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Abstract

We establish fractional integral and derivative formulas by using fractional calculus
operators involving the extended generalized Mathieu series. Next, we develop their
composition formulas by applying the integral transforms. Finally, we discuss special
cases.
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1 Introduction and preliminaries

Fractional calculus is a very rapidly growing subject of mathematics which deals with the
study of fractional order derivatives and integrals. Fractional calculus is an efficient tool
to study many complex real world systems [1]. It is demonstrated that the fractional or-
der representation of complex processes appearing in various fields of science, engineer-
ing and finance, provides a more realistic approach with memory effects to study these
problems (see e.g. [2-13]). Among the research work developing the theory of fractional
calculus and presenting some applications, we point out some literature. Kumar et al. [14]
analyzed the fractional model of a modified Kawahara equation by using a newly intro-
duced Caputo—Fabrizio fractional derivative. One also [15] studied a heat transfer prob-
lem and presented a new non-integer model for convective straight fins with temperature-
dependent thermal conductivity associated with Caputo—Fabrizio fractional derivative.
Recently, one [16] presented a new fractional extension of regularized long wave equation
by using an Atangana—Baleano fractional operator. In [17] one introduced a new numeri-
cal scheme for a fractional Fitzhugh—Nagumo equation arising in the transmission of new
impulses. In [18] one constituted a modified numerical scheme to study fractional model
of Lienard’s equations. Hajipour et al. [19] formulated a new scheme for a class of fractional
chaotic systems. Baleanu et al. [20] proposed a new formulation of the fractional control
problems involving a Mittag-Leffler non-singular kernel. In another work, Baleanu et al.
[21] studied the motion of a bead sliding on a wire in a fractional analysis. Jajarmi et al.
[22] analyzed a hyperchaotic financial system and its chaos control and synchronization
by using fractional calculus.
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For mathematical modeling of many complex problems appearing in various fields of
science and engineering such as fluid dynamics, plasma physics, astrophysics, image pro-
cessing, stochastic dynamical system, controlled thermonuclear fusion, nonlinear control
theory, nonlinear biological systems, quantum physics and heat transfer problems, the
fractional calculus operators involving various special functions have been used success-
fully. There is a rich literature available revealing the notable development in fractional
order derivatives and integrals (see [1, 10, 11, 23-28]). Recently, Caputo and Fabrizio [29]
introduced a new fractional derivative which is more suitable than the classical Caputo
fractional derivative for many engineering and thermodynamical processes. Atangana [30]
used a new fractional derivative to study the nature of Fisher’s reaction diffusion equation.
Riemann and Caputo fractional derivative operators both have a singular kernel which
cannot exactly represent the complete memory effect of the system. To overcome these
limitations of the old derivatives, very recently Atangana and Baleanu [31] presented a new
non-integer order derivative having a non-local, non-singular and Mittag-Leffler type ker-
nel.

In recent years, many researchers have extensively studied the properties, applications
and extensions of various fractional integral and differential operators involving the vari-
ous special functions (for details, see [25, 32-42], etc.).

The image formulas for special functions of one or more variables are very useful in
the evaluation and solution of differential and integral equations. Motivated by the above
discussion, we developed new fractional calculus formulas involving extended generalized
Mathieu series.

For our present study, we recall the generalized hypergeometric fractional integrals, in-
troduced by Marichev [43], including the Saigo operators [37—39], and which were later
on extended by Saigo and Maeda [40].

The generalized fractional calculus operators (the Marchichev—Saigo—Maeda opera-
tors) involving the Appell function or the Horn F5(-) function in the kernel are defined
thus.

Definition 1 Let o,0’,v,v’,n € C and x > 0, then, for R(n) >0,

(I52™"f) )

x° * ’ t X
/ (x—t)" 1O Fy (a,a', vviml——,1- —)/(t) dt (1.1)
'(n) Jo X t

and

(128"""r) )

xo [ x t
= / (=" F( 0,0, v,v;m;1-2,1- = |f(®) dt, (1.2)
F(ﬂ) x z X

where the function f(¢) is so constrained that the integrals in (1.1) and (1.2) exist.
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In (1.1) and (1.2), F5(-) denotes Appell’s hypergeometric function [44] in two variables
defined as

F3(o,0,v,v;m5%,7)

_ Z (O’)m(o’,)n(v)m(\}/)n ﬁx—r:(max{lxl,lyl} <1). (13)

=0 (Mnen m! n!

The above fractional integral operators in Egs. (1.1) and (1.2) can be written as follows:

o0’ v n d , 0,0’ v+kv' n+k
(53" )<x)=<%) Iz ") @)
(N(m) <0k =[-%R(n) +1]) (1.4)

and
0,0’ v’ _ d g o, vV +kn+k
2o = (-4 ) @2 )
(R(n) < 0k = [-R(y) +1]). (1.5)

Remark 1 The Appell function defined in Eq. (1.3) reduces to the Gauss hypergeometric

function ,F; as given in following relations:
Fi(o,n—o0,v,n—v;n;%,9) = 2F1(o,v;n;% + y — xy); (1.6)
also we have
F3(0,0,v,V,m;%,) = 2F1(0, v; ;%) (1.7)
and
F5(0,0",v,V,m3%,) = 2F1 (0, V515 9). (1.8)
The corresponding Saigo—Maeda fractional differential operators are given as follows.

Definition 2 Let o,0',v,v,n € C and x > 0, then

(57N @ = (7))

dx

_ 1 d ¢ o' ¥ k-n-1,0
i () @ [

t
><F3<—U’,—G,k—v/,—v;k—n;1——,1—%C>f(t)dt (1.9)
x

A\* ot ey
:( )(10-; T ) () > 0k = [Rm)] + 1)
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and

(DT ) () = (L2771 ) (x)

AN* oo
= (-—) (L2 bk ) ) (R(n) > 05k = [R(n)] + 1)

dx
1 k— ]
— ) )’ t—x)"
Tk n)< ) )/ (=)
, , X t
XF3<—(T,—O’,—l),k—l);k—ﬂ;l—;,l——)f(t)dt. (1.10)
x

In view of the above reduction formula as given in Eq. (1.7), the general fractional cal-
culus operators reduce to the Saigo operators [37] defined as follows.

Definition 3 For x>0, 0,v,n € Cand %i(c) >0

(16.""f) ()—

L <O' +v,-n0;1— —)j(t) dt (1.11)

and

(I227f) (%) = % f Tl—xr i, (0 +v,-m5051 - ’-t‘)/(t) dt, (1.12)

where 5 F; (+), a special case of the generalized hypergeomteric function, is the Gauss hyper-
geometric function and the function f(¢) is so constrained that the integrals in Egs. (1.11)
and (1.12) converge.

Remark 2 The Saigo fractional integral operators, given in Egs. (1.11) and (1.12) can also
be written as:
Forx>0,0,v,neC

k
( o )(x) _ (i) (Ia;k,v—k,q—kf)(x)

(N(o) <0k = [R(-0)] +1) (1.13)
and
d k
oV I - —k,v—k,n
20w - (-5 ) @)
(N(o) <0k = [N(-0)] +1). (1.14)
And the corresponding Saigo fractional differential operators are defined as:

Definition 4 Let o,v,n € C and x > 0, then
(DG2"f) ) = (I "f ) @)

k
_ (%) (lo2 ™)) (o) > 0k = [3(0)] + 1) (1.15)
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and
(DL @) = (L2 7f ) ()

k
= (_dii) (L2 ko) ) (R(o) > 05k = [R(0)] + 1), (1.16)

where [x] denotes the greatest integer function.

If we take v = 0in Egs. (1.11), (1.12), (1.15) and (1.16) we get the so-called Erdélyi—Kober
fractional integral and derivative operators defined as follows [45, 46].

Definition 5 For x >0, 0,1 € C with R(o) >0 [11, 26]

—o-1

X

I'(o)

(l02f) ) = /0 e 00 de (1.17)

and

Lnf () d, (1.18)

(IZ2) () =
provided that the integrals in (1.17) and (1.18) converge.
The corresponding derivative operators are defined as follows.

Definition 6 For x >0, o,n € C with R(o) > 0 (see [11, 26])

d k
e =+ ( L) s [0 a

d k
. (%) IS ) @) (k=[] + 1) (119

and

oz - ( dx) e | e
d
:(_1)k(d—x) (L2 ) () (k= [R(o)] + 1). (1.20)

When v = —o, the operators in Egs. (1.11), (1.12), (1.15) and (1.16) give the Riemann—
Liouville and the Weyl fractional integral operators (see [45, 47]) are defined as follows.

Definition 7 For x >0, 0 € C with R(c) >0

(I2.f) ) = % /0 (x— 07" (1) dt (1.21)
and

()0 = = f (6 -2 f () dt, 1.22)
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provided both integrals converge.
The corresponding derivative operators are defined as follows.

Definition 8 For x >0, o € C with %i(c) >0

o d k-o-1
0= (L) s [0 r0a

k
= (%) () @) (k=[%(0)] +1) (1.23)
and
d k
O8N0 =0 52) 1 [ -0 d
k
:(_1)k(dix) (I52f) @) (k= [%R(0)] +1). (1.24)

For details of such operators along with their properties and applications one may refer
o [11, 26, 45, 48, 49].
Power function formulas of the above discussed fractional operators are required for
our present study as given in the following lemmas [37, 40, 50].

Lemma 1 Let o, 0/, v, V', n and p € C, x > 0 be such that N(n) > 0; then the following
formulas hold true:

(13

_ F'p)l'(p+n—0o—-0' —v)I'(p+v -0’) gor1-o-a'-1
Flo+v)I'(p+n-0-0)(p+n-0'~-v)

(R(p) > max{0,% (o + 0’ +v—1n),R(c'-1)}) (1.25)

and

(e )@

Frl-p-v)Il-p-n+o+d)\A-p-n+o+)
x
Frl-p)Frl-p-n+o+o’ +v)I'l—p+0o-v)

(M(p) <1+ min{ﬂi(—v),i}i(o +0' =), R(o+V - n)}) (1.26)

p+n—a—<7/—1

Lemma 2 Let o,0',v,V,n and p € C,x > 0 be such that R(n) > 0, then the following for-
mulas hold true:

(D52t @)

IF'p)'(p-n+o+o" +V)['(p—v+0) (P-nroa’-1

" To-v(p-n+o+0\T(p—n+0+1)

(R(p) > max{0,R(n -0 — o' =), R(v - 0)}) (1.27)
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and

(D2 (x)

IFA-p+V)IA-p+n-0-0)N(1-p+n-0'-v)

xp—n+a+cr’—1

rl-p)rl-p+n-o-o'-v)I(1-p-0'+V')
(R(p) <1+ min{R(V),RN(n-0-0"),R(n-0"-v)}). (1.28)

Lemma 3 Leto,v,n,p € C, x> 0 be such that R(o) > 0, then the following formulas hold

true:
o,0,1 p—1 _ F(,O)F(,O + n- U) —v-1
) = R e o)
NR(p) > max{0,R(v —n) (1.29)
( { b
and

FrQl-p+v)IA-p+n)

xp—v—l
IFrl-p)T1-p+n+o+v)

(")) =
(R(p) < 1+ min{R(v), R(n)}). (1.30)

Lemma4 Leto,v,n,p € C, x>0 be such that R(o) > 0, then the following formulas hold

true:
som 1y Lo +n+o+v) )
(o) = T
(i)’t(p) > —min{O, Ro +v+ n)}) (1.31)
and

(Da,v,ntp—l)(x) _ F(l —-p - V)F(l —p+0o+ n)xp+]}71
woe Frl-p+n-v)I'(1-p)

(N(p) < 1+ min{N(=v - n),RN(n + 0)} and n = [R(o)] +1). (1.32)

Lemma 5 Let 0,n,p € C, x > 0 be such that %W(o) > 0, then the following formulas hold

true:
o p—1 _ I'(p+n) -1
= 0
(R(p) > -R(n) (1.33)
and

I'(1-p+n) o1
'l-p+n+o)

(E)i(,o) <1+ ETi(n)). (1.34)

(L") () =
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Lemma 6 Let 0,n,p € C, x > 0 be such that %W(o) > 0, then the following formulas hold

true:
onplyy  LotN+to)
(DO,J?tp )(x)_ F(,0+77) x°
(iﬁ(p) >-NR(n + cr)) (1.35)
and
o0 o1 _F(l—p+a+n) 4
)0 = —r g
(R(p) <1+ R(n+0)-nandn=[Ro)]+1). (1.36)

Lemma 7 Leto,p € C, x>0 be such that R(o) > 0, then the following formulas hold true:

(1.071) ) = 2o

" T(p+o0)
(R(p) >0) (1.37)
and
o oy o LA=P =) pioy
(Ix,ootp )(x) - F(l _ ,0) g
(0 <R(o)<1- S)i(p)). (1.38)

Lemma 8 Leto,p € C, x>0 be such that R(o) > 0, then the following formulas hold true:

o -1 _ F('O) —o-1
(Doyxt’J )(x) = o) G)xp
(i}“‘(p) >R(o) > 0) (1.39)
and
P B r-p+0) , .4
(Dx,ootp )(x) - F(l —,0) ?
(*ﬁ(p) <1+N(o)-nandn= [E}i(cr)] + 1). (1.40)

2 Mathieu series and its generalizations
In 1890 Mathieu introduced and investigated the infinite series of the form

i 2n
S(r) = —_— e R"), 2.1
) ; TR (reRY) @2.1)
in his work [51] on elasticity of solid bodies; it is known as the Mathieu series.
Integral representations of S(r) are given by (see [52, 53])

S = 1 °° x sin(rx)
r Jo er—1

dx (reR"). (2.2)
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A generalized form of the Mathieu series with a fractional power is defined as

[o¢]
2n
Su(r)=;m (reR%u>1), (2.3)
and it has been extensively studied by Cerone and Lenard [54], Diananda [55], Tomovski
and Trencevski [56] and Pogény et al. [53].
Recently, Tomovski and Pogdny [57] studied the several integral representations of the

generalized fractional order Mathieu-type power series (see also [58])

2nz" .
Su(r;2) =;W (/L>O,V€R 1z < 1) (2.4)
and
S/L(r; 1)= S;/. (r). (2.5)

Srivastava and Tomovski in [59] defined a family of more generalized Mathieu series as

o0 B
2a
S/(La,ﬂ)(r; a) = S;(ft'ﬂ)(r; {anpy) = Z (av +r;l"2)u
n=1 n
(r,o, B, €RY), (2.6)
where the positive sequence
a={an), = lavanas,...) (hm ay = oo) 2.7)
n—00

is so chosen that the infinite series

>
n=1 aﬁ“—ﬂ

is convergent.
Also from Egs. (2.1), (2.3) and (2.6), we see that

Sa(r) = S(r),

S/L(r) = S/(f'l) (r; {n}iil)’
and furthermore the special cases

Sf’l)(r;{n}ﬁil):SM(r), Sf’l)(r;{ny}zl) and Sff""‘/z)(r;{n},ﬁl),

of the Mathieu series were investigated by Cerone and Lenard [54], Diananda [55] and
Tomovski [60]. For more details one may refer to [53, 56, 57, 59, 61-64].
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Recently, Tomovski and Mehrez [65], considered a power series defined as

e r,a2) = S5 (1 Aanlie s 2) = i (jf 5&;} -
(ro, B e R 2] < 1) (2.8)
and
5P r,a;1) = S (r,a), (2.9)
“ﬂ)(r,a, 1) = S“ﬂ (r,a). (2.10)

The concept of the Hadamard product (or the convolution) of two analytic functions is
very useful in our present study. It can help us to decompose a newly emerging function
into two known functions. Let

f(z):= Zanz” (|z| < Rf) (2.11)
n=0
and
g(2) = anz” (Iz] < Ry) (2.12)

be two power series whose radii of convergence are denoted by Ry and R,, respectively.
Then their Hadamard product is the power series defined by

(f+8)(2):= Y awbuz" = (gxf)2) (lzl<R), (2.13)
n=0
where
. anby, . .| ba
R=lim|———|=|( lim .| lim = R¢.Ry, (2.14)
n=>0| Ap41Pn+1 n=>0| Ayl =00 bn+1

therefore, in general, we have R > Ry.R, [66, 67]. For various investigations involving the
Hadamard product (or the convolution), the interested reader may refer to recent papers
on the subject (see, for example, [68, 69] and the references cited therein).

Also we require the Fox—Wright function ,W,(2) (p,q € No) with p numerator and g
denominator parameters defined for ay,...,a, € C and by,...,b; € C\ Z; by (for details
see [11, 26, 44, 45])

(2.15)

(a1, a1),.. (ap,otp) i (a1 +oqn)---T'(ay, + ayn) z"
(b1, B1); - > (byg, By)s L(by + pin)---T'(by + Bgn) n!

n=

where the coefficients «;, ..., ap, B1,..., B; € R" are such that

q )4
1+> Bi=> a;>0. (2.16)
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Fora;=g=1(i=1,...,p;j=1,...,9), Eq. (2.15) reduces immediately to the generalized
hypergeometric function ,F, (p,q € Ny) (see [44]):

aeap | L) Tlbg) o | (@1 1),. (@ 1);
qu |:b1,.u;bq;zj| - F(ﬂl)"'r(aq)p\pq [(bl,l),..,,(bq,l);z:| . (217)

3 Fractional integration of extended generalized Mathieu series

In this section, we present certain fractional integral formulas involving the extended gen-

a,p)
A

eralized Mathieu series SLY (r,a; z) by using fractional integral operators.

Theorem 1 Letx>0,0,0',v,v,n,0€Candr,a,B,u € R*;|t| <1 be such that R(n) >0
and N(p + En) > max{0,N(o + o’ +v —n),R(c" = V')} then the following fractional integral

formula holds true:

(15 et (s ) ) )

—o-0’'-1 cla,B) .
= xPTn—o-o S (r,a,xé)

- [( (0,€),(p+n—0 0" —v,E),(p+V —0',&); xg] (3.1)

p+V,E)(p+n—0-0,E),(p+n-0"—v,§)

Proof Using the definition (2.8) and then interchanging the order of integration and sum-

mation, we get

o]

(Ig;co/,v,v/,ﬂ {tp—ls’(z;hﬁ) (r, a; tE) })(x) _ Z

n=1

x (I ) (), (3.2)

2ah(M), 1

(a% + r})m n!

applying the result (1.25), Eq. (3.2) reduces to

(I(‘{;f/’”’”/”’ {tp’lsﬁ’ff) (ra; t°)}) (%)

2ah(0), 1

(a2 + r2)* n!

n=1

Fp+&ml(p+én+n—o—-oc —v)I'(p+&n+v —0o’)

Fp+é&n+v)T(p+én+n—o—-o)N(p+én+n—-0o'-v)

x xp+én+n—a—¢r’—1’ (33)
after a little simplification, Eq. (3.3) reduces to

R P T 1)

[e¢]

_ xpm—c—cr/—l Z ZQZ()”)"
— (ag +r?)"

_ o r_ ) En
Fp+&ml(p+n—-o—-oc' —v+Eml(p+Vv -0’ +&n) « (3.4)

F(p+v/+.§n)F(p+n—o—o/+.§n)1"(p+n—o/—v+.§n)?'
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By applying the Hadamard product (2.13) in Eq. (3.4), which, in view of (2.8) and (2.15),
gives the required result (3.1). d

Theorem 2 Letx>0,0,0’,v,V,n,p0 € Candr,a, B, u € R*;|1/t| <1 be such that R(n) >
0 and R(p —&n) <1+ min{N(-v),R(o + o' —n),N(o + V' —n)} then the following fractional
integral formula holds true:

oot | omrglap (1

(Iz:go v,V ’Z{tp Sl’w}\ (r,d, ﬁ)})(x)
_ p+n—a—a’—15(avﬂ) . 1
=x o \1%

|:(1—p—\),€),(1—p—77+0 +0",€),(1-p-n+o+V,§); 1]
* 3 W3 = . 35
(1—p,$),(1—p—n+a+0’+v’,§),(1—,0+0—v,§); x'é

Proof The proof of Theorem 2 is similar to that of Theorem 1. 0

3.1 Special cases

Here we present some special cases by choosing suitable values of the parameters o, o”,
v,V and n.Iff weputo =0 +v,0’'=v' =0,v=-1n, n=0 in Theorems 1 and 2, we get
certain interesting results concerning the Saigo fractional integral operators given by the
following corollaries.

Corollary 1 Letx>0,0,v,n,p € Cand r,a, B, 0 € R*; |t| <1 be such that R(o) > 0 and
N(p + En) > max{0, R(v — n)} then the following fractional integral formula holds true:

X

(52 e (st o

_ov-lg@B) .k (0,6),(p+n-v,8);
=S (r,a,x)*2\1/2[(p_v,g)’(pww,s);x . (3.6)

Corollary2 Letx>0,0,v,n,p € Candr,a, B, u € R*; |1/t| < 1 be such that R(o) >0 and
MR(p —&n) <1+ min{R(v), R(n)} then the following fractional integral formula holds true:

(st o
(1-p+v,6),(1-p+n,E); 1 }

1
= xP v 1g@h) (r,a; —) % oW -
pok x5 2T 1-p,8),1-p+0+v+n,&E);af

Further, if we put v = 0 in (3.6) and (3.7) then these Saigo fractional integrals reduce to

(3.7)

the following Erdélyi—Kober type fractional integral operators.

Corollary 3 Let x>0, o,1,p € C and r,a, 8, 0 € R*; |t]| < 1 be such that R(c) > 0 and
R(p + &En) > —N(n) then the following fractional integral formula holds true:

(IS (r,a56) }) @)

= 218 (1, ;) % Wy en ) x| (3:8)
- (p+o+n,8);
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Corollary 4 Letx>0,0,n,p € Candr,a, B8, 0 € R*; |1/t] < 1 be such that R(o) > 0 and
R(p — &n) < 1+ N(n) then the following fractional integral formula holds true:

1
o, -1 ola,B) .
(leo'é {tp Sn (r, a; t—$> })(x)

1 1- ,€);, 1
= xp‘lS(“’f) (r,a; —) % Uy (L=p+m8) 1 . (3.9)
H xt (1-p+0+n,&);af

Further, if we put v = —o in (3.6) and (3.7), then these Saigo fractional integrals reduce
to the Riemann-Liouville and the Weyl type fractional integral operators as given in the

following results.

Corollary 5 Let x >0, 0,p € C and r,a, 8,0 € R*; |t| < 1 be such that R(o) > 0 and
N(p + En) > 0 then the following fractional integral formula holds true:

(15 7' S0 (r a5 }) ()

= xp*”’lef"f)(r, a;x‘f) A (p,8); . (3.10)
' (IO +0, S):

Corollary 6 Letx>0,0,p € Candr,a,B,u € R*; |1/t| <1 be such that 1 — R(p — &n) >

M(o) > 0 then the following fractional integral formula holds true:

1
<ch’,oo {t”‘leff’f) (r, a; t_‘?) })(x)

1 1_ - ’ ; 1
:xﬂW—ISfff)(r,a;— * W 1=p=08) =< |- (3.11)
’ x§ (1—:0»5); xé

If we put £ =1 in (3.1), (3.5), (3.6), (3.7), (3.8), (3.9), (3.10) and (3.11) then we get the

following results.

Corollary 7 Letx>0,0,0',v,v,n,p € Candr,«, B, € R*; |t| <1 be such that R(n) >0
and R(p + n) > max{0,N(o + o’ +v —n),R(0’' = V')} then the following fractional integral
formula holds true:

e L P 1)

_ pri-a-o'-1 C(p)T(p+n-—0o—-0c"—v)['(p+Vv' -0’) @)

. (1 ;%)

F(o+v)I'(p+n—o-0)(p+n—0’'-v)

,p+tn—o—-0c —v,p+Vv —0';
*3P3|: PP e , x{|. (3.12)
p+v,p+n—-oc-o,p+n—-0'—v;

Corollary 8 Letx>0,0,0’,v,V,n,p e Candr,a, B, € R*; |1/t| <1 be such that R(n) >
0 and R(p — n) <1+ min{R(-v),R(o + 0’ —n),R(o + V' —n)} then the following fractional
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integral formula holds true:

! ! o 1
(1;;;; VLT { tp’ISL“f) (r, a ;) }) (%)

:xpm_a_a,_ll"(l—p—v)l"(l—,o—n+o+a’)F(1—p—n+o+u/) @ ( 1
FrQA-p)fl-p-n+o+o’+vV)[A-p+o—-v) ** 7

1-p-v,1-p-n+o+0’,1-p-n+o+v;1
*3P3|: P P P —]. (3.13)

1-p,1-p-n+o+0'+v,1-p+o-v; %

Corollary 9 Letx>0,0,v,n,0 € Cand r,a, B, 0 € R*; |t| < 1 be such that R(o) > 0 and
N(p + n) > max{0, N(v — n)} then the following fractional integral formula holds true:

(1M 8P v a;)}) ()

F(p)F(p+n-v s -V
= g1 (P)C(p+n-v) S(“’ﬂ)(r,a;x)*2F2|: prp =Y xi| (3.14)

T(p-v)C(p+n+o) " p—V,p+1+0;

Corollary 10 Let x>0, 0,v,n,p0 € Cand r,a, B, n € R*; |1/t] < 1 be such that R(c) >0
and R(p —n) < 1+min{N(v), R(n)} then the following fractional integral formula holds true:

1
.V, -1 o(@,B) .
<Ix,oo’? {tp Sux (r, a; ;) }) (%)

_ o1 Fl-p+v)[I(1-p+n) g ra'l
FrA-p)ld-p+o+v+n) 77

1- ,1- ;01
%5 F pPrvI=LTL 2 (3.15)
l1-p,l—-p+o+v+mx

Corollary 11 Let x>0, 0,n,0 € Cand r,ao, B, € R*; |t] < 1 be such that R(o) > 0 and
NR(p + n) > —N(n) then the following fractional integral formula holds true:

e s an})@

I'(p+ H
Ay L A R (3.16)
IF'(p+o+n) * p+0o+1;

Corollary 12 Letx>0,0,n,p € Candr,«, B, € R*; |1/t] <1 be such that R(o) > 0 and
N(p —n) <1+ N(n) then the following fractional integral formula holds true:

1
o, - (axﬂ) .
(Ix,o’é{tp IS,M (r,a, ;) })(x)

ra- 1 1- ;1
:xp’lus(af) ra;— | * 15 P : (3.17)
Frl-p+o+n) * x 1-p+o+nx
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Corollary 13 Let x >0, 0,p € C and r,a, 8,0 € R*; |t] <1 be such that R(o) > 0 and
N(p + n) > 0 then the following fractional integral formula holds true:

(15 71D r,as)}) ()

r ;
= xPro-1 7('0) sz;\ﬁ)(r, a;x) % 1Fy ? x|. (3.18)
I'(p+o0) p+o;

Corollary 14 Letx >0,0,p € Cand r,a, 8,0 € R*; |1/t| < 1 be such that 1 — N (p — n) >
N(o) > 0 then the following fractional integral formula holds true:

1
(I;’,OO {t”‘ISffff” (r, @ ;) }) (%)

rl-p- 1 1-p-o0;1
_pro1LTA—p U)S(“’f) roas = ) % 1 Fy p=oil | (3.19)
r(1-p) * x

4 Fractional differentiation of extended generalized Mathieu series
In this section we present certain fractional differential formulas involving the extended

generalized Mathieu series S (r, a;z) by using fractional differential operators.

Theorem 3 Letx>0,0,0',v,v,n,0 € Candr,a,B,u € R*; |t| <1 be such that R(n) >0
and N(p +&n) > max{0,N(n—o —o’' V'), N(v —0)} then the following fractional derivative

formula holds true:

(DG 1S5 (15 £) }) ()
= P TIHIHo ’ISEZ;\’S (r, a;xs)

(4.1)

(/0:5):(/0—77+U+0/+V/;§);(P—V+Uy§); 3
*3W3 X .
(p=v,6),(p-n+0+0"8),(p-n+0+V,§);

Proof For convenience, we denote the left-hand side of the result (4.1) by D. Then by using

(2.8) and then changing the order of differentiation and summation, we get

o0

2&15()»);1 1 aa ' p+én—1
Do Z T n‘ Dy ) (). (4.2)

Applying the result (1.27), Eq. (4.2) reduces to

= 2ah(M), 1
D= Z @

7‘2)“ I’l‘

Fo+&nT(p-—n+o+o’+vV +&m)T(p—-v+o +E&n)

Fp-v+&ml(p-n+o+o’ +Em)(p-n+o+Vv +&n)

> xp+§n—n+a+a’—1; (4.3)
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after simplification, Eq. (4.3) reduces to

D= p-n+o+o’-1 = 26{5()‘)”
=x Z (aa + r2),u
n=1 n

Tp+&mT(p—n+o+0’ +V +EmT(p—-v+0o +En) «"
Fp-v+&m(p-n+o +a’+$n)F(,o—n+a+v/+§n)W

) (4.4)

and interpreting the above equation, from the point of view of (2.8), (2.13) and (2.15), we
have the required result. O

Theorem 4 Letx>0,0,0’,v,V,n,p0 € Candr,a, B, u € R*; |1/t| <1 be such that R(n) >
0and R(p —&n) <1+ min{NOW), R -0 —0’),N(n — o' —v)} then the following fractional
derivative formula holds true:

oot | omigep (1
(DZ,Z;““ n{tﬂ Spx <r,a,t—é)}>(x)

_ xp—n+a+a’—ls(d,f3) ra i

= Ty )y U, xs

(I-p+v,6),(1-p+n-0-0,8),(1-p+n-0'-v,£); 1
A — 1. (@5)
1-p,&),Q-p+n-0-0"-v,&),1-p-0'+V,§); **

Proof The proof of Theorem 4 is similar to that of Theorem 3. d

4.1 Special cases

Here we present some special cases by choosing suitable values of the parameters o, o/,
v,V and n. If weputo =0 +v,0' ' =v' =0, v =-n, n =0 in Theorems 3 and 4, we get
certain interesting results concerning the Saigo fractional differential operator given in
the following corollaries.

Corollary 15 Letx>0,0,v,n,p € Cand r,a, 8, n € R*; |t| <1 be such that R(c) > 0 and
R(p + &n) > —min{0, R(o + v + n)} then the following fractional derivative formula holds
true:

(D5 et (s ) }) (o)

_ L ptv-1cl@p) LE (,075);(,0+7I+0+V»§); &
=S (1, ax )*2%[ rnerpeve; | (4.6)

Corollary 16 Let x > 0,0,v,1n,p € C and r,a, 8,0 € R*;|1/t| < 1 be such that R(c) > 0
and R(p — &n) < 1 + min{N(-v — n*),N(n + o)} where n* = [N(o)] + 1 then the following
fractional derivative formula holds true:

o 1
(D;,gy {t”‘lSl(hf) (r, a; E) }) ()

:xp”*ls(f’kﬂ) (7,615 i) * oWy A=p=v.5).(1-p+o+n8); i . (4.7)
B x‘(f (I—P;E)¢(1—P+W—V,§); xé
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Further, if we put v = 0 in (4.6) and (4.7) then these Saigo fractional differential formulas

reduce to the following fractional differential formulas.

Corollary 17 Let x>0, 0,n,p € Cand r,o, 8,0 € R*; |t] <1 be such that R(o) > 0 and
NR(p + En) > —R(n + o) then the following fractional derivative formula holds true:

(D5 {8 (ra525) ) )

= x/"ls(aiﬁ) (l’, a;xé) * Wy (p+m+ G’E);xé . (4.8)
- (o +n,8);

Corollary 18 Let x>0, 0,p € Cand r,a, 8, n € R*; |1/t| < 1 be such that R(o) > 0 and
N(p—&n) <1+ NR(n+0)—n" where n* = [W(o)] + 1 then the following fractional derivative

formula holds true:

1
(Dggo {tﬂ-lsfjff” (r, @ E) }) )

1 1- ,6); 1
:x”‘lSl(f‘f) (r,a; _$> * 1 1=pro+ni) =< | (4-9)
: x (1-p+n8) =

Further, if we put v = —¢ in (4.6) and (4.7), then these Saigo fractional derivatives reduce

to the following Riemann-Liouville and the Weyl type fractional derivative formulas.

Corollary 19 Let x >0, 0,p € C and r,a, 8,0 € R*; |t| <1 be such that R(o) > 0 and
NR(p + &En) > N(o) > 0 then the following fractional derivative formula holds true:

(Dg.{ t”‘lSl(fff) (ra; té) D)

= xp_a_ls;(z;»ﬂ) (r) a,xs) * 1“1‘11 [(p(f,j),&)xé} : (4.10)

Corollary 20 Let x>0, 0,p € Cand r,a, B, u € R*; |1/t| < 1 be such that R(p — &n) <
1+ N(o) — n* where n* = [R(0)] + 1 then the following fractional derivative formula holds

true:

1
<D;‘C,Oo { t"‘lSl(ff’f) (r, a t_5> } ) (%)

1 1- 6) 1
— xp—n—ls(avﬂ) ra; — | * 1“1"1 ( pto S) — 1. (4.11)
ok xt 1-p,8); &

If we put & = 1 in Theorems 3, 4 and corollaries (4.6), (4.7), (4.8), (4.9), (4.10) and (4.11),

we get interesting results given in the following corollaries.

Corollary21 Letx>0,0,0',v,v,n,p € Candr,a, B, 1 € RY; |t| < 1 be such that R(n) >0
and R(p +n) > max{0,R(n — o —o’ =), N(v — o)} then the following fractional derivative
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formula holds true:

(D52 115 1, ;)] ) )

F(p)F(p—-n+o+0" +V)I'(p—-v+o0) @)
Fp-v)I'(p-n+o+0)(p-n+0+V) Siui

,p—n+o+0' +V,p—v+0;
wyFy| PP P x| (4.12)
o=V, p=n+0+0,p-n+0+V;

:xp—n+a+a’ 1 (rya;x)

Corollary22 Letx >0,0,0’,v,v,n,p € Candr,a, B, € R*; |1/t| < 1 be such that R(n) >
0and R(p —n) <1+ min{RO'),R(n -0 —0'),R(n — o’ —v)} then the following fractional
integral formula holds true:

<Da¢7 W, n{tp lS:f)<r,a;%)})(x)

=xp7nww/lf‘(l p+V)Il-p+n-0-0FA-p+n-0o’ U)S(aﬁ ﬂ‘l
rl-p)fl-p+n-oc-o’ -v)FA-p-0c’+V') na

1- 11— -0-0,1- -0’ -p;1
*3F3|: p+v p+n—o-o p+n—o u_i|' (4.13)

1-p,1-p+n-0-0'-v,1-p-0’'+V; «x

Corollary 23 Letx>0,0,v,n,p € Candr,a, B, € R*; |t| <1 be such that % (o) > 0 and
MR(p +n) >—min{0, R(n + o +v)} then the following fractional derivative formula holds true:

(D {718 (r, a5 )} ) ()

L(p)T(p+n+0+v)
C(p+nC(p+v)

— xp+u—1

(4.14)

O+ +0 +V;
Sl(f’f)(r,a;x)*ze[pp K x:|

p+NMP+Y;

Corollary 24 Let x>0, 0,v,n,p € Cand r,a, 8, n € R*; |1/t| < 1 be such that R(o) >0
and R(p — n) <1 + min{R(-v — n*),R(n + o)} where n* = [N(o)] + 1 then the following
fractional derivative formula holds true:

(D;,gj {tﬂlsfjf (r, a ) }) ®)
_xpw_l[‘(l—p—v)f‘(l—,o+o+n)5(avﬂ)< 1)
= o

ra; —
rQA-p)rl-p+n-v) x

1-p-v,1- ;i1
woFy | P T ATRTORm (4.15)
l1-p,1—p+n-v; %

Corollary 25 Let x>0, 0,n,0 € Cand r,a, B, € R*; |t] <1 be such that R(o) > 0 and
NR(p + n) > -N(n + o) then the following fractional derivative formula holds true:

(DG {tp_ls,(fff) (r,a;1)}) (%)

F'e+n+o tn+o;
= 5P ! 7('0 7 )S;Z:\ﬁ)('”, a;x) x 1 F1 P X |- (4.16)
C(p+n) P+
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Corollary 26 Let x>0, 0,p € Cand r,a,8,u € R*; |1/t| <1 be such that R(o) > 0 and
N(p —n) <1+ NR(n +0)—n* where n* = [N(o)] + 1 then the following fractional derivative

formula holds true:

1
(Dg;go {tﬂ-lsfjff” (r, @ ;) }) ®)

ra- 1 1- ;1
Tt o it Dgep (1) p [ Lmproenl) (4.17)
Fl-p+m) " x

Corollary 27 Let x >0, 0,p € C and r,a, 8,0 € R*; |¢] < 1 be such that R(o) > 0 and
R(p + n) > N(o) > 0 then the following fractional derivative formula holds true:
(Dg'x{t”’leff'f)(r,a; H}) &)

_ oo T'(p)

“

: p;
m fzkﬂ)(r’d;x)*lpl |:p_g'x] . (4'18)

Corollary 28 Let x >0, 0,p € C and r,a, 8,0 € R*; |1/t| < 1 be such that R(p — n) <
1+ MN(o) — n* where n* = [W(0)] + 1 then the following fractional derivative formula holds

1
(D;oo {tﬂ-lsfjff> (r, @ ;) }) )

ra1- 1 1- ;1
_ ypo-1 d-p+0) +G)S(°‘”S)(r,a;—) * 1F1 [ pra —i|. (4.19)
X

true:

rd-p)

5 Integral transform formulas of the extended generalized Mathieu series
In this section, we establish certain theorems involving the results obtained in the previ-
ous sections associated with the integral transforms like the beta transform, the Laplace

transform and the Whittaker transform.

5.1 Beta transform
Definition 9 The beta transform of the function f(z) is defined as [70]:

B{f(z) : l,m} = /1211(1 -2)"f (2) dz. (5.1)
0

Theorem 5 Letx>0,0,0',v,v,n,0 € Candr,a,B,u € R*;|t| <1 be such that R(n) >0
and N(p + &n) > max{0,N(o + o' +v —n),R(c" - V')} then the following formula holds:

B 4718 (v, a3 (2)F) ) (o) < L, m)
— xﬂH?—a—a’—l F(m)S/(Z’)Lﬁ) (r’ a xé)

eawy| GO -0 —o v (v =ahE ]
+mé&),(p+V,6),(p+n-0-0"8),(p+n~0"~v,§);
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Proof In order to prove (5.2), we use the definition of the beta transform as given in
Eq. (5.1), to get

B2 {114 (5 ) ) o 2 )

1
- / 2N =2 (I e SO (s (2)F) ) (0 ) e (5.3)
0

Applying the result (1.25), Eq. (5.3) reduces to

1 o0
24" A)
- l+En-1 p+n—-o—o'-1 n\A)n
= z 1-z x
/0 ( ) ( Z aa +}"2

Fp+&mMl(p+n—oc—oc —v+EmMT(p+Vv —o' +&n) &5 (5.4)
Fp+Vv+&ml(p+n—oc—-oc' +&nl(p+n—0'—v+E&n) n! '
Interchanging the order of integration and summation, we have
o0
2al (1),
_xp+n o—o'-1 n
Z aoz +V2
Fp+EmMl(p+n—o—o0 —v+EmMT(p+Vv -0’ +&n) &5
Fo+vV+émT(p+n—oc-o' +Eml(p+n—0c’' —v+&En) n!
1
x / 21— )" d. (5.5)
0

After a little simplification, we have

o0

= PN~ o’ 1F( )Z 2ﬂ”l

a"‘+r2
Fl+&ml(p+Em(p+n-—0o—-0c' —v+&EMl(p+Vv -0’ +&n) xEn
F(l+m+§n)F(p+v/+$n)F(,o+n—o—o/+§n)l"(p+n—o/—v+§n)?'

(5.6)

By applying the Hadamard product (2.13) in Eq. (5.6), which in view of (2.8) and (2.15),
gives the required result (5.2). O

Theorem 6 Letx>0,0,0’,v,V,n,p0 € Candr,a,B,u € R*;|1/t| <1 be such that R(n) >
0 and N(p — &n) < 1 + min{N(-v),R(o + 0’ —n),N(o + V' —n)} then the following formula
holds:

&
! ’ Z
B{ <1;{g§;”'“ ’"{tpflsjjﬁ <r,a; (;) )})(x) : l,m}
_ xp+n—rr—(r’—lr(m)s(0¢ ,B) ra l
pws ’ ,xé

*4\114[(lré)’(l—ﬂ—v»%“):(l—p—n+0 +048),(A—p-n+o+v,8); 1 ] (5.7)

((+m&),1-p,&),Q-p-n+o+0' +V,),(1-p+0—1,E);x
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Proof The proof of Theorem 6 is similar to as that of Theorem 5, therefore, we omit the
details. O

Theorem 7 Letx>0,0,0',v,v,n,0 € Candr,a,B,u € R*;|t| <1 be such that R(n) >0
and R(p + &n) >max{0,R(n —o — o' V'), N(v — 0)} then the following formula holds:

B{(DG " (e S (1,3 (22°) ) ) : L, m)

= xPTItOre ‘IF(m)Slzf)(r, a;x%)

(5.8)

(L,£),(p,6),(p—n+0o+0"+V,&),(p—v+0,8); &
x4 Wy x|
(l+m&),(p-v,E),(p—n+0+0",8),(p—n+0+V,&);

Proof In order to prove (5.8), we use definition of beta transform as given in Eq. (5.1), we
get
B{(Dgy """ {t”’lefff) (ra; (t2)°)}) (%) : [, m]}

1
- / 2= 2 (DG 18D (1,5 (12)F) ) ()} (5.9)
0

applying the result (1.27), Eq. (5.9) reduces to

1 00 B
— / Zl+én—1(1 _ Z)m_lxp_"h'”g/_l Z (Zﬂn ()\)n
0 .

< (ag + P2

Tp+&mT(p—n+o+0’ +V +EmT(p-v+0o +En) "

TFp—v+EmMT(p-—n+o+o’ +En)T(p—n+0+V +&En) n!’ (510
Interchanging the order of integration and summation, we have
=\ 2ah(
corta S b 0):
Fp+&mT(p—n+o+o’ +vV +&Eml(p—v+0 +E&n) ﬁ
Fo—-v+&ml(p—-—n+o+o’' +&mMl(p—n+o+v +&n) n!
X /0 1z’*f”-l(l —2)"tdz. (5.11)

After a little simplification, we have

o]

— gp-n¥oto’ IF( )Z zan()‘)n

(a2 + r2)m

Fl+&nT(p+&n)T(p—n+o+o’+vV +&m)T(p—v+o +E&n) xEn

F(l+m+§n)F(p—v+$n)F(,o—n+o+a’+§n)1“(,o—n+o+v’+$n)?'
(5.12)

Applying the Hadamard product (2.13) in Eq. (5.12), in view of (2.8) and (2.15), gives the
required result (5.8). d
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Theorem 8 Letx>0,0,0',v,V,n,p € Candr,a,B,u € R*;|1/t| <1 be such that R(n) >
0 and R(p —&n) <1+ min{RO'), N -0 —0’),R(n — o’ —v)} then the following formula
holds:

¢
’ / Z
B{ (D;;go'“'” ”7 {tf’*‘sffff) (r, a; (;) ) })(x) : l,m}
’ 1
o -1 (,B) .
= xPNHO+0 F(m)SM,A (r, a; x_s)

LE),1-p+V,6),1-p+n-0-0,&,1-p+n- O—vg) 1
*4W4[(1+m$)(1—p§)(1 p+n—0—0 —v,E),1-p—-0o +V,E); —E} (5.13)

Proof The proof of Theorem 8 is similar to as that of Theorem 7. Therefore, we omit the
details. O

5.2 Laplace transform
Definition 10 The Laplace transform of f(z) is defined as [70, 71]:

L{f2)} = /O e (2) dz. (5.14)

Theorem 9 Letx>0,0,0',v,v,n,0 € Candr,a, B, u € R*; |t| <1 be such that R(n) >0
and R(p + En) > max{0,R(c + o' +v —n),N(c’ — ')} then the following formula holds:

L e 1S (s e2)) @)

xp+n—a—a'—1 @p) x &
= S"P g =
st Hoh s

[(zsnps) J(p+n—0—0"—v,E),(p+V -0, s>< ”
*4\11 .

(5.15)
(p+V,E),(p+n—0-0",8),(p+n—0"—v,&);

Proof In order to prove (5.15), we use definition of the Laplace transform as given in
Eq. (5.14), to get

L{ (1 eS8 s 02) ) @)

- / e (157 01D (1,05 (02)F) ) () ) dz (5.16)
0

and applying the result (1.25) and interchanging the order of integration and summation,
Eq. (5.16) reduces to

o B
B o' 12 20, (M)n
(

as + r2)n

To+EmT(p+n—o -0 —v+En)(p+V -0’ +£n) ﬁ

Fo+vV+&nT(p+n—oc-o' +Eml(p+n—0’'—v+&n) n!

oo
x/ 2 1e=7 gy, (5.17)
0
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After a little simplification, we have

e & 2,

- ! o 2\
s e~ (a% +r?)

Tl+emT(p+EmT(p+n—0 -0 —v+EmT(p +V -0’ +&n) (x/5)8"
Fo+vV+énT(p+n—o-oc' +éml(p+n—0c'—v+&n) n!

, (5.18)

and interpreting the above equation, from the point of view of (2.13), (2.8) and (2.15), we

have the required result. d

Theorem 10 Letx >0,0,0',v,v,n,p € Candr,a, B, € R*;|1/t| < 1 be such that R(n) >
0 and R(p —&n) <1+ min{R(-v),R(o + o' = n),R(o + V' —n)} then the following formula
holds:

&
! / Z
s
x,o+n—r7—rr’—1 @p) 1 &
= TSM na(

%W (l:g);(l—l)—v:g):(l—,o—ﬂ"'U+0/"§)r(1—)0—'7+0+1’/;é§); i s
43 1-p,8),0-p-n+o+0' +V,&),1-p+0-v,&); sx ’

(5.19)

Proof The proof of Theorem 10 is similar to that of Theorem 9. Therefore, we omit the
details. O

Theorem 11 Letx>0,0,0',v,v,n,0 € Candr,a, B, € R*; |t| < 1 be such that R(n) >0
and R(p + &n) >max{0,R(n —o — o' —V'),N(v — 0)} then the following formula holds:

L{ (g7 e s (s 2) ) )

xp—v7+a+<7’—l ( x §
S — O P
s ot s

o [(L&),(p,s),(p —n+o+0’ +0,8), (0 -V +0,8) (a_«ﬂ '

(Io_v!s);(,o—n+O'+O'/,%')’(p_n+a+v/,é_-); S (520)

Proof In order to prove (5.20), we use definition of the Laplace transform as given in
Eq. (5.14), we get

L g (e (s 1)) )

_ / e (DY 15 (1, a5 (£2)F) ) )} e (5.21)
0



Singh et al. Advances in Difference Equations (2018) 2018:144 Page 24 of 30

applying the result (1.27), Eq. (5.21) reduces to

00 00
=/ l+5n 1 e~ S%xP n+o+o’'-1 § : 261" )")"
0 (a% + r2)m

Fp+&mT(p—n+o+0’ +V +EmT(p-v+0o +En) "

5.22
Fp—-v+&ml(p—-n+o+o’ +&mMl(p—n+o+v +&n) n! (5:22)
Interchanging the order of integration and summation, we have
o B
2a, (1)
_ o p-n+o+o’ -1 n n
=X Z ( 7‘2)“
Tp+En(p—n+o+0’ +V +EmT(p-v+o+En) x5
Fp—-v+Eml(p—-n+o+o’ +EmMl(p—n+o+v +&n) n!
o0
x / ZHEn-lg7sz gy (5.23)
0
After a little simplification we have
T SN 24500,
- st — (ay + -
Tl+emT(p+EmMT(p—n+0o +0’ +V +EnT(p—v+0 +En) (x/5)5" (5.24)

Fp—-v+&ml(p—-n+o+o0’ +&m(p—n+0o+V +&En) n!

and interpreting the above equation, in the view of of (2.13), (2.8) and (2.15), we have the
required result. O

Theorem 12 Letx >0,0,0',v,v,n,0 € Candr,a, B, € R*;|1/t| < 1 be such that R(n) >

0 and N(p —&n) <1+ min{RO'),N(n -0 —0’),R(n — o’ —v)} then the following formula
holds:

3
, z
L{ - 1<DJJ AV n{tp 15Lf)<r’a;<z> )})(x)}
xp—n+o+a/—l @p) 1 &
S S\ has p”

(1-p+1V,8),(1-p+n-0-0,8,(1-p+n-0 —v,&);( 1\
*3‘”3[ (A= p,6),(1-p+11-0 -0 —v,6),(1-p—0’ +V,E); (5)]‘5'25)

Proof The proof of the Theorem 12 would run parallel to Theorem 11. Therefore, we omit
the details. O

5.3 Whittaker transform
Definition 11 The Whittaker transform is defined as [70]

/ ety (6)dt - F2+¢+0)012-¢ +D) (5.26)

0 ra2-t+1)
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Theorem 13 Letx>0,0,0',v,v,n,0 € Candr,a,B,u € R*; |t| < 1 be such that R(n) >0
and R(p + &n) > max{0,N(o + o’ +v —n),N(o’ —V')} then the following formula holds:

/OOZ1-1e_az/2W (62){ (125 oo ”{t/"lsl(:f’f)(r,a; (wzt)*)}) (x)} dz

0
_A T (L ()
B U

[(1/2 v+ LE),(1/2-¢ +1,E),
* 5 Wy
1/2-t+1¢),

(p,é),(p+n—a—a/—v,‘§),(/0+1/—0/;5); (M>$i| (527)

(IO"'V/)S))(p*'77_(7_0'/75):(10"'77_0'/_”:&);

Proof To prove (5.27), by using the definition of the Whittaker transform and by using the
result obtained in Eq. (3.4), we have

/ Z-1g70212 W, (62) { (I&f/’u'v/’n{tp_ls,(z’xﬁ) (r, a; (wzt)g) })(x)} dz

0

00
2('1 (M
= xPHN-o- o’ IZ n

(a% + r2)m

Fp+&mT(p+n—0—-0 —v+EmT(p+V =0’ +&n)  (wx)¥"

FClp+vV+&ml(p+n—o—-o' +&n)l(p+n—-0c’'—v+&n) n!

o0
x / 122y (82) dz. (5.28)
0
By substituting 6z = y and after a little simplification, we have

0 !’ /

/ 2 e W, (82) {7 " {tp’lSl(z‘f) (r,a; (wzt))}) (v)} dz

0
xp+n—(r—(r’—1 o 2&5()\),1

1 o 2\
8 — (a% +r?)

Tp+EmMT(p+n—0—-0 —v+Enl(p+V —o' +En) [(wx\*"1
F(p+v’+§n)F(p+n—0—0’+£n)F(,0+n—a’—v+§n)<_)

[e¢]
X / yHEnleI 2y (y) dy. (5.29)
0

By using the integral formula involving the Whittaker function, we have

/oozz_1e-5;z/2Wr 62| (IS 700 ur ﬂ‘ISl(ff’f) (r,a; (wzt)*)}) ()} dz
0

[e¢]

ool Z 2al (M), T2+ +1+EMTA/2-¢ +1+En)
= sl (a2 + r2)n CA/2-t+l+&n)

Fpo+&m)T(p+n—0—-oc' —v+En)T(p+V -0’ +E&n) <wx>5” 1
— ) —,(5.30)
Fp+v+&n)T(p+n—o—-o' +&m)l(p+n—0’'—v+E&n) n!
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and interpreting the above equation, from the point of view of (2.13), (2.8) and (2.15), we

have the required result. d

Theorem 14 Letx>0,0,0',v,v,n,p € Candr,a, B, € R*;|1/t| < 1 be such that R(n) >
0 and N(p —&n) <1+ min{R(-v),R(o + o' = n),N(o + V' —n)} then the following formula
holds:

© ’or () wz §
/ Z1 8212 W, (62){ (chcf,go v {tplslz;hﬂ (,,.’ a; <7> ) }) (x)} dz
0
xpﬂq—a—a’—l @f) w &
sl (s

[(1/2 +C+LE),(1/2—¢ +1,E),
*5\1’4
1/2 -1 +1,¢),

(l_p_v,g),(l_p_ma+<r/,$),(1—p—n+0+v/:$)?<£>E (5.31)
(1_10,&3),(1_10—77_'_0+O—/+v’,%‘),(1—p+0’—\);§); 8% . .

Proof The proof of Theorem 14 would run parallel to Theorem 13. Therefore, we omit
the details. O

Theorem 15 Letx>0,0,0',v,v,n,0 € Candr,a, B, u € R*; |t| < 1 be such that R(n) >0
and N(p + &n) > max{0,N(n —o — o’ = V'), N(v — o)} then the following formula holds:

/ T e, () (DG (S (s (wat)) ) ) de

0
~ xﬂ—n+a+o’—1 S(D‘ﬁ) ‘ M &
=5 Sua r,a; 5

[(1/2 v+ LE),(1/2-¢ +1,E),
*5\1-’4
(172 -t +1,¢),

(0,€),(p—n+o+0" +V,E),(p—v+0,8); (W"f} ) (5.32)

(P—fo)x(ﬁ—fl‘ra+0/’§)’(/0—77+0+V/r§); 5

Proof To prove (5.32), by using the definition of the Whittaker transform as given in
Eq. (5.26) and by using the result obtained in Eq. (4.4), we have

/Oozz-1e-sz/2 W, ((Sz){(D” v, e SP (1, @ (wat)) }) (1)) dz
0

0 B
= 4P~ n+o+o’ IZ 2an ()\)n
(

as +r2)n

Tp+EmMl(p-—n+o+0' +V +EmT(p—v+0 +En) (wx)s"

Flp—-v+&ml(p-n+o+o’ +Em)(p—n+o+v +&En) n!

o0
x / 122y (82) dz. (5.33)
0
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By putting éz = y and after a little simplification, we have

/ 712 We . (82) { (Dg’f,’”’vl’” {tp_lS,(Z'f) (ra; (wzt)é) })(x)} dz
0

xp—n+a+o’—1 o 2a£ (M

! o YAV
) ~ (a% +r?)

n!

T(o+EmMT(p-n+o+0 +V +EMT(p—v+o+&n) [(wa)*"1
F(p—v+§n)l"(p—n+o+a/+$n)1"(p—n+o+v’+$n)<?) n!

X / Y2y (y) dy, (5.34)
0

By using the definition of the Whittaker transform, we have

/0 2 e W, (82) { (Dg";/’v’”/’" {tp_lS}(zf) (r, a; (wzt)é) }) (x)} dz

xpmmroro’=L X0 BN, T2+ ¢ +1+EmT(1/2—¢ +1+&n)
8! — (ag + r2n F/2-t+l+&n)

Fp+&mMT(p—n+o+o’ +vV +Enm(p—v+0 +E&n) (wx)sn 1
— 1 —, (5.35)
Fp—-v+&ml(p—-n+o+o’ +&m)T(p—n+o+V +&En)\ § n!

and interpreting the above equation, from the point of view of (2.13), (2.8) and (2.15), we
get the required result. O

Theorem 16 Letx>0,0,0',v,v,n,0 € Candr,a, B, € R*;|1/t| < 1 be such that R(n) >
0and R(p —&n) <1+ min{NQO'),R(n -0 —0'),N(n — o’ —v)}. Then the following formula
holds:

o0 ’ ’ (,B) wz §
/ 712 WI,;(éz){ (D;,’go""“ o {t’)_lS:f (r, a; (T) ) })(x)} dz
0
xp—r]+a+r7’—1 @p) w &
(e ()

[(1/2+ ¢ +1,E),(1/2—¢ + L),
*5\114
1/2-t+1+8&),

(1—/0+v/,E),(l—,O+T)—U—0/,5%(1—/3‘”7_0/_”’5);(&)& (536)
(1—,0:5;'):(1—/0+TZ—U—U/—Vré)r(l_p_a,-"v/’s); 8 ' .

Proof The proof of Theorem 16 would run parallel to Theorem 15. Therefore, we omit
the details. 0

6 Conclusion

The applications of fractional integral and differential formulas in communication theory,
probability theory and groundwater pumping modeling were showed by many authors.
Therefore, the fractional integral and differential formulas (of Marichev—Saigo—Maeda

type) involving the extended generalized Mathieu series established in this paper will be
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very useful in the application point of view. Also, we expect to find some applications in
obtaining the solutions of differential equations.
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