) ds, v(1) =

∫ ξ

0
v(s) ds.

(37)

We have φ(t, v) = |v(t)|
(t+3)3(1+|v(t)|) ,ψ(t, u) = 9|u(t)|

32π (1+4|u(t)|) ,α = 7
4 ,β = 3

2 . Now,

∣
∣φ(t, v) – φ(t, v̄)

∣
∣ ≤ 1

27
|v – v̄|, ∣

∣ψ(t, u) – ψ(t, ū)
∣
∣ ≤ 9

32π
|u – ū|.



Shah et al. Advances in Difference Equations  (2018) 2018:149 Page 16 of 21

Therefore, for all η, ξ ∈ (0, 1), we have

�1�φ =
�φ

�(α + 1)

(

1 +
2[α + 1 + ηα+1]
(α + 1)(2 – η2)

)

< 1,

�2�ψ =
�ψ

�(β + 1)

(

1 +
2[β + 1 + ξβ+1]
(β + 1)(2 – ξ 2)

)

< 1,

where �φ = 1
27 , �ψ = 9

32π
. Therefore, by using Lemma 3.4, the BVP (37) has unique solu-

tion.
We find the approximate solutions of the problem using the method developed in Sect. 4.

We select σ = 1/4, which implies that l = 4, m = 7, and n = 6. The recurrence relations
corresponding to BVP (37) are given as

U(k + 7) =
�((7 + k) 1

4 – 7
4 + 1)

�((7 + k) 1
4 + 1)

F
(
k, V (k)

)
,

V (k + 6) =
�((6 + k) 1

4 – 3
2 + 1)

�((6 + k) 1
4 + 1)

G
(
k, U(k)

)
.

(38)

F and G are differential transform of φ,ψ . The initial conditions become

U(0) = 0, U(1) = 0, U(2) = 0, U(3) = 0,

U(4) = c1, U(5) = 0, U(6) = 0,

V (0) = 0, V (1) = 0, V (2) = 0, V (3) = 0,

V (4) = c2, V (5) = 0.

(39)

After calculating recurrence relation and calculating the values of c1 and c2, we get u(t) and
v(t) as given (note that here we truncate the relation at k = 20). The approximate solution
is given by

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u(t) = 35,538,947,983,423t
3
4

2,358,454,139,013,643 – 3,318,660,919,569,631t
7
4

288,230,376,151,711,744 + 4,827,143,155,737,645t
11
4

1,152,921,504,606,846,976

– 107,269,847,905,281t
15
4

36,028,797,018,963,968 + 7,226,600,279,934,721t
19
4

2,305,843,009,213,693,952 – 2,513,600,097,368,599t
23
4

576,460,752,303,423,488 ,

v(t) = 30,329,568,610,629t
3
2

2,251,799,813,685,248 – 543,250,089,644,091t
3
4

36,028,797,018,963,968 .

(40)

Since (0, 0) is the unique solution of Example 6.1. It is easy to prove that the conditions of
Theorem 5.2 are fulfilled for the approximate solution (u, v) obtained in (40) for different
t ∈ (0, 1). Therefore solution (u, v) is Hyers–Ulam stable corresponding to the unique so-
lution (0, 0). The plots of the approximate solutions at different choices of parameters η

and ξ are displayed in Fig. 1. In order to verify the accuracy of the boundary conditions,
we simulate the scheme for different sets of η and ξ , and measure the absolute difference
in boundary conditions using the relations as

Eu =
∣
∣
∣
∣u(1) –

∫ η

0
u(s) ds

∣
∣
∣
∣, Ev =

∣
∣
∣
∣v(1) –

∫ ξ

0
v(s) ds

∣
∣
∣
∣. (41)
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Figure 1 Plots of approximate solution (u, v) of Example 6.1 for different choices of parameters

Table 1 Absolute error in boundary conditions of u(t) of Example 6.1 using different choice of
parameters

Parameters k = 10 k = 15 k = 20 k = 30

η = 0.25, ξ = 0.2 –0.0123e–17 0.1444e–17 –0.0140e–17 –0.1067e–17
η = 0.2, ξ = 0.25 –0.0260e–17 0.0225e–17 –0.2328e–17 0.1115e–17
η = 0.5, ξ = 0.33 1.3171e–17 0.0114e–17 –0.0694e–17 0.1806e–17
η = 0.75, ξ = 0.25 0.0938e–17 –0.0218e–17 0.0965e–17 0.0560e–17
η = 0.75, ξ = 0.85 –0.2361e–17 –0.0722e–17 –0.1210e–17 0.0022e–17

Table 2 Absolute error in boundary conditions of v(t) of Example 6.1 using different choice of
parameters

Parameters k = 10 k = 15 k = 20 k = 30

η = 0.25, ξ = 0.2 –0.1906e–17 –0.1906e–17 –0.1906e–17 –0.1906e–17
η = 0.2, ξ = 0.25 0.0094e–17 0.0094e–17 0.0094e–17 0.0094e–17
η = 0.5, ξ = 0.33 0.0108e–17 0.0108e–17 0.0108e–17 0.0108e–17
η = 0.75, ξ = 0.25 0.0094e–17 0.0094e–17 0.0094e–17 0.0094e–17
η = 0.75, ξ = 0.85 0.1032e–17 0.1032e–17 0.1032e–17 0.1032e–17

For different choices of η and ξ and different scale level k, the absolute difference in bound-
ary conditions of u(t) is displayed in Table 1. In Table 2 the absolute difference in boundary
conditions of v(t) are displayed.

Example 6.2 Consider the given coupled system of BVP

⎧
⎪⎪⎨

⎪⎪⎩

CD 3
2 u(t) = |v(t)|

10(1+t)3+|v(t)| , t ∈ [0, 1],
CD 3

2 v(t) = 9|u(t)|
32π (1+4|u(t)|) , t ∈ [0, 1],

u(0) = 0, v(0) = 0,
∫ η

0 u(s) ds = u(1),
∫ η

0 v(s) ds = v(1).

(42)

Since

∣
∣φ(t, v) – φ(t, v̄)

∣
∣ ≤ 1

10
|v – v̄|, ∣

∣ψ(t, u) – ψ(t, ū)
∣
∣ ≤ 5

16π
|u – ū|,
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as �φ = 1
10 , �ψ = 5

16π
, α = β = 3

2 , then one can easily check that �1�φ < 1, �2�ψ < 1, for
all η, ξ ∈ (0, 1). Thanks to Lemma 3.4, the system of BVP (6.2) has a unique solution. Fur-
ther, we approximate the solution of this problem with the proposed method. The error
in the boundaries are given in Tables 3 and 4, respectively. The approximate solutions are
displayed in Fig. 2. One can easily see from these tables that the absolute error at bound-
aries is much more less than 10–17. Obviously (0, 0) is the unique solution and computing
its approximate solution through (GDTM), one has

⎧
⎨

⎩

u(t) = 403,345,956,861t
3
2

4,451,799,813,685,248 + 556,325,002t
3
4

890,287,901,234 ,

v(t) = 1,234,567,890t
3
2

456,789,054,677 + 3,456,789,345t
3
4

8,765,432,190 .
(43)

In view of Theorem 5.2, the approximate solution (43) is Hyers–Ulam stable correspond-
ing to the unique solution (0, 0).

Table 3 Absolute error in boundary conditions of u(t) of Example 6.2 using different choice of
parameters

Parameters k = 10 k = 15 k = 20

η = 1/2, ξ = 1/3 –0.02100e–17 0.0322e–17 –0.0747e–17
η = 1/3, ξ = 1/4 0.0262e–17 –0.0108e–17 –0.5177e–17
η = 2/5, ξ = 2/5 0.1921e–17 0.1052e–17 0.1771e–17
η = 3/5, ξ = 8/9 0.0355e–17 –0.0557e–17 0.2417e–17

Table 4 Absolute error in boundary conditions of v(t) of Example 6.2 using different choice of
parameters

Parameters k = 10 k = 15 k = 20

η = 1/2, ξ = 1/3 –0.1337e–17 –0.2845e–17 0.1878e–17
η = 1/3, ξ = 1/4 0.0617e–17 0.3369e–17 0.0583e–17
η = 2/5, ξ = 2/5 0.4757e–17 0.0259e–17 0.1875e–17
η = 3/5, ξ = 8/9 –0.1430e–17 –0.0053e–17 –0.0502e–17

Figure 2 Plots of approximate solution (u, v) of Example (6.2) at different choices of parameters
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7 Conclusion
We have derived some necessary conditions for the existence, uniqueness and Hyers–
Ulam stability for the solutions of the considered BVP (2). The required results have been
obtained by using classical fixed point theory due to Banach and Krasnoselskii. Moreover,
an effort based on generalized differential transform has been made to find approximate
solutions of the considered problem. As compared to the present literature devoted to the
investigation of FDEs, our paper is different in few ways. We have investigated approximate
solutions to highly nonlinear BVPs of FDEs by using GDTM together with the existence
theory. The relevant aspect for such type of nonlinear problems has very rarely inves-
tigated. Furthermore we have also established some adequate conditions for the Hyers–
Ulam type stability to the solutions of the proposed problem. For the justification, we have
provided interesting examples. From the experimental results we observe that the approx-
imate solution satisfies the moving point boundary conditions with a great accuracy and
also the corresponding solutions are Hyers–Ulam stable.
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43. Wang, J., Fečkan, M., Tian, Y.: Stability analysis for a general class of non-instantaneous impulsive differential

equations. Mediterr. J. Math. 14, Article ID 46 (2017)
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