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Abstract
This paper deals with the effect of parameters on properties of positive solutions and
asymptotic behavior of an unstirred chemostat model with the
Beddington–DeAngelis (denote by B–D) functional response under the Robin
boundary condition. Firstly, we establish some a priori estimates and a sufficient
condition for the existence of positive solutions (see (Feng et al. in J. Inequal. Appl.
2016(1):294, 2016)). Secondly, we study the effect of the small parameter k1 and
sufficiently large k2 in B–D functional response, which shows that the model has at
least two positive solutions. Thirdly, we investigate the case of sufficiently large k1. The
results show that if k1 is sufficiently large, then the positive solution of this model is
determined by a limiting equation. Finally, we present an asymptotic behavior of
solutions depending on time. The main methods used in this paper include the fixed
point index theory, bifurcation theory, perturbation technique, comparison principle,
and persistence theorem.
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1 Introduction
The chemostat is a very important resource-based model for the continuous culture of
competition microorganisms and a standard model for the laboratory apparatus on biore-
actor, which have been studied from various views such as population dynamics and
species interactions [1–17]. For early works, we refer to [2–4]. The chemostat model of
competition for a single-limit nutrient between plasmid-bearing and plasmid-free organ-
isms was proposed by Stephanopoulos and Lapidus [13], who established some local re-
sults, whereas a global result was presented in [14]. The inhibition effects on plasmid pop-
ulations were studied by Hsu and Waltman [15]. The chemostat model with impulsive
input nutrient concentration was studied from different views in [18–22]. The above re-
search of the chemostat model is related to the ODE model. Recently, the coexistence and
stability of chemostat models were studied from the viewpoint of PDE (see Wu [5–7], Nie
[8, 9, 16], Wang [17], and Zhang [23]), which can better simulate the unstirred chemostat
model.
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In this paper, we are concerned with the following unstirred chemostat model with the
B–D functional response under homogeneous Robin boundary condition in a bounded
domain �:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

St = d�S – auf (S, u) – bvg(S, v), x ∈ �, t > 0,

ut = d�u + (1 – q)auf (S, u), x ∈ �, t > 0,

vt = d�v + bvg(S, v) + qauf (S, u) x ∈ �, t > 0,
∂S
∂n + γ S = S0, ∂u

∂n + γ u = 0, ∂v
∂n + γ v = 0, x ∈ ∂�, t > 0,

S(0, x) = S0(x) ≥ 0, x ∈ �,

u(0, x) = u0(x) ≥ 0, �≡ 0, x ∈ �,

v(0, x) = v0(x) ≥ 0, �≡ 0, x ∈ �,

(1)

where RN (N ≥ 1) is a bounded domain with smooth boundary ∂�, a, b, mi, ki (i = 1, 2), and
r are positive constants, the biological background of which is described in [1], S stands for
the densities of the nutrient, u and v are the densities of the plasmid-bearing and plasmid-
free organisms, respectively, and the parameter q (0 < q < 1) stands for the fraction of
plasmid-bearing organism converting into plasmid-free organism. Here f (S, u) = S

1+m1S+k1u
and g(S, v) = S

1+m2S+k2v are the Beddington–DeAngelis (B–D) functions (see [11, 24]), sup-
ported by numerous laboratory experiments and observations and providing better de-
scription of predator feeding over a range of predator–prey abundances.

Note that Nie and Wu [16] studied the coexistence of an unstirred chemostat model
with Beddington–DeAngelis functional response and inhibitor, but the parameters of B–D
functional response is different from (1), and two models are essentially different. Mean-
while, Wang et al. [17] also obtained the coexistence and stability of an unstirred chemo-
stat model with the Beddington–DeAngelis function, but their model does not include
the plasmid transformation of two competition species. However, this paper deals with
plasmid-bearing and plasmid-free models in the unstirred chemostat with the B–D func-
tional response under a homogeneous Robin boundary condition.

In [1], the coexistence of an unstirred chemostat model (1) with B–D functional re-
sponse is established by fixed point index theory, but in the present paper, we investigate
the effect of parameters on the multiplicity and stability of positive solutions of equilib-
rium state model of (1); moreover, the asymptotic behavior of solutions of (1) is estab-
lished, which further enrich the results for system (1). Now, we are concerned with the
following elliptic system:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

d�S – auf (S, u) – bvg(S, v) = 0, x ∈ �,

d�u + (1 – q)auf (S, u) = 0, x ∈ �,

d�v + bvg(S, v) + qauf (S, u) = 0 x ∈ �,
∂S
∂n + rS = S0, ∂u

∂n + ru = 0, ∂v
∂n + rv = 0, x ∈ ∂�.

(2)

Let z = S + u + v. Then S = z – u – v and z satisfy

�z = 0, x ∈ �,
∂z
∂ν

+ rz = S0, x ∈ ∂�.
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By [1] we directly obtain the equivalent system of (2) as follows:

⎧
⎪⎪⎨

⎪⎪⎩

d�u + (1 – q)auf (z – u – v, u) = 0, x ∈ �,

d�v + bvg(z – u – v, v) + qauf (z – u – v, u) = 0, x ∈ �,
∂u
∂n + ru = 0, ∂v

∂n + rv = 0, x ∈ ∂�,

(3)

where f (z –u–v, u) = z–u–v
1+m1(z–u–v)+k1u and g(z –u–v, v) = z–u–v

1+m2(z–u–v)+k2v . By a method similar
to [11], positive solutions of (3) must meet

S(x) + u(x) + v(x) = z(x), x ∈ �.

The rest of this paper is organized as follows. In Sect. 2, some a priori estimates and
a sufficient condition for the existence for positive solutions are established (see [1]). In
Sect. 3, we study the effect of the small parameter k1 and sufficiently large k2 in B–D func-
tional response, which proves that the model has at least two positive solutions. In Sect. 4,
we investigate the case of sufficiently large k1. The results show that if k1 is sufficiently
large, then the positive solution of this model is determined by a limiting equation. In
Sect. 5, we present an asymptotic behavior of solutions depending on the change of time
by comparison principle and persistence theorem. Finally, we present a brief summary of
this paper.

2 Preliminaries and lemmas
The goal of this section is to get a priori upper and lower positive bounds for positive
solutions of (3) by using the maximum principle and give some important lemmas. By a
method similar to [1], we denote the principal eigenvalue of the following problems by λ1

and μ1, respectively:

⎧
⎨

⎩

�φ + λφf (z, 0) = 0, x ∈ �,
∂φ

∂n + rφ = 0, x ∈ ∂�,
(4)

⎧
⎨

⎩

�ψ + μψg(z, 0) = 0, x ∈ �,
∂ψ

∂n + rψ = 0, x ∈ ∂�.
(5)

By φ1(x) and ψ1(x) we denote the principal eigenfunction such that ‖φ1‖ = ‖ψ1‖ = 1.
For (3), setting v = 0 or u = 0, respectively, it is easy to get the following two single species

equations:

⎧
⎨

⎩

d�u + a(1 – q)uf1(z – u, u) = 0, x ∈ �,
∂u
∂n + ru = 0, x ∈ ∂�,

(6)

⎧
⎨

⎩

d�v + bvg(z – v, v) = 0, x ∈ �,
∂v
∂n + rv = 0, x ∈ ∂�.

(7)

By [1], for (6), we can directly get the following conclusions.
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Lemma 2.1 If a ≤ λ1d
1–q , then 0 is the unique and nonnegative solution of (6); and if a > λ1d

1–q ,
then (6) has a unique positive solution, denoted by 
, satisfying the following properties:

(i) 0 < 
 < z;
(ii) 
 is continuously differentiable for a ∈ ( λ1d

1–q , +∞) and is pointwise increasing as a
increases;

(iii) lima→ λ1d
1–q


 = 0 uniformly for x ∈ �̄, and lima→∞ 
 = z(x) for almost every x ∈ �;

(iv) Let L(a,d) = d� + a(1 – q)(f (z – 
,
) – 
f ′
1(z – 
,
) + 
f ′

2(z – 
,
)) be the
linearized operator of (6) at 
. Then L(a,d) is differentiable in
C2

B(�̄) = {u ∈ C2(�̄) : ∂u
∂n + ru = 0}, and all eigenvalues of L(a,d) are strictly negative.

Remark 2.1 For (7), we have the same conclusion as in Lemma 2.1. Suppose that b > dμ1

and denote the unique positive solution by θ . Let L(b,d) = d� + b(g(z – θ , θ ) – θg ′
1(z – θ , θ ) +

θg ′
2(z – θ , θ )) be the linearized operator of (7) at θ . Then all eigenvalues of L(b,d) are strictly

negative.

Let λ̂1 be the principal eigenvalue of the equation

⎧
⎨

⎩

�φ + λ̂φf (z – θ , 0) = 0, x ∈ �,
∂φ

∂n + rφ = 0, x ∈ ∂�,
(8)

and denote the corresponding eigenfunction by φ̂1(x), which is uniquely determined by
the normalization ‖φ̂1‖ = 1.

Next, we consider the boundary value problem

⎧
⎨

⎩

d�v + bvg(z – v, v) + aq
f (z – v, 0) = 0, x ∈ �,
∂v
∂n + rv = 0, x ∈ ∂�.

(9)

It is easy to get the following results by the method of [1], so we omit the proof.

Lemma 2.2 Suppose a > λ1d
1–q . Then (9) has the unique positive solution v̂, and 0 < v̂ < z. In

particular, if b > dμ1, then θ < v̂ < z.

Theorem 2.1 Suppose that (u, v) is nonnegative solution of (3) and u �≡ 0, v �≡ 0. Then
(i) 0 < u < 
 < z, 0 < v ≤ v̂ < z, x ∈ �̄; (ii) u + v < z, x ∈ �̄; (iii) a > λ1d

1–q .

Next, we give the fixed point index of (3) by using the standard fixed point index theory
in cone.

We first set up the fixed point index theory for later use. Let E be a Banach space. A set
W ⊂ E is called a wedge if W is a closed convex set and αW ⊂ W for all α ≥ 0. For y ∈ W ,
we define Wy = {x ∈ E : ∃r = r(x) > 0 s.t. y + rx ∈ W } and Sy = {x ∈ W y : –x ∈ W y}, and
we always assume that E = W – W . Let T : Wy → Wy be a compact linear operator on E.
We say that T has property α on W y if there exist t ∈ (0, 1) and ω ∈ W y \ Sy such that
ω – tTω ∈ Sy.

Suppose that F : W → W is a compact operator and y0 ∈ W is an isolated fixed point of
F such that Fy0 = y0. Let L = F ′(y0) be the Fréchet derivative at y0. Then L : W → W .
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Proposition 2.1 (Dancer index theorem [25]) Assume that I – L is invertible on E. Then
we have:

(i) If L has property α on W , then indexW (F , y0) = 0;
(ii) If L does not have property α on W , then indexW (F , y0) = indexE(L, θ ) = (–1)σ , where

σ is the sum of multiplicities of all eigenvalues of L greater than one.

Proposition 2.2 ([25]) Assume that F(θ ) = θ , and let A0 = F ′(θ ) be the Fréchet derivative
of F at θ in W . If the eigenvalue problem

A0h = λh, h ∈ W , (10)

has no eigenvalue equal to 1, then θ is an isolated fixed point of F , and
(i) if (10) has no eigenvalue greater than 1, then indexW (F , θ ) = 1, and

(ii) if (10) has an eigenvalue λ > 1, then indexW (F , θ ) = 0.

Let C0(�) = {y ∈ C(�) | ∂y
∂n + ry = 0} and E = [C0(�)] × [C0(�)]. For a sufficiently large

P > 0 and τ ∈ [0, 1], we consider the following equations:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(–d� + τP)u = τ (P + a(1 – q)f (z – u – v, u))u, x ∈ �,

(–d� + τP)v = τ (Pv + bg(z – u – v, v)v

+ qauf (z – u – v, u)), x ∈ �,
∂u
∂n + ru = 0, ∂v

∂n + rv = 0, x ∈ ∂�.

(11)

For (u, v)T ∈ E and τ ∈ [0, 1], (U , V )T ∈ [C1+α(�)] × [C1+α(�)] is the unique solution of
the following linear problem:

⎧
⎪⎪⎨

⎪⎪⎩

(–d� + τP)U = τ (P + a(1 – q)f (z – u – v, u))u, x ∈ �,

(–d� + τP)V = τ (Pv + bg(z – u – v, v)v + qauf (z – u – v, u)), x ∈ �,
∂U
∂n + rU = 0, ∂V

∂n + rV = 0, x ∈ ∂�.

Define Fτ : [0, 1]×E → E and Fτ (u, v)T = (U , V )T . It follows from [13] that Fτ is compact.
It is clear that (u, v)T ∈ E is a fixed point of Fτ if and only if (u, v)T ∈ E is a positive solution
of (3). Let

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

K0 = {u ∈ C0(�) | u(x) ≥ 0, x ∈ �},
W = {(u, v) ∈ E | u(x) ≥ 0, v(x) ≥ 0, x ∈ �},
D = {(u, v) ∈ W | 0 ≤ u(x) ≤ 
, 0 ≤ v(x) ≤ max�̄ v̂ + 1, x ∈ �},
D′ = (int D) ∩ W .

Then W is a cone in E, and D is bounded set in W . Let F = F1. Then there exists K > 0
such that f (z – u – v, u) ≥ f (z – u, u) – Kv.

Suppose that P is sufficiently large such that, for all (u, v) ∈ D,

P + a(1 – q)f (z – u – v, u) > 0, P + bg(z – u – v, v) – aquK > 0.
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Then F : D → W is continuously differentiable, and hence (3) has nonnegative solutions
if only and if F has a fixed point on D. According to the homotopy invariance of degree,
we have degW (I – Fτ , D′, (0, 0)) = degW (I – F , D′, (0, 0)), τ ∈ [0, 1]. It follows that the index
numbers of (0, 0) and (0, θ ) are well defined by using the fixed point theory as the following
lemmas.

Lemma 2.3 ([1]) The index number of the operator F at (0, 0) has the following properties:
(i) if a �= λ1d

1–q , b > μ1d, then indexW (F , (0, 0)) = 0;
(ii) Suppose that b < μ1d. If a > λ1d

1–q , then indexW (F , (0, 0)) = 0; If a < λ1d
1–q , then

indexW (F , (0, 0)) = 1;
(iii) indexW (F , D′) = 1.

Lemma 2.4 ([1]) Suppose b > μ1d. The index at the point (0, θ ) has the following proper-
ties:

(i) If a < λ̂1d
1–q , then indexW (F , (0, θ )) = 1; if a > λ̂1d

1–q , then indexW (F , (0, θ )) = 0;

(ii) If a = λ̂1d
1–q , then either (3) has a positive solution, or indexW (F , (0, θ )) = 1.

Combining with the previous lemma, according to [1], we can show the following suffi-
cient condition for the existence of nonnegative solutions to equation (3).

Theorem 2.2
(i) If a < λ1d

1–q , b < μ1d, then 0 is the only nonnegative solution of (3);
(ii) If a > λ1d

1–q , b < μ1d, then (3) has at least one positive solution besides the zero
solution;

(iii) If a > λ̂1d
1–q , b > μ1d, then (3) has at least one positive solution besides (0, 0) and (0, θ ).

3 The effect of mutual interference between predators
In this section, we investigate the multiplicity and stability of positive solutions of system
(3) under the effect of the parameters ki (i = 1, 2) by the standard perturbation theory.

According to Theorems 2.1 and 2.2, sufficient conditions for the existence of positive
solutions of (3) are b > μ1d and a > λ̂1d

1–q , and a necessary condition is a > λ1d
1–q ; moreover,

λ1d
1–q < λ̂1d

1–q . Next, we study the multiplicity and stability of positive solutions of (3) when k1

is small enough and k2 is sufficiently large with q > 1
2 .

In [26], taking a as a bifurcation parameter and using the local bifurcation theory, we get
that the positive solution (u(s), v(s)) bifurcates from the semitrivial solution (0, θ ). Accord-
ing to Lemma 2.4.9 in [26], we will show that system (3) has at least one positive solution
besides the bifurcation solution (u(s), v(s)) when k1 is small enough and k2 is sufficiently
large with q > 1

2 . Then we can establish the following result.

Theorem 3.1 Suppose that b > μ1d and q > 1
2 . If there exist sufficiently large K2 > 0 and

suitably large D > 0 such that k2 > K2, d > D, and small enough k1, then the local bifurcation
of the positive solution (u(s), v(s)) is nondegenerate and unstable for a ∈ ( λ̂1d

1–q – ε, λ̂1d
1–q ) with

ε > 0; moreover, (3) has at least two positive solutions.

Proof Firstly, we prove that any positive solution bifurcated from (0, θ ) is nondegenerate
and unstable. To complete this, we need only show that there exists a sufficiently small ε > 0
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such that any positive solution (u(s), v(s)) of (3) is nondegenerate for a ∈ ( λ̂1d
1–q – ε, λ̂1d

1–q ), and
the corresponding linearized eigenvalue problem

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

d�ξ + a(1 – q)ξh1(u(s), v(s))

– a(1 – q)u(s)f ′
1(z – u(s) – v(s), u(s))η + γ ξ = 0, x ∈ �,

d�η + bh2(u(s), v(s))η – qau(s)f ′
1(z – u(s) – v(s), u(s))η

– bv(s)g ′
1(z – u(s) – v(s), v(s))ξ + aqh1(u(s), v(s))ξ + γ η = 0, x ∈ �,

(12)

where

h1
(
u(s), v(s)

)
= f

(
z – u(s) – v(s), u(s)

)

– u(s)f ′
1
(
z – u(s) – v(s), u(s)

)
+ u(s)f ′

2
(
z – u(s) – v(s), u(s)

)
,

h2
(
u(s), v(s)

)
= g

(
z – u(s) – v(s), v(s)

)

– v(s)g ′
1
(
z – u(s) – v(s), v(s)

)
+ v(s)g ′

2
(
z – u(s) – v(s), v(s)

)
,

has a unique eigenvalue γ̂ such that Re(γ̂ ) < 0 with multiplicity one. Set the sequences
{sn} and {an}. Then u(s) = un(s) := un, v(s) = vn(s) := vn are the positive solution of (3) with
k1 = k1,n and a = an. Denote the corresponding eigenvalue by γ = γn. By the assumption we
can suppose that, as n → ∞, εn > 0 and εn → 0, k1,n > 0 and k1,n → 0, an ∈ ( λ̂1d

1–q – ε, λ̂1d
1–q ).

If n → ∞, then k1,n → 0, γn → γ , an → λ̂1d
1–q , and (un, vn) → (u(0), v(0)) = (0, θ ). Hence, the

linearized problem (12) converges to the following problem:

⎧
⎨

⎩

d�ξ + a(1 – q)ξ f (z – θ , 0) + γ ξ = 0, x ∈ �,

d�η + Lbη – bθg ′
1(z – θ , θ )ξ + aqf (z – θ , 0)ξ + γ η = 0, x ∈ �,

(13)

where Lb = b[g(z – θ , θ ) – θg ′
1(z – θ , θ ) + θg ′

2(z – θ , θ )]. It is easy to see that 0 is a sim-
ple eigenvalue of (12) with the corresponding eigenfunction (ξ ,η) = (φ̂1,χ1), where χ1 =
L–1

(b,d)((bθg ′
1(z – θ , θ ) + aqf (z – θ , 0))φ̂1). Moreover, all other eigenvalues are positive and

stand apart from 0. By the eigenvalue perturbation theory[25] we get that problem (12)
has a unique eigenvalue γn → 0 for large n with multiplicity one, and real parts of all other
eigenvalues are positive and stand apart from 0. We may assume that (ξn,ηn) is the corre-
sponding eigenfunction to γn. Then (ξn,ηn) → (φ̂1,χ1) as n → ∞. We further show that
Reγn < 0 for n large enough. Multiplying the first equation of (12) with the sequence n by
φ̂1 and integrating on �, we have

–d
∫

�

φ̂1�ξn – an(1 – q)
∫

�

[
f (z – un – vn, un)

– unf ′
1(z – un – vn, un) + unf ′

2(z – un – vn, un)
]
ξnφ̂1

+ an(1 – q)
∫

�

u(s)f ′
1
(
z – u(s) – v(s), u(s)

)
ηn

=
∫

�

γnφ̂1ξn. (14)
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Taking (a, u, v) = (an, un, vn) in the first equation of (3), multiplying by ξn, and integrating
on �, we obtain

–d
∫

�

φ̂1�ξn – an(1 – q)
∫

�

unf (z – un – vn, un)ξn. (15)

By (14)–(15), un(s) = (snφ̂1 + O(s2
n)), vn(s) = θ – snχ1 + O(s2

n) (see Theorem 2.4.1 in [26]).
Simplifying and letting n → ∞, we have

lim
n→∞

γn

sn
=

dλ̂1
∫

�
[(φ̂1 – χ1)f ′

1(z – θ , 0) – f ′
2(z – θ , 0)φ̂1]φ̂2

1 dx
(1 – q)

∫

�
f (z – θ , 0)φ̂2

1 dx
.

Since φ̂1, χ1 satisfy the equations

⎧
⎪⎪⎨

⎪⎪⎩

d�φ̂1 + λ̂1df (z – θ , 0)φ̂1 = 0,

d�χ1 + b[g(z – θ , θ ) – θg ′
1(z – θ , θ ) + θg ′

2(z – θ , θ )]χ1

+ q λ̂1d
1–q f (z – θ , 0)φ̂1 – bθg ′

1(z – θ )φ̂1 = 0,

subtracting the first equation from the second equation, we obtain

[
d�(χ1 – φ̂1) + b

[
g(z – θ , θ ) – θg ′

1(z – θ , θ ) + θg ′
2(z – θ , θ )

]]
(χ1 – φ̂1)

= –[b[g(z – θ , θ ) – 2θg ′
1(z – θ , θ ) + θ .

By Remark 2.1 we know that all eigenvalues of L(b,d) = d�(χ1 – φ̂1) – b[g(z – θ , θ ) + θg ′
1(z –

θ , θ ) + θg ′
2(z – θ , θ )] are strictly negative, and thus L(b,d) is a reversible negative operator.

Set

T̂ = –
{

b
[
g(z – θ , θ ) – 2θg ′

1(z – θ , θ ) + θg ′
2(z – θ )

]
+

(2q – 1)λ′d
1 – q

f (z – θ , 0)
}

φ̂1

= –
{

b[(z – θ )(1 + m2(z – θ ) – 2θ (1 + k2θ )]
[1 + m2(z – θ ) + k2θ ]2 +

(2q – 1)λ̂1d
1 – q

f (z – θ , 0)
}

φ̂1.

Then

χ1 – φ̂1 = L–1
(b,d)T̂ .

Obviously, as q > 1
2 , if there exist sufficiently large K2 > 0 and suitable large D > 0 such

that k2 > K2 and d > D, then φ̂1 – χ1 < 0, and if k1 is small enough, then f ′
2(z – θ , 0)φ̂1 is

sufficiently small, and hence γ ′
n(0) < 0 as n � 1. Thus, if k2 > K2 and d > D, then there

exists sufficiently large N such that Reγn < 0 for n > N .
Next, to prove that there exists at least two positive solutions, we may use apagoge and

suppose that (3) has a unique positive solution (ũ, ṽ). Then it follows from local bifur-
cation theory that it must be a positive solution bifurcated from near (0, θ ); moreover,
(ũ, ṽ) is nondegenerate, and the corresponding linearized eigenvalue problem has a unique
eigenvalue γ̃ such that Reγ̃ < 0 with multiplicity one. By all these facts it is easy to see
that I – F ′(ũ, ṽ) is invertible and F ′(ũ, ṽ) does not have property α on W (ũ,ṽ), and then
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indexW (F , (ũ, ṽ)) = (–1)σ , where σ is the sum of multiplicities of all the eigenvalues of
F ′(ũ, ṽ) that are greater than one; obviously, σ = 1. Thus indexW (F , (ũ, ṽ)) = (–1)1 = –1.
Using Lemmas 2.3–2.4 and the additivity property of the fixed point index, we obtain

1 = indexW
(
F , D′) = indexW

(
F , (0, 0)

)
+ indexW

(
F , (0, θ )

)
+ indexW

(
F , (ũ, ṽ)

)
= 0,

which gives a contradiction, and the proof is completed. �

Remark 3.1 Theorem 2.4.3 in [26] shows that, as a > λ̂1d
1–q , the bifurcation solution ex-

tends to ∞ by a. However, Theorem 3.1 indicates that, as k1 is small enough and k2 suf-
ficiently large, d is suitably large, and q > 1

2 , then a = a(s) ∈ ( λ1d
1–q , λ̂1d

1–q ). Then there exists

a∗ ∈ ( λ1d
1–q , λ̂1d

1–q ) such that (3) has at least two solutions for a ∈ (a∗, λ̂1d
1–q ).

4 The effect of k1 on uniqueness and stability
In this section, we consider the effect of k1 on the existence, uniqueness, and stability of
positive solutions of (3) as k1 → ∞.

Firstly, we can get that any positive solution (u, v) of (3) satisfies the following result: as
k1 is sufficiently large, k1u converges to the positive solution of the following problem:

⎧
⎨

⎩

�w + a(1 – q)wf̂ (z – θ , w) = 0, x ∈ �,
∂w
∂n + rw = 0, x ∈ ∂�,

(16)

where f̂ (z –θ , w) = z–θ
1+m1(z–θ )+w , which implies that equation (16) almost determines all pos-

itive solutions of (3) when k1 is sufficiently large.
Next, we investigate the uniqueness of positive solutions of (16).

Lemma 4.1 Problem (16) has one positive solution w0 if and only if a > dλ̂1
1–q . In addition,

the positive solution is unique and asymptotically stable.

Proof Let w be a positive solution of (16). Then

a(1 – q) = dλ1
(
f̂ (z – θ , w)

)
> dλ1

(
f̂ (z – θ , 0)

)
= dλ1

(
f (z – θ , 0)

)
= dλ̂1.

It follows that a > λ̂1d
1–q . Conversely, if a > λ̂1d

1–q , then we may show that (16) has a unique
positive solution. Firstly, we prove that there exists a constant M > 0 such that all positive
solutions w of (16) satisfy ‖w‖C1 ≤ M when a > λ̂1d

1–q . Otherwise, if this proposition does

not hold, then suppose that a = ai and ai → a ≥ dλ̂1
1–q as i → ∞. It follows that wi is the

positive solution of (16) and ‖wi‖∞ → ∞, f̂ (z – θ , wi) = z–θ
1+m1(z–θ )+wi

L2
⇀ h1.

Let w̄i = wi/‖wi‖∞. Then

⎧
⎨

⎩

�w̄i + a(1 – q)w̄if̂ (z – θ , wi) = 0, x ∈ �,
∂w̄i
∂n + rw̄i = 0, x ∈ ∂�.
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By using the standard elliptic regularization theory we have that w̄i
C1→ w̄ ≥ 0, �≡ 0, and w̄

satisfies
⎧
⎨

⎩

�w̄ + a(1 – q)w̄h1 = 0, x ∈ �,
∂w̄
∂n + rw̄ = 0, x ∈ ∂�.

Since 0 ≤ h1 ≤ 1
k1

, applying the strong extreme value theory and the Hopf lemma, we have
w̄ > 0, x ∈ �̄, and then f̂ (z – θ , wi) = z–θ

1+m1(z–θ )+w̄i‖wi‖∞
L2
⇀ 0; thereby h1 = 0, and

⎧
⎨

⎩

�w̄ = 0, x ∈ �,
∂w̄
∂n + rw̄ = 0, x ∈ ∂�.

Hence w̄ ≡ 0, which contracts to ‖w̄i‖∞ = 1. Thus, we obtain a priori estimates of w.
In the following part, we establish the stability and uniqueness of positive solutions of

(16). Set P̃ = {w ∈ C1(�) | w ≥ 0, ∂w
∂n + rw = 0} and D̃ = {w ∈ P̃ | ‖w̄i‖∞ ≤ M + 1}. Define

Bt : P̃ → P̃ by Bt(w) = (–� + M1)–1(ta(1 – q)wf̂ (z – θ , w) + M1w), where M1 is a positive
constant such that ta(1 – q)f̂ (z –θ , w) + M1 > 0 for all w ∈ D̃, t ∈ [0, 1]. Then Bt is a compact
operator. Assume that B = B1. Then B : P̃ → P̃ is continuous and differentiable; moreover,
system (16) has a nonnegative solution if and only if the operator B has one fixed point
in D̃. Applying the method similar to that of Lemma 2.3.2 in [26], we have indexP̃(B, D̃) = 1
and indexP̃(B, 0) = 0. Hence, there exists sufficiently small ε such that

indexP̃(B, D̃ \ Bε) = indexP̃(B, D̃) – indexP̃(B, 0) = 1.

Thus, (16) has at least one positive solution when a > dλ̂1
1–q .

We investigate the following eigenvalue problem:

⎧
⎨

⎩

–�χ – a(1 – q)χ [f̂ (z – θ , w) + wf̂ ′
2(z – θ , w)] = ηχ , x ∈ �,

∂χ

∂n + rχ = 0, x ∈ ∂�,
(17)

where w is a positive solution of (16). Applying the comparison principle of eigenvalues,
we have

η1 = dλ1
(
–a(1 – q)χ

[
f̂ (z – θ , w) + wf̂ ′

2(z – θ , w)
])

> dλ1
(
–a(1 – q)χ f̂ (z – θ , w)

)
= 0.

Therefore, (17) has no eigenvalues less than 0 when a > dλ̂1
1–q . So any positive solution of (16)

is nondegenerate and asymptotically stable, and indexP̃(B, w) = (–1)0 = 1, which implies
that (16) has at most finitely many positive solutions, which we denote by {wi, 1 ≤ i ≤ l}.
Using fixed point index theory, the number of positive solutions of equation (16) can be
calculated as follows:

k = indexP̃(B, 0) +
l∑

i=1

indexP̃(B, wi) = indexP̃(B, D̃) = 1,

and, as a result, equation (16) has a unique positive solution. �
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Theorem 4.1 Suppose that b > dμ1 is a fixed constant. For any small ε > 0 and any A > dλ̂1
1–q ,

there exists sufficiently large K1 = K1(ε, A) > 0 such that any positive solution of (3) satisfies
‖u‖c1 + ‖v – θ‖c1 ≤ ε when k1 > K1. In particular, if we choose a sufficiently large K1(ε, A)
such that k1 > K1 and a ∈ ( dλ̂1

1–q , A], then ‖k1u – w0‖c1 ≤ ε, where w0 is the unique positive
solution of (16).

Proof If the first part of the conclusion is false, then there are A0 > dλ̂1
1–q , k1,i → ∞, ai ∈

( dλ̂1
1–q , A0], such that the positive solution (ui, vi) of (3) is bounded away the semitrivial (0, θ )

with a = ai, k1 = k1,i. Since 0 < ui + vi < z, {–�ui} and {–�vi} of (3) are bounded on L∞(�̄).
By the Lp estimates and embedding theorem of elliptic equation, we may assume that

ai → a ∈ ( dλ̂1
1–q , A0], ui

C1→ u ≥ 0, vi
C1→ v ≥ 0, where u, v ∈ C1

B(�̄). Furthermore, f (z – ui –
vi, ui) = z–ui–vi

1+m1(z–ui–vi)+k1,iui

L2
⇀ h2 with 0 ≤ h2 ≤ 0, and u satisfies

⎧
⎨

⎩

d�u + a(1 – q)uh2 = 0, x ∈ �,
∂u
∂n + ru = 0, x ∈ ∂�.

Suppose u ≡ 0. Then v satisfies

⎧
⎨

⎩

d�v + bvg(z – v, v) = 0, x ∈ �,
∂v
∂n + rv = 0, x ∈ ∂�,

and v ≡ 0 or v = θ as b > dμ1. If v ≡ 0, let v̄i = vi/‖vi‖∞. Then

⎧
⎨

⎩

d�v̄i + bv̄ig(z – vi, vi) = 0, x ∈ �,
∂ v̄i
∂n + rv̄i = 0, x ∈ ∂�.

By the standard regularization theory we may assume that v̄i
C1→ v̄, and thus the limit equa-

tion of this equation is

⎧
⎨

⎩

d�v̄ + bv̄g(z, 0) = 0, x ∈ �,
∂ v̄
∂n + rv̄ = 0, x ∈ ∂�.

(18)

Multiplying (18) by ψ1 and integrating on �, we easily see that
∫

�
(b – dμ1)ψ1v̄g(z, 0) = 0.

Since b > dμ1, ψ1 > 0, and g(z, 0) > 0, it follows that v̄ ≡ 0, which is a contradiction. Hence,

v = θ , (ui, vi)
C1→ (0, θ ), which contradicts to the assumption that the positive solution (ui, vi)

is depart from (0, θ ).
Suppose u ≥ 0, �≡ 0. By the strong maximum principle we get u > 0, and thereby

⎧
⎨

⎩

d�u = 0, x ∈ �,
∂u
∂n + ru = 0, x ∈ ∂�.

We know that u ≡ 0, a contradiction.
Next, we prove the last part of the theorem. We only need to show that k1,iui is near some

positive solution of (16) when a = ai. We first show that k1,i‖ui‖∞ is uniformly bounded.
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Otherwise, suppose that k1,i‖ui‖∞ → ∞ and let ūi = ui/‖ui‖∞. Then

⎧
⎨

⎩

d�ūi + ai(1 – q)ūif (z – ui – vi, ui) = 0, x ∈ �,
∂ūi
∂n + rūi = 0, x ∈ ∂�.

(19)

Applying the standard regularization theory, we may assume that ūi
C1→ ū ≥ 0, �≡ 0 in the

C1
B, f (z – ui – vi, ui)

L2
⇀ h2, and ai → a ∈ ( dλ̂1

1–q , A0].
Taking the limit on both sides of (19), we get that ū is a weak solution satisfying the

following equation:

⎧
⎨

⎩

d�ū + a(1 – q)ūh2 = 0, x ∈ �,
∂ū
∂n + rū = 0, x ∈ ∂�.

By the maximum principle and Hopf lemma we have ū > 0 (x ∈ �). Hence, since f (z – ui –
vi, ui) = z–ui–vi

1+m1(z–ui–vi)+k1,iūi‖ui‖∞
L2
⇀ h2 = 0 as i → ∞, it is easy to see that ū ≡ 0 (x ∈ �), a

contradiction. Thus k1,i‖ui‖∞ is uniformly bounded.
Let wi = k1,iui, Then wi satisfies

⎧
⎨

⎩

d�wi + ai(1 – q)wif̂ (z – ui – vi, wi) = 0, x ∈ �,
∂wi
∂n + rwi = 0, x ∈ ∂�.

(20)

Since ‖wi‖∞ is bounded, applying the standard regularization theory and the Sobolev em-
bedding theorem, we can obtain that wi

C1→ w. Letting i → ∞, the limit equation of (20)
is (16), that is, w is a nonnegative solution of (20). When a = dλ̂1

1–q , wi = k1,iui → w ≡ 0. If
ai → dλ̂1

1–q , then any positive solution of (16) converges to 0 when a = ai. Hence, wi = k1,iui

must be near to some positive solution (16) as a = ai.
We only need to prove that w is a positive solution of (16) when a > dλ̂1

1–q . If w is not
always a positive solution, then it follows from the maximum principle that w ≡ 0. Let
w̄i = wi/‖wi‖∞. Then

⎧
⎨

⎩

d�w̄i + ai(1 – q)w̄if̂ (z – ui – vi, wi) = 0, x ∈ �,
∂w̄i
∂n + rw̄i = 0, x ∈ ∂�.

(21)

Suppose w̄i
C1→ w̄. By taking the limit of (21) we have

⎧
⎨

⎩

d�w̄ + ai(1 – q)w̄f̂ (z – θ , 0) = 0, x ∈ �,
∂w̄
∂n + rw̄ = 0, x ∈ ∂�.

Since w̄ ≥ 0, �≡ 0, it follows from the maximum principle that w̄ > 0, and thus a = dλ̂1
1–q ,

which deduces a contradiction. Hence w > 0, that is, k1,iui converges to the unique positive
solution w0 of (16). �

Finally, we consider the existence and stability of positive solutions of (3) when param-
eter k1 is large enough.
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Theorem 4.2 Suppose that b > dμ1. For any small ε > 0 and some A ≥ λ̂1d
1–q , there exists

sufficiently large K1 = K1(ε, A) such that k1 > K1. Then we have:
(i) If a ∈ [ λ1d

1–q + ε, λ̂1d
1–q ), then (3) has no positive solutions;

(ii) If a ∈ [ λ̂1d
1–q , A], then (3) has the unique positive solution, and it is asymptotically

stable.

Proof (i) Suppose that the conclusion is false. Then there exist ε0 > 0, k1,i → ∞, and
ai → a ∈ [ dλ1

1–q + ε0, dλ̂1
1–q ) such that (ui, vi) is a positive solution of (3) as (a, k1) = (ai, k1,i).

It follows from Lemma 4.1 that k1,i‖ui‖∞ is uniformly bounded, Let wi = k1,iui, then wi

satisfies equation (21). By the standard regularized theory and the Sobolev embedding
theorem we may suppose that wi

C1→ w. Hence, w is a nonnegative solution of (16). Since
a ∈ [ dλ1

1–q + ε0, dλ̂1
1–q ), combining with Theorem 4.1, we get w ≡ 0. Applying a similar method

as in the case a > dλ̂1
1–q in Theorem 4.1, it is easy to get a contradiction.

(ii) Firstly, we prove that any positive solution of (3) is nondegenerate and linearly stable
for condition (ii). Assuming that (u, v) is a positive solution of (3), let û = k1u, m = 1

k1
. Then

(u, v) is a positive solution of (3) if only and if (k1u, v) is a solution of the following problem:

⎧
⎪⎪⎨

⎪⎪⎩

d�û + (1 – q)aûf (z – mû – v, û) = 0, x ∈ �,

d�v + bvg(z – mû – v, v) + qamûf (z – mû – v, û) = 0, x ∈ �,
∂û
∂n + rû = 0, ∂v

∂n + rv = 0, x ∈ ∂�.

(22)

Next, we only need to prove the nondegeneracy and stability of (22). We suppose that the
conclusion is false. Then there are ε0 > 0, A0 > dλ̂1

1–q , ai → a ∈ [ dλ̂1
1–q , A0), k1,i → ∞, Reηi ≤ 0,

and smooth (ωi,χi) with ‖ωi‖2
2 + ‖χi‖2

2 = 1 such that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

d�ωi + a(1 – q)ωih1(miûi, vi)

– a(1 – q)ûif ′
1(z – miûi – vi, ûi)χi + ηiωi = 0, x ∈ �,

d�χi + bh2(miûi, vi)χi – qamiûif ′
1(z – miûi – vi, ûi)χi

– bmivig ′
1(z – miûi – vi, vi)ωi + aqmih1(miûi, vi)ωi + ηiχi = 0, x ∈ �,

∂ωi
∂n + rωi = 0, ∂χi

∂n + rχi = 0, x ∈ ∂�,

(23)

where

h1(miûi, vi) = f (z – miûi – vi, ûi) – miûif ′
1(z – miûi – vi, ûi) + ûif ′

2(z – miûi – vi, ûi),

h2(miûi, vi) = g(z – miûi – vi, vi) – vig ′
1(z – miûi – vi, vi) + vig ′

2(z – miûi – vi, vi),

with a positive solution (ûi, vi) of (22) and (a, m) = (ai, 1
k1,i

). Multiplying by w̄i and χ̂i two
equations of (23) and integrating over �, respectively, it follows from Green’s formula
that

d
∫

�

|∇ωi|2 = –rd
∫

∂�

|ωi|2 +
∫

�

a(1 – q)ωih1(miûi, vi)|ωi|2

–
∫

�

a(1 – q)ûif ′
1(z – miûi – vi, ûi)ω̄iχi +

∫

�

ηi|ωi|2,
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d
∫

�

|∇χi|2 = –rd
∫

∂�

|χi|2 +
∫

�

[
bh2(miûi, vi) – qamiûif ′

1(z – miûi – vi, ûi)
]|χi|2

–
∫

�

[
bvig ′

1(z – miûi – vi, vi) – aqh1(miûi, vi)
]
miωiχ̄i +

∫

�

ηi|χi|2.

Adding these two identities, we get

ηi = d
∫

�

|∇ωi|2 + dr
∫

∂�

|ωi|2 –
∫

�

a(1 – q)h1(miûi, vi)|ωi|2

+
∫

�

a(1 – q)ûif ′
1(z – miûi – vi, ûi)ω̄iχi + d

∫

�

|∇χi|2 + dr
∫

∂�

|χi|2

–
∫

�

[
bh2(miûi, vi) – qamiûif ′

1(z – miûi – vi, ûi)
]|χi|2

+
∫

�

[
bvig ′

1(z – miûi – vi, vi) – aqh1(miûi, vi)
]
miωiχ̄i.

Thanks to the boundedness of ûi, vi, ai, mi, we can easily get that the imaginary part of
the right-hand side of this identity is bounded, and thus Imηi is bounded. On the other
hand, it is easy to see that Reηi is also bounded. Hence ηi is bounded with Reηi ≤ 0.
Applying Lp estimates, we know that ‖ωi‖W 2,2 and ‖χi‖W 2,2 are bounded. We may sup-

pose that ωi
H1

0−→ ω and χi
H1

0−→ χ . Since miûi → 0, ûi → w0, and vi → θ as i → ∞, taking
the limits of two sides of (23), we know that ω and χ weakly satisfy the following equa-
tions:

⎧
⎪⎪⎨

⎪⎪⎩

d�ω + a(1 – q)ωH1 – a(1 – q)w0f ′
1(z – θ , w0)χ + ηω = 0, x ∈ �,

d�χ + bχH2 + ηχ = 0, x ∈ �,
∂ω
∂n + rω = 0, ∂χ

∂n + rχ = 0, x ∈ ∂�,

(24)

where

H1 = f (z – θ , w0) + w0f ′
2(z – θ , w0),

H2 = g(z – θ , θ ) – θg ′
1(z – θ , θ ) + θg ′

2(z – θ , θ ).

If χ ≡ 0, then ω satisfies
⎧
⎨

⎩

d�w + a(1 – q)w[f (z – θ , w0) + w0f ′
2(z – θ , w0)] + ηw = 0, x ∈ �,

∂w
∂n + rw = 0, x ∈ ∂�.

This system implies that η is real and η > 0, which is a contradiction to Reηi ≤ 0.
If χ �≡ 0, then thanks to g ′

1(z – θ , θ ) > 0, g ′
2(z – θ , θ ) < 0, and η ≤ 0, we have

d�χ + bχ
[
g(z – θ , θ ) – θg ′

1(z – θ , θ ) + θg ′
2(z – θ , θ )

]
+ ηχ = 0, x ∈ �.

From Remark 2.1 we know that all eigenvalues of L(b,d) are strictly negative, and then η > 0,
which contradicts the assumption.

We further prove the existence of a positive solution of (3) with b > dμ1. Because all
positive solutions of (3) are nondegenerate, by a simple compactness argument we get
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that there are at most finitely many positive solutions. For some positive solution (u, v),
it is easy to see that indexW (F , (u, v)) = 1 by the nondegeneracy and stability of (u, v) and
Proposition 2.1 in [26]. For a ∈ [ λ̂1d

1–q +ε, A], by Theorem 2.2, (3) has at least one positive so-
lution. Let the finitely many positive solutions of (3) be {(ui, vi) : 1 ≤ i ≤ l}, l ≥ 1. Applying
Lemmas 2.3–2.4 and the additivity of the fixed point index, we obtain

1 = indexW
(
F , D′) = 0 +

l∑

i=1

indexW
(
F , (ui, vi)

)
= l,

which proves the uniqueness of positive solutions of (3).
Finally, we investigate the case a = λ̂1d

1–q . By the regular bifurcation theory, taking a as a
bifurcation parameter, we can construct a positive solution branch from the semitrivial
nonnegative solution branch {( λ̂1d

1–q , 0, θ ), a ∈ R+}. The positive bifurcation solution cave
(see Theorem 2.4.1 in [26]) is

�m =
{(

a(s), u(s), v(s)
)

=
(
a(s), s

(
φ̂1 + φ(s), θ – s

(
χ1 + ψ(s)

)))
, 0 < s � 1

}
,

where a(0) = λ̂1d
1–q , φ(0) = 0, ψ(0) = 0, and

χ1 = –L–1
b

[
bmθg ′

1(z – θ , θ ) – aqmf (z – θ , 0)φ̂1
]
.

Substituting the positive solution into the first equation of (3), dividing by s, and differen-
tiating on s, we can get the derivative on both sides of the equation at s = 0, and hence

a′(0)(1 – q)
∫

�

f (z – θ , 0)φ̂2
1 dx = dλ̂1

∫

�

[
(mφ̂1 – χ1)f ′

1(z – θ , 0) – f ′
2(z – θ , 0)φ̂1

]
φ̂2

1 dx.

Letting k1 → ∞, that is, m → 0, we get

a′(0) = –
dλ̂1

1 – q

∫

�
(f ′

2(z – θ , 0)φ̂1)φ̂2
1 dx

∫

�
f (z – θ , 0)φ̂2

1 dx
> 0.

Since χ1 → 0 and f ′
2(z – θ , 0) < 0, it is easy to see that the positive solution bifurcation

branch lies in the right. According to Theorem 2.4.3 in [26] and [5], we can prove that
�m can be extended to the global bifurcation solution along the parameter a > dλ̂1

1–q , and
it tends to infinity. Hence, as a ∈ ( dλ̂1

1–q + ε, A] and k1 → ∞, the positive solution of (3) is
uniquely determined on �m, and no positive solution curve can cover a = dλ̂1

1–q . Thus there
is no positive solution of (3) when a = dλ̂1

1–q . The proof of Theorem 4.2 is complete. �

5 Asymptotic behavior of solutions
The goal of this section is to present some asymptotic behavior of solutions of (1) depend-
ing on the change of time by comparison principle and persistence theorem.

Lemma 5.1 System (1) has nonnegative bounded solutions S(t, x), u(t, x), v(t, x), and for
some α,

∥
∥S(t, ·) + u(t, ·) + v(t, ·) – z

∥
∥∞ = O

(
e–αt) (t → ∞),

where z = z(x) = S0( 1+r
r – x).
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Proof By Theorem 14.2 in [27] we can get the local existence of solutions. The nonnega-
tivity of solutions can be proved by the comparison principle of parabolic equations.

Let w(x, t) = S(t, x) + u(t, x) + v(t, x) – z(x). Since z(x) satisfies

⎧
⎨

⎩

d�z = 0, x ∈ �,
∂z
∂n + rz = S0, x ∈ ∂�,

it follows that w(t, x) satisfies

⎧
⎪⎪⎨

⎪⎪⎩

wt = d�w, x ∈ �,
∂w
∂n + rw = 0, x ∈ ∂�,

w(0, x) = S(0, x) + u(0, x) + v(0, x) – z(x), x ∈ �,

(25)

where w(t, x) = φ(x)Y (t, x)e–αt (α > 0) with the principal eigenfunction φ(x) of the follow-
ing problem:

⎧
⎨

⎩

d�φ + λφ = 0, x ∈ �,
∂φ

∂n + rφ = 0, x ∈ ∂�.

If η0 is the principal eigenvalue, then φ(x) > 0 (x ∈ �).
Substituting w(t, x) into equation (25), we get

⎧
⎨

⎩

d�Y – Yt + 2d ∇φ

φ
∇Y + (–η0 + α)Y = 0, x ∈ �,

∂Y
∂n = 0, x ∈ ∂�.

(26)

Suppose α satisfies 0 < α < η0. Applying the maximum principle, we get that the max-
imum value of Y (T , x) cannot be taken on the interior and the border of the region, and
hence Y (t, x) ≤ maxz∈� Y (0, x). Similarly, for (26), replacing Y by –Y , we have Y (t, x) ≥
– minz∈� Y (0, x). Thus, there exists Ĉ > 0 such that |Y (t, x)| ≤ Ĉ, so that Y (t, x) is bounded,
and the proof is complete. �

From Lemma 5.1 and from z(x) = S(t, x) + u(t, x) + v(t, x) we get that u and v satisfy the
following problem:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut = d�u + (1 – q)auf (z – u – v, u), x ∈ �, t > 0,

vt = d�v + bvg(z – u – v, v) + qauf (z – u – v, u), x ∈ �, t > 0,
∂u
∂n + ru = 0, ∂v

∂n + rv = 0, x ∈ ∂�, t > 0,

u(0, x) = u0(x) ≥ 0, �≡ 0, x ∈ �,

v(0, x) = v0(x) ≥ 0, �≡ 0, x ∈ �,

(27)

where z(x) = S(x) + u(x) + v(x), and (S(x), u(x), v(x)) is the equilibrium solution of (1). By the
skills in [27, 28] we can deduce that (27) has a solution (u(x), v(x)) in a small neighborhood.
Observing that u0(x) ≥ 0, �≡ 0, v0(x) ≥ 0, �≡ 0, by the comparison principle of parabolic
equations we get u(t, x) > 0, v(t, x) > 0, x ∈ �, t > 0.
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Obviously, v(t, x) ≡ 0 implies u(t, x) ≡ 0. Therefore, system (27) has no single species
on u. If the initial value of (27) u0(x) ≡ 0, then by the maximum principle we know
u(T , x) ≡ 0. Then v satisfies the system

⎧
⎪⎪⎨

⎪⎪⎩

vt = d�v + bvg(z – v, v), x ∈ �, t > 0,
∂v
∂n + rv = 0, x ∈ ∂�, t > 0,

v(0, x) = v0(x) ≥ 0, �≡ 0, x ∈ �.

(28)

By Theorems 3.1–3.2 and the partial lemmas of [12] there are some conclusions about
the persistence and extinction of the single species v.

Theorem 5.1 Suppose v(t, x) is a solution of (28). If b < μ1d, then limt→∞ v(t, x) = 0; if
b > μ1d, then limt→∞ sup‖v(t, ·)‖∞ > 0.

Theorem 5.2 Suppose v(t, x) is a solution of (28). If b > μ1d, then there exists a unique
positive solution θ of the equilibrium equation on (28), and limt→∞ v(t, x) = θ .

Based on the single species conclusion, we investigate the asymptotic behavior of the
solution of system (1). Similarly to Theorem 5.2, we obtain the following lemma.

Lemma 5.2 Suppose u(t, x) is a solution of the following equation:

⎧
⎪⎪⎨

⎪⎪⎩

ut = d�u + a(1 – q)uf (z – u, u), x ∈ �, t > 0,
∂u
∂n + ru = 0, x ∈ ∂�, t > 0,

u(0, x) = u0(x) ≥ 0, �≡ 0, x ∈ �.

Then, as a < λ1d
1–q , limt→∞ u(t, x) = 0, and as a > λ1d

1–q , limt→∞ u(t, x) = 
.

Consider the following problem:

⎧
⎪⎪⎨

⎪⎪⎩

vt = d�v + bvg(z – v, v) + aqςzf (z – v, 0), x ∈ �, t > 0,
∂v
∂n + rv = 0, x ∈ ∂�, t > 0,

v(0, x) = v0(x) ≥ 0, �≡ 0, x ∈ �.

(29)

Lemma 5.3
(i) If b > μ1d, then there exists a unique solution θς for the equilibrium equation of (29);

(ii) Suppose that vς (t, x) is a positive solution of (29) and θ is a unique positive solution
of (7).
If b < μ1d, then limt→∞,ς→0 vς (t, x) = 0;
If b > μ1d, then limt→∞,ς→0 vς (t, x) = θ .

Proof (i) If b > μ1d, by a method similar to the proof on Lemma 2.2 of [7] it is easy to get
the existence and uniqueness of θς , and 0 < θς < z.
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(ii) If b < μ1d, then by Lemma 5.1, for any given ε > 0, there exists t0 > 0 such that S(t, x) ≤
z(x) + ε. For all t ≥ t0, x ∈ �, suppose that V ς (t, x) is a solution of the following problem:

⎧
⎪⎪⎨

⎪⎪⎩

V ς
t = d�V ς + bV ς g(z + ε, 0) + aqςzf (z + ε, 0), x ∈ �, t > 0,

∂Vς

∂n + rV ς = 0, x ∈ ∂�, t > 0,

V ς (t0, x) > vς (t0, x), x ∈ �.

Next, we prove that V ς (t, x) > vς (t, x), t ≥ t0, x ∈ �. Let w(t, x) = vς (t, x) – V ς (t, x). Then

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

d�w – wt = bV ς g(z + ε, 0) – bvς g(z – vς , vς )

+ aqςz(f (z + ε, 0) – f (z – vς , 0)), x ∈ �,
∂w
∂n + rw = 0, x ∈ ∂�,

w(t0, x) < 0, x ∈ �.

Then we only need to prove that w(t, x) < 0, t ≥ t0, x ∈ �. Assume that the conclusion does
not hold. Then, let t1 be the first moment such that there exists x1 such that w(t1, x1) = 0,
and thus, for x ∈ � and t0 < t ≤ t1, we have

d�w – wt ≥ 0.

By the maximum principle the nonnegative maximum of w lies on C1 = {t0 ≤ t ≤ t1, x ∈
∂�} or C2 = {t = t0, x ∈ �}. Because of the initial condition w(t0, x) < 0, we remove the case
of C2. The case of C1 implies ∂w

∂n > 0. However, ∂w
∂n = –rw ≤ 0, x ∈ ∂�, a contradiction.

Let V ς = Y ς (t, x)ψe–α(t–t0), where ψ is the principal eigenfunction of the following prob-
lem:

⎧
⎨

⎩

d�ψ + μg(z, 0)ψ = 0, x ∈ �,
∂ψ

∂n + rψ = 0, x ∈ ∂�.

If μ1 is the corresponding principal eigenvalue, then

⎧
⎨

⎩

d�Y ς – Y ς
t + 2d ∇ψ

ψ
∇Y ς + 1

ψ
C(x)Y ς + aqςzf (z + ε, 0)eα(t–t0) = 0, x ∈ �,

∂Yς

∂n = 0, x ∈ ∂�,

where

C(x) = d�ψ + αψ + bg(z + ε, 0)ψ = –dμ1g(z, 0)ψ + αψ + bg(z + ε, 0)ψ

= αψ +
(
bg(z + ε, 0)ψ – bg(z, 0)ψ

)
+

(
bg(z, 0)ψ – dμ1g(z, 0)ψ

)
.

Because b < μ1d and ε,α are sufficiently small, C(x) is less than zero, and if ς is small
enough, then

d�Y ς – Y ς
t + 2d

∇ψ

ψ
∇Y ς > 0.
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By the maximum principle we have Y ς (t, x) ≤ Y ς (t0, x) = supx∈�( Vς (t0,x)
ψ

), and it follows
that there exists K > 0 such that vς (t, x) ≤ V ς (t, x) ≤ Ke–α(t–t0).

If b > μ1d, by Lemma 3.3 in [12] we can obtain that limt→∞ sup‖vς (t, ·)‖∞ > 0. Next, we
construct th Lyapunov function

L(ψ) =
∫

�

[
d
2

(∇ψ)2 – �
(
x,ψ(x)

)
]

dx + B(ψ),

where

�(x, v) =
∫

�

f (x, s) ds, f (x, v) = bg(z – v, v)v + aqςzf (z – v, 0),

B(ψ) =
∫

∂�

dr
2

ψ2 ds.

Then

∂L(vς (t, x))
∂t

= –
∫

�

(
vς

t
)2 dx ≤ 0.

Since vς (t, x) is close to the invariant set which satisfies ∂L(vς (t,x))
∂t = 0, observe that

∂L(vς (t,x))
∂t = 0 if and only if vς (t, x) = 0, that is, the set of equilibrium states of equation

(28).
Combining Lemma 5.2, equation (29), and the uniqueness of the positive equilibrium

solution θς , we obtain limt→∞ vς (t, x) = θς .
In the remaining part, we prove that limς→0 θς = θ . Since 0 < θς < z, there exists a con-

stant K > 0, independent of ς , such that, for any p ≥ 1,

∥
∥θς

∥
∥

2,p ≤ K ′(∥∥θς
∥
∥

p +
∥
∥bg

(
z – θς , θς

)
θς + aqςzf

(
z – θς , 0

)∥
∥

p

) ≤ K .

By the Sobolev imbedding theorem we have θς → θ0, ς → 0, and 0 < θ0 < z, so that θ0

weakly satisfies the following equation:

⎧
⎨

⎩

d�θ0 + bθ0g(z – θ0, θ0) = 0, x ∈ �,
∂θ0

∂n + rθ0 = 0, x ∈ ∂�.

By the regularization theory of elliptic equations we get θ0 ∈ C2. Hence, by the uniqueness
of θ we get that θ0 = θ , and the proof is complete. �

Similarly to Lemma 5.3, we can establish the following lemmas.

Lemma 5.4 Suppose vς (t, x) is a solution of the following problem:

⎧
⎪⎪⎨

⎪⎪⎩

vt = d�v + bvg(z – ςz – v, v), x ∈ �, t > 0,
∂v
∂n + rv = 0, x ∈ ∂�, t > 0,

v(0, x) = v0(x) ≥ 0, x ∈ �.

If b > μ1d, then limt→∞,ς→0 vς (t, x) = θ .
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Lemma 5.5 Suppose that a < λ1d
1–q and that u(t, x), v(t, x) are solutions of (27).

(1) If b < μ1d, then limt→∞ u(t, x) = 0 and limt→∞ v(t, x) = 0;
(2) If b > μ1d, then limt→∞ u(t, x) = 0 and limt→∞ v(t, x) = θ .

Proof Since a < λ1d
1–q , it is easy to see that

ut = d�u + a(1 – q)f (z – u – v, u)u < d�u + a(1 – q)f (z – u, u)u.

Suppose U(t, x) is a solution of the following problem:

⎧
⎪⎪⎨

⎪⎪⎩

Ut = d�U + a(1 – q)f1(z – U , U)U , x ∈ �, t > 0,
∂U
∂n + rU = 0, x ∈ ∂�, t > 0,

U(t0, x) > u(t0, x), x ∈ �.

By the comparison principle we get 0 < u < U . By Lemma 5.4, if a < λ1d
1–q , then limt→∞ U(t,

x) = 0. Thus limt→∞ u(t, x) = 0.
Thus, –ςz < u < ςz, where ς is a sufficiently small number, and it follows that

vt = d�v + bg(z – u – v, v)v + aqf (z – u – v, u)u

≤ d�v + bg(z – v, v)v + aqςzf (z – v, 0)

and

vt = d�v + bg(z – u – v, v)v + aqf (z – u – v, u)u ≥ d�v + bg(z – ςz – v, v)v.

Suppose v(t, x), v(t, x) are two solutions of the following two equations, respectively:

⎧
⎪⎪⎨

⎪⎪⎩

vt = d�v + bg(z – v, v)v + aqςzf (z – v, 0), x ∈ �, t > 0,
∂v
∂n + rv = 0, x ∈ ∂�, t > 0,

v(t0, x) > v(t0, x), x ∈ �,

(30)

⎧
⎪⎪⎨

⎪⎪⎩

vt = d�v + bg(z – ςz – v, v)v, x ∈ �, t > 0,
∂v
∂n + rv = 0, x ∈ ∂�, t > 0,

v(t0, x) < v(t0, x), x ∈ �.

(31)

For (30) and (31), by the comparison principle we obtain 0 < v(t, x) < v(t, x), v(t, x) < v(t, x) <
v(t, x). By Lemmas 5.3–5.4 we can deduce the conclusion as follows. If b < μ1d, then
limt→∞,ς→0 v(t, x) = 0, and therefore limt→∞ v(t, x) = 0. If b > μ1d, then limt→∞,ς→0 v(t, x) =
θ and limt→∞,ς→0 v(t, x) = θ , and thus limt→∞ v(t, x) = θ . Thus, the lemma is proved. �

Based on Lemmas 5.2–5.5, we can obtain the asymptotic behavior of solutions of system
(1) as follows.

Theorem 5.3 Suppose that a < λ1d
1–q and that S(t, x), u(t, x), v(t, x) is the positive solution of

(1). Then the following results hold:



Feng et al. Advances in Difference Equations  (2018) 2018:181 Page 21 of 23

(i) If b < μ1d, then limt→∞(S(t, x), u(t, x), v(t, x)) = (z(x), 0, 0);
(ii) If b > μ1d, then limt→∞(S(t, x), u(t, x), v(t, x)) = (z(x) – θ , 0, θ ).

Finally, we establish the uniform persistence of system (27), which suggests that two
species can coexist.

Theorem 5.4 Suppose a > λ1d
1–q and b < dμ1. Then there exists �̃ > 0, and for any solution of

(27), there exists t̄0 > 0 (depending on the initial conditions) such that minx∈�̄ u(t, x) > �̃ as
t > t̄0. Hence, the semidynamical system produced by (27) is strongly consistent continuous.

Theorem 5.5 Suppose a > λ̂1d
1–q and b > dμ1. Then there exists � > 0, and for any solution of

(27), there exists t0 > 0 (depending on the initial conditions) such that minx∈�̄ u(t, x) > � as
t > t0. Hence, the semidynamical system produced by (27) is strongly consistent continuous.

Proof Applying the persistence theorem in [29, 30] to prove Theorems 5.4–5.5, because
the proof process is similar, we only prove Theorem 5.5. Suppose that the state space of
semidynamic systems produced by (1) is defined as Y = C+(�̄) × C+(�̄) = X1 ∪ X2, where
X1 = {(u, v) ∈ Y : ∃x0 ∈ � s.t. u(x0) > 0} and X2 = {(u, v) ∈ Y : u ≡ 0}. It is easy to see that
X1 ⊂ Y is open invariant set, the equilibrium state (0, 0), (0, θ ) ∈ X2, and X2 is also an in-
variant set. By Theorem 5.3 we know that v(t, x) → θ (t → ∞) as b > μ1d, so (0, θ ) attracts
(0, v) (v ≥, �≡ 0). Hence the ω-set of orbitals starting at X2 is defined by �2 = {(0, 0), (0, θ )}.
Let M1 = {(0, 0)} and M2 = {(0, θ )}. Then M = {(M1, M2)} = {(0, 0), (0, θ )}, Obviously, M1

can connect to M2, but M2 cannot connect to M1. So M is an acyclic isolated covering �2.
Next, we only prove that Mi (i = 1, 2) is weakly exclusive to X1 and M is isolated.

Suppose M2 is not weakly exclusive to X1. Then there exists (u0, v0) ∈ X1 such that

(
u(t, x), v(t, x)

) → (0, θ )

uniformly on �̄ as t → ∞. Since a > λ̂1d
1–q , along with the continuity of the principal eigen-

value, we know that there exists ε > 0 such that the principal eigenvalue λ̂ε
1 of the following

problem satisfies a > λ̂ε
1d

1–q :

⎧
⎨

⎩

�φ + φλ̂ε
1f ((1 – ε)z – θ , 0) = 0, x ∈ �, t > 0,

∂φ

∂n + rφ = 0, x ∈ ∂�, t > 0.

On the other hand, limt→∞(u(t, x), v(t, x)) = (0, θ ), and thus there exists t0 such that 0 <
v(t, x) < θ + εz for x ∈ �̄ as t ≥ t0. Hence

ut ≥ d�u + a(1 – q)f
(
(1 – ε)z – u – θ , u

)
u.

Applying the comparison principle, we have u(t, x) > h(t, x) as t ≥ t0, where h(t, x) satisfies

⎧
⎪⎪⎨

⎪⎪⎩

ht = d�h + a(1 – q)hf ((1 – ε)z – h – θ , h), x ∈ �, t > t0,
∂h
∂n + rh = 0, x ∈ ∂�, t > t0,

h(t0, x) = min{u(t, x), (1 – ε)z}, x ∈ �.

(32)
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Obviously, if a > λ̂ε
1d

1–q , then (32) has a unique positive equilibrium solution hε(x), and
limt→∞ h(t, x) = hε(x). By Lp estimate and the Sobolev embedding theorem we get that
hε(x) → h0(x) as ε → 0 on C1, where h0(x) is a unique positive solution of the following
problem:

d�h0 + a(1 – q)h0f
(
z – h0 – θ , h0) = 0,

∂h0

∂n
+ rh0 = 0.

Then there exists T > t0 > 0 such that u(t, x) > 1
2 h0 as t ≥ T , a contradiction. Thus, M2 is

a weak exclusion, and it is an isolated invariant set in Y . For the invariant set M1, since
a > λ̂1d

1–q > λ1d
1–q , we can similarly prove that M1 is a weak exclusion, and it is an isolated

invariant set in Y . By Theorem 4.6 in [30], u is uniformly persistent, and for (27), v is also
uniformly persistent. Therefore, the semidynamical system is restricted to X1 and has a
compact invariant attractor B (see Theorem 3.2 in [29]); B attracts the bounded set of X1

the distance of which from X2 is greater than zero, Particularly, B attracts the point of X1.
Because the arbitrary orbital of the X1 is uniformly attracted to B, we only prove that � > 0
for all (u, v) ∈ B, according to minx∈�̄ u(x) > �. Either the sequence, (ui, vi) ∈ B, xi ∈ �̄,
such that ui(xi) → 0. We suppose that the subsequence (ui, vi) → (u, v) ∈ B, xi → x ∈ �̄,
and u(x) = 0. However, B is invariant, and we have u > 0 (x ∈ �̄), a contradiction. �

6 Conclusion
This paper deals with plasmid-bearing and plasmid-free models in the unstirred chemo-
stat with the Beddington–DeAngelis functional response. Applying the fixed point the-
ory, bifurcation theory, and the perturbation technique, we obtained the following result:
Firstly, some a priori estimates and a sufficient condition for the existence for positive so-
lutions are established. Secondly, we study the effect of the small parameter k1 and suffi-
ciently large k2 in Beddington–DeAngelis functional response, and we find that the model
has at least two positive solutions (Theorem 3.1). Thirdly, we investigate the case of k1. The
results show that if k1 is sufficiently large, then the positive solution of this model is deter-
mined by a limiting equation (Lemma 4.1 and Theorems 4.1–4.2). Finally, in Sect. 5, we
present some asymptotic behavior of solutions depending on the change of time by the
comparison principle and persistence theorem (Theorems 5.3–5.5).
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