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Abstract
This paper is concerned with the issue of robust stability for quaternion-valued neural
networks (QVNNs) with leakage, discrete and distributed delays by employing a linear
matrix inequality (LMI) approach. Based on the homeomorphic mapping theorem,
the quaternion matrix theorem and the Lyapunov theorem, some criteria are
developed in the form of real-valued LMIs for guaranteeing the existence, uniqueness,
and global robust stability of the equilibrium point of the delayed QVNNs. Two
numerical examples are provided to demonstrate the effectiveness of the obtained
results.
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1 Introduction
The quaternions are members of a noncommutative division algebra invented indepen-
dently by Carl Friedrich Gauss in 1819 and William Rowan Hamilton in 1843 [1]. Quater-
nions provide a concise mathematical method for representing the automorphisms of
three- and four-dimensional spaces. The representations by quaternions are more com-
pact and quicker to compute than the representations by matrices [2]. For this reason, an
increasing number of applications based on quaternions are found in various fields, such
as computer graphics, quantum mechanics, attitude control, signal processing, and orbital
mechanics [3–5]. For example, in attitude-control systems, it will lead to the problem of
the so-called “gimbal lock” by using Euler angles. As an alternative approach, quaterions
have the technical advantage not to suffer from the problem [6].

On the other hand, over the past three decades, neural networks (NNs) have been ap-
plied in various areas throughout science and engineering, such as signal processing, im-
age processing, pattern recognition, associative memory and optimization [7–16]. Fur-
thermore, real-valued NNs (RVNNs) and complex-valued NNs (CVNNs) have been ex-
tensively investigated and a great number of results have been reported [17–22]. Recently,
quaternion-valued neural networks (QVNNs) have drawn a great deal of attention [23, 24].
Due to the simple representation of quaternions and the high efficiency in dealing with
multidimensional data, QVNNs have demonstrated better performances than CVNNs
and RVNNs in their wide applications [25–31]. For example, in the image compression
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[25, 26], one color is synthesized by the three primary colors with a certain proportion,
which needs three real- or complex-valued neurons to store. However, one quaternion-
valued neuron is enough to represent one color via three channels ı , j and κ of QVNNs,
which leads to a significant reduction in the dimension of the system and to a great in-
crease in the computational efficiency. In some practical applications, it is required that
the designed system has a unique equilibrium point which is globally stable. Therefore,
the dynamics of QVNNs has been an active research topic [32–36]. In [32, 33], some μ-
stability criteria in the form of linear matrix inequalities (LMIs) were provided for QVNNs
with time-varying delays. In [34], several sufficient conditions were presented to check
the global exponential stability for QVNNs with time-varying delays. In [35], several suffi-
cient criteria were derived to ensure the existence, uniqueness, and global robust stability
of the equilibrium point for delayed QVNNs with parameter uncertainties. In [36], some
algebraic conditions on the global dissipativity for QVNNs with time-varying delays were
devised.

Moreover, when implementing neural networks, time delays are unavoidably encoun-
tered due to delay transmission line, partial element equivalent circuit, integration and
communication. The existence of time delays in neural networks frequently will lead to
undesirable complex dynamical behaviors [37–39]. As pointed out by Gopalsamy [40],
time delays in the negative feedback terms will have a tendency to destabilize a system,
which are known as leakage or forgetting delays. Moreover, many biological and artificial
neural networks contain inherent discrete time delays in signal transmission, which may
cause oscillation and instability. Furthermore, since the neural networks usually are of a
spatial nature associated with the presence of an amount of parallel pathway of a variety
of axon sizes and lengths, it is desirable to model them by introducing distributed delays.
In [40, 41], the stability problem was investigated for RVNNs with the introduction of the
leakage delays. In [42, 43], some dynamical behaviors of RVNNs with distributed delays
were studied. In [44], the multistability issue of competitive RVNNs with discrete and dis-
tributed delays was investigated. In [45, 46], the authors considered the effects of leakage
and discrete delays in CVNNs.

Strongly motivated by the above discussions, in the present paper we consider the ro-
bust stability problem of QVNNs with leakage, discrete and distributed delays. There are
two main challenging problems of the current research. The first one is how to construct
a proper Lyapunov–Krasovskii functional corresponding to the considered QVNNs. The
second one is how to make sure that the obtained criteria are depend on the upper and
lower bounds of system parameters. For the first one, we adopt quaternion self-conjugate
and positive definite matrices to construct the Lyapunov–Krasovskii functional so that
we can directly deal with the QVNNs rather than any decomposition. For the second
one, we utilize modulus inequality technique to compute the derivative of the Lyapunov–
Krasovskii functional so that the obtained criteria are not only real-valued but also related
to the bounds of parameters.

Notations Throughout this paper, R, C and H denote the real field, the complex field
and the skew field of quaternions, respectively. Rn, Cn and H

n denote n-dimensional vec-
tors with entries from R, C and H, respectively. Rn×m, Cn×m and H

n×m denote n × m
matrices with entries from R, C and H, respectively. Specially, Rn×n

d denotes n × n real
diagonal matrices. The notation Ā, AT and A∗ stand for the conjugate, the transpose
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and the conjugate transpose, respectively, of the matrix A. For A = (aij)n×n ∈ C
n×n, let

‖A‖ =
√∑n

i=1
∑n

j=1 |aij|2 denote the norm of A. The notation X ≥ Y (respectively, X > Y )
means that X – Y is positive semi-definite (respectively, positive definite). For a posi-
tive definite Hermitian matrix P ∈ C

n×n, λmax(P) and λmin(P) are defined as the largest
and the smallest eigenvalues of P, respectively. In the four-dimensional algebra H, the
four basis elements are denoted by 1, ı , j , κ , which obey the following multiplication
table: ı2 = j 2 = κ2 = –1, ıj = –jı = κ , jκ = –κj = ı , κı = –ıκ = j , and 1 · a = a · 1 = a
for every quaternion a. For a quaternion a = a0 + a1ı + a2j + a3κ ∈ H, we call a0, a1,
a2 and a3 the first, second, third and fourth parts of the quaternion, respectively. Let

a∗ = a0 – a1ı – a2j – a3κ be the conjugate of a, and |a| =
√

a2
0 + a2

1 + a2
2 + a2

3 be the mod-
ulus of a. For q = (q1, q2, . . . , qn)T ∈ H

n, let |q| = (|q1|, |q2|, . . . , |qn|)T be the modulus of q,
and ‖q‖ =

√∑n
i=1 |qi|2 be the norm of q. For a, b ∈ H, a � b denotes ai ≤ bi, i = 0, 1, 2, 3,

where a = a0 + a1ı + a2j + a3κ and b = b0 + b1ı + b2j + b3κ . For A, B ∈ H
n×n, A � B de-

notes aij � bij, i, j = 1, 2, . . . , n, where A = (aij)n×n and B = (bij)n×n. In addition, the symbol
� always denotes the conjugate transpose of a suitable block in a Hermitian matrix.

2 Problem formulation and preliminaries
Consider the following QVNNs model with three kinds of time delays including leakage
delay, discrete delay and distributed delay:

q̇(t) = –Dq(t – δ) + Af
(
q(t)

)
+ Bf

(
q(t – τ )

)
+ C

∫ t

–∞
k(t – s)f

(
q(s)

)
ds + J , (1)

for t ≥ 0, where q(t) = (q1(t), q2(t), . . . , qn(t))T ∈ H
n is the state vector of the neu-

ral networks with n neurons at time t. D = diag(d1, d2, . . . , dn) ∈ R
n×n
d where di > 0

(i = 1, 2, . . . , n) is the self-feedback connection weight matrix; A = (aij)n×n ∈ H
n×n, B =

(bij)n×n ∈ H
n×n and C = (cij)n×n ∈ H

n×n are, respectively, the connection weight ma-
trix, the discretely delayed connection weight matrix and the distributively delayed con-
nection weight matrix. J = (J1, J2, . . . , Jn)T ∈ H

n is the external input vector. f (q(t)) =
(f1(q1(t)), f2(q2(t)), . . . , fn(qn(t)))T ∈ H

n denotes the neuron activations. δ > 0 and τ > 0 are
the leakage time delay and the discrete time delay, respectively. k(·) : [0, +∞) → [0, +∞) is
the delay kernel, which satisfies

∫ ∞
0 k(s) ds = 1.

The following assumptions will be needed throughout the paper:
(A1) The parameters D, A, B, C, J in QVNNs (1) are assumed to be in the following sets,

respectively,

DI =
{

D ∈ R
n×n
d : 0 < Ď � D � D̂

}
,

AI =
{

A ∈H
n×n : Ǎ � A � Â

}
,

BI =
{

B ∈H
n×n : B̌ � B � B̂

}
,

CI =
{

C ∈H
n×n : Č � C � Ĉ

}
,

JI =
{

J ∈H
n : J̌ � J � Ĵ

}
,

where Ď, D̂ ∈R
n×n
d , Ǎ, Â, B̌, B̂, Č, Ĉ ∈H

n×n, and J̌ , Ĵ ∈H
n. Moreover, let Ǎ = (ǎij)n×n,

Â = (âij)n×n, B̌ = (b̌ij)n×n, B̂ = (b̂ij)n×n, Č = (čij)n×n, and Ĉ = (ĉij)n×n. Then we de-
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fine Ã = (ãij)n×n, B̃ = (b̃ij)n×n and C̃ = (c̃ij)n×n, where ãij = max{|ǎij|, |âij|}, b̃ij =
max{|b̌ij|, |b̂ij|} and c̃ij = max{|čij|, |ĉij|}.

(A2) For i = 1, 2, . . . , n, the neuron activation function fi is continuous and satisfies

∣∣fi(s1) – fi(s2)
∣∣ ≤ γi|s1 – s2|, ∀s1, s2 ∈H,

where γi is a real constant. Moreover, define 	 = diag(γ1,γ2, . . . ,γn).

Definition 1 The QVNNs defined by (1) with the parameter ranges defined by (A1) are
globally asymptotically robust stable if the unique equilibrium point q̌ of QVNNs (1) is
globally asymptotically stable for all D ∈ DI , A ∈ AI , B ∈ BI , C ∈ CI and J ∈ JI .

Lemma 1 ([35]) For any x, y ∈ H
n, if P ∈H

n×n is a positive definite Hermitian matrix, then

x∗y + y∗x ≤ x∗Px + y∗P–1y.

Lemma 2 ([35]) If H(z) : Hn → H
n is a continuous map and satisfies the following condi-

tions:
(i) H(z) is injective on H

n,
(ii) lim‖z‖→∞ ‖H(z)‖ = ∞,

then H(z) is a homeomorphism of Hn onto itself.

Lemma 3 ([35]) For any positive definite constant Hermitian matrix W ∈ H
n×n and any

scalar function ω(s) : [a, b] → H
n with scalars a < b such that the integrations concerned

are well defined,

(∫ b

a
ω(s) ds

)∗
W

(∫ b

a
ω(s) ds

)
≤ (b – a)

∫ b

a
ω∗(s)Wω(s) ds.

In the following, we provide some modulus inequalities of quaternions, which play a
major role in analyzing the problem in this paper.

Lemma 4 Suppose A ∈ H
n×n, Ǎ = (ǎij)n×n ∈ H

n×n, Â = (âij)n×n ∈ H
n×n, and Ǎ � A � Â.

Then, for any x, y ∈H
n, the following inequalities hold:

x∗A∗Ax ≤ |x|T |A|T |A||x| ≤ |x|T ÃT Ã|x|, (2)

x∗A∗y + y∗Ax ≤ |x|T |A|T |y| + |y|T |A||x| ≤ |x|T ÃT |y| + |y|T Ã|x|, (3)

where Ã = (ãij)n×n, ãij = max{|ǎij|, |âij|}.

Proof It should be noted that |a+b| ≤ |a|+ |b| for any a, b ∈H. By the Cauchy–Schwarz in-
equality, the modulus inequalities (2) and (3) can be obtained. We omit the details because
the proof is direct. �

Remark 1 In Lemma 4, if A is a real positive diagonal matrix, then |A| = A and Ã = Â.
Therefore, the modulus inequality (3) will reduce to

x∗A∗y + y∗Ax ≤ |x|T AT |y| + |y|T A|x| ≤ |x|T ÂT |y| + |y|T Â|x|.
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Lemma 5 (Schur complement [47]) A given real symmetric matrix

S =

(
S11 S12

S21 S22

)
,

where ST
11 = S11, ST

12 = S21 and ST
22 = S22, satisfies S < 0 if and only if any one of the following

two conditions holds:
(i) S22 < 0 and S11 – S12S–1

22 S21 < 0,
(ii) S11 < 0 and S22 – S21S–1

11 S12 < 0.

3 Main results
In this section, we first analyze the existence and uniqueness of the equilibrium point of
the delayed QVNNs under Assumptions (A1) and (A2). Then we investigate the global
robust stability of the equilibrium point of the delayed QVNNs.

Theorem 1 Under Assumptions (A1) and (A2), QVNNs (1) have a unique equilibrium
point, if there exist four real positive diagonal matrices U , V1, V2 and V3 such that the
following LMI holds:

� =

⎛
⎜⎜⎜⎝

�11 UÃ UB̃ UC̃
� –V1 0 0
� � –V2 0
� � � –V3

⎞
⎟⎟⎟⎠ < 0, (4)

where �11 = –ĎU – UĎ + 	V1	 + 	V2	 + 	V3	.

Proof We define the following continuous map H : Hn →H
n associated with system (1):

H(q) = –Dz + Af (q) + Bf (q) + Cf (q) + J . (5)

Then the proof is divided into two steps.
First, we prove that H(q) is an injective map on H

n. Suppose that there exist q, q̃ ∈ H
n

with q �= q̃, such that H(q) = H(q̃)k, which implies that

0 = (q – q̃)∗U
[
H(q) – H(q̃)

]
+

[
H(q) – H(q̃)

]∗U(q – q̃)

= –(q – q̃)∗(UD + DU)(q – q̃) + (q – q̃)∗UA
(
f (q) – f (q̃)

)

+
(
f (q) – f (q̃)

)∗A∗U(q – q̃) + (q – q̃)∗UB
(
f (q) – f (q̃)

)

+
(
f (q) – f (q̃)

)∗B∗U(q – q̃) + (q – q̃)∗UC
(
f (q) – f (q̃)

)

+
(
f (q) – f (q̃)

)∗C∗U(q – q̃)

≤ –(q – q̃)∗(UD + DU)(q – q̃) + (q – q̃)∗U(A)V –1
1 A∗U(q – q̃)

+
(
f (q) – f (q̃)

)∗V1
(
f (q) – f (q̃)

)
+ (q – q̃)∗UBV –1

2 B∗U(q – q̃)

+
(
f (q) – f (q̃)

)∗V2
(
f (q) – f (q̃)

)
+ (q – q̃)∗UCV –1

3 C∗U(q – q̃)

+
(
f (q) – f (q̃)

)∗V3
(
f (q) – f (q̃)

)
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≤ |q – q̃|∗[–ĎU – UĎ + UÃV –1
1 Ã∗U + UB̃V –1

2 B̃∗U

+ UC̃V –1
3 C̃∗U

]|q – q̃| +
(
f (q) – f (q̃)

)∗(V1 + V2 + V3)
(
f (q) – f (q̃)

)
. (6)

Here, in the computation above, we have applied Lemmas 1 and 4. Since V1, V2, and V3

are real positive diagonal matrices, it follows from Assumption (A2) that

(
f (q) – f (q̃)

)∗(V1 + V2 + V3)
(
f (q) – f (q̃)

)

≤ (q – q̃)∗	(V1 + V2 + V3)	(q – q̃) = |q – q̃|∗	(V1 + V2 + V3)	|q – q̃|. (7)

We can get from (6) and (7)

0 ≤ |q – q̃|∗�|q – q̃|, (8)

where � = –ĎU –UĎ+	(V1 +V2 +V3)	 +UÃV –1
1 Ã∗U +UB̃V –1

2 B̃∗U +UC̃V –1
3 C̃∗U . From

Lemma 5 and the LMI (4), we see that � < 0. Then q – q̃ = 0 from (8). Therefore, H(q) is
an injective map on H

n. The first step is completed.
Second, we prove ‖H(q)‖ → ∞ as ‖q‖ → ∞. Let H̃(q) = H(q) – H(0). By Lemmas 1

and 4, we can compute that

q∗UH̃(q) + H̃(q)∗Uq = –q∗(UD + DU)q + q∗U(A + B + C)
(
f (q) – f (0)

)

+
(
f (q) – f (0)

)∗(A∗ + B∗ + C∗)Uq

≤ –q∗(UD + DU)q + q∗UAV –1
1 A∗Uq

+ q∗UBV –1
2 B∗Uq + q∗UCV –1

3 C∗Uq

+
(
f (q) – f (0)

)∗(V1 + V2 + V3)
(
f (q) – f (0)

)

≤ |q|∗�|q| ≤ –λmin(–�)‖q‖2.

An application of the Cauchy–Schwarz inequality yields

λmin(–�)‖q‖2 ≤ 2‖q∗‖‖U‖∥∥H̃(q)
∥∥.

When q �= 0, we have

∥∥H̃(q)
∥∥ ≥ λmin(–�)‖q‖

2‖U‖ .

Therefore, ‖H̃(q)‖ → ∞ as ‖q‖ → ∞, which implies ‖H(q)‖ → ∞ as ‖q‖ → ∞. From
Lemma 2 we know that H(q) is a homeomorphism of Hn. Thus, system (1) has a unique
equilibrium point. �

In what follows, we further consider the global robust stability of the equilibrium point
based on Theorem 1.

Theorem 2 Under Assumptions (A1) and (A2), QVNNs (1) have a unique equilibrium
point and the equilibrium point is globally robust stable, if there exist nine real positive
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diagonal matrices P1, P2, P3, P4, Q1, Q2, R, S1 and S2 such that the following LMI holds:


 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝


11 0 0 0 P1Ã P1B̃ P1C̃ D̂P1D̂
� 
22 
23 0 QT

1 Ã QT
1 B̃ QT

1 C̃ 0
� � 
33 0 QT

2 Ã QT
2 B̃ QT

2 C̃ 0
� � � 
44 0 0 0 0
� � � � –S1 0 0 ÃT P1D̂
� � � � � –S2 0 B̃T P1D̂
� � � � � � –R C̃T P1D̂
� � � � � � � –P3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

< 0, (9)

where 
11 = –P1Ď – ĎP1 + P2 + δ2P3 + P4 + 	R	 + 	S1	, 
22 = –QT
1 – Q1, 
23 = QT

1 D̂ + Q2,

33 = –P2 – QT

2 Ď – ĎQ2, 
44 = –P4 + 	S2	.

Proof The proof will be divided into two steps. First, we will proof the QVNNs (1) have a
unique equilibrium point under LMI (9) based on Theorem 1. Second, we will prove the
equilibrium point is globally robust stable by the Lyapunov theorem.

Step 1: For convenience, we let


1 =

⎛
⎜⎜⎜⎝


11 P1Ã P1B̃ P1C̃
� –S1 0 0
� � –S2 0
� � � –R

⎞
⎟⎟⎟⎠ , 
2 =

⎛
⎜⎜⎜⎝

� 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎟⎠ + 
1,

where � = 
44 –P2 –δ2P3. It should be noted that 
1 is a principal sub-matrix of 
 formed
by rows 1, 5, 6, 7 and columns 1, 5, 6, 7. Therefore, 
1 < 0. Since � < 0, we see that


2 < 0. (10)

Then we let U = P1 > 0, V1 = S1 > 0, V2 = S2 > 0 and V3 = R > 0, we can obtain

� = 
2, (11)

where � is defined in LMI (4) of Theorem 1. It follows from (10) and (11) that � < 0, which
means LMI (4) holds. Thus, system (1) has a unique equilibrium point by Theorem 1.

Step 2: Let q̌ be the unique equilibrium point of system (1). For convenience, we shift the
equilibrium to the origin by letting q̃(t) = q(t) – q̌, and then system (1) can be transformed
into

˙̃q(t) = –Dq̃(t – δ) + Af
(
q̃(t)

)
+ Bf

(
q̃(t – τ )

)
+ C

∫ t

–∞
k(t – s)f

(
q̃(s)

)
ds, (12)

where f (q̃(t)) = f (q(t)) – f (q̌) and f (q̃(t – τ )) = f (q(t – τ )) – f (q̌).
With some preparation above, consider the following Lyapunov–Krasovskii func-

tional:

V (t) = V1(t) + V2(t) + V3(t) + V4(t) + V5(t),
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where

V1(t) =
(

q̃(t) – D
∫ t

t–δ

q̃(s) ds
)∗

P1

(
q̃(t) – D

∫ t

t–δ

q̃(s) ds
)

, (13)

V2(t) =
∫ t

t–δ

q̃∗(s)P2q̃(s) ds, (14)

V3(t) = δ

∫ δ

0

∫ t

t–u
q̃∗(s)P3q̃(s) ds du, (15)

V4(t) =
∫ t

t–τ

q̃∗(s)P4q̃(s) ds, (16)

V5(t) =
n∑

j=1

rj

∫ ∞

0
k(s)

∫ t

t–s
f ∗
j
(
q̃j(t)

)
fj
(
q̃j(t)

)
dt ds, (17)

where rj are the main diagonal entries of R. That is, R = diag(r1, r2, . . . , rn).
Then the derivatives of V1(t), V2(t), V3(t), V4(t) and V5(t) are calculated as follows:

V̇1(t) =
[

q̃(t) – D
∫ t

t–δ

q̃(s) ds
]∗

P1
[ ˙̃q(t) – Dq̃(t) + Dq̃(t – δ)

]

+
[ ˙̃q(t) – Dq̃(t) + Dq̃(t – δ)

]∗P1

[
q̃(t) – D

∫ t

t–δ

q̃(s) ds
]

=
[

q̃(t) – D
∫ t

t–δ

q̃(s) ds
]∗

P1

[
–Dq̃(t) + Af

(
q̃(t)

)
+ Bf

(
q̃(t – τ )

)

+ C
∫ t

–∞
k(t – s)f

(
q(s)

)
ds

]
+

[
–Dq̃(t) + Af

(
q̃(t)

)
+ Bf

(
q̃(t – τ )

)

+ C
∫ t

–∞
k(t – s)f

(
q(s)

)
ds

]∗
P1

[
q̃(t) – D

∫ t

t–δ

q̃(s) ds
]

= –q̃∗(t)(P1D + DP1)q̃(t) + q̃∗(t)P1Af
(
q̃(t)

)
+ f ∗(q̃(t)

)
A∗P1q̃(t)

+ q̃∗(t)P1Bf
(
q̃(t – τ )

)
+ f ∗(q̃(t – τ )

)
B∗P1q̃(t)

+ q̃∗(t)P1C
[∫ t

–∞
k(t – s)f

(
q(s)

)
ds

]
+

[∫ t

–∞
k(t – s)f

(
q(s)

)
ds

]∗

× C∗P1q̃(t) + q̃∗(t)DP1D
[∫ t

t–δ

q̃(s) ds
]

+
[∫ t

t–δ

q̃(s) ds
]∗

DP1Dq̃(t)

– f ∗(q̃(t)
)
A∗P1D

[∫ t

t–δ

q̃(s) ds
]

–
[∫ t

t–δ

q̃(s) ds
]∗

DP1Af
(
q̃(t)

)

– f ∗(q̃(t – τ )
)
B∗P1D

[∫ t

t–δ

q̃(s) ds
]

–
[∫ t

t–δ

q̃(s) ds
]∗

DP1Bf
(
q̃(t – τ )

)

–
[∫ t

–∞
k(t – s)f

(
q(s)

)
ds

]∗
C∗P1D

[∫ t

t–δ

q̃(s) ds
]

–
[∫ t

t–δ

q̃(s) ds
]∗

DP1C
[∫ t

–∞
k(t – s)f

(
q(s)

)
ds

]
, (18)
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V̇2(t) = q̃∗(t)P2q̃(t) – q̃∗(t – δ)P2q̃(t – δ), (19)

V̇3(t) = δ2q̃∗(t)P3q̃(t) – δ

∫ δ

0
q̃∗(t – u)P3q̃(t – u) du

= δ2q̃∗(t)P3q̃(t) – δ

∫ t

t–δ

q̃∗(s)P3q̃(s) ds

≤ δ2q̃∗(t)P3q̃(t) –
[∫ t

t–δ

q̃(s) ds
]∗

P3

[∫ t

t–δ

q̃(s) ds
]

, (20)

V̇4(t) = q̃∗(t)P4q̃(t) – q̃∗(t – τ )P4q̃(t – τ ), (21)

V̇5(t) =
n∑

j=1

rj

∫ +∞

0
k(s)f ∗

j
(
q̃(t)

)
fj
(
q̃(t)

)
ds

–
n∑

j=1

rj

∫ +∞

0
k(s)f ∗

j
(
q̃(t – s)

)
fj
(
q̃(t – s)

)
ds

= f ∗(q̃(t)
)
Rf

(
q̃(t)

)

–
n∑

j=1

rj

∫ +∞

0
k(s)

∫ +∞

0
k(s)f ∗

j
(
q̃(t – s)

)
fj
(
q̃(t – s)

)
ds

≤ q̃∗(t)	R	q̃(t)

–
n∑

j=1

rj

∫ +∞

0
k(s)f ∗

j
(
q̃(t – s)

)
ds

∫ +∞

0
k(s)fj

(
q̃(t – s)

)
ds

≤ q̃(t)	R	q̃(t)

–
[∫ t

–∞
k(t – s)f

(
q(s)

)
ds

]∗
R
[∫ t

–∞
k(t – s)f

(
q(s)

)
ds

]
. (22)

In deriving inequality (20), we have made use of Lemma 3. Since S1 and S2 are real positive
diagonal matrices, it follows from Assumption (A2) that

0 ≤ q̃∗(t)	S1	q̃(t) – f ∗(q̃(t)
)
S1f

(
q̃(t)

)
, (23)

0 ≤ q̃∗(t – τ )	S2	q̃(t – τ ) – f ∗(q̃(t – τ )
)
S2f

(
q̃(t – τ )

)
. (24)

From system (12), it is obvious that

0 =
[
Q1 ˙̃q(t) + Q2q̃(t – δ)

]∗
[

– ˙̃q(t) – Dq̃(t – δ) + Af
(
q̃(t)

)

+ Bf
(
q̃(t – τ )

)
+ C

∫ t

–∞
k(t – s)f

(
q(s)

)
ds

]

+
[

– ˙̃q(t) – Dq̃(t – δ) + Af
(
q̃(t)

)
+ Bf

(
q̃(t – τ )

)

+ C
∫ t

–∞
k(t – s)f

(
q(s)

)
ds

]∗[
Q1 ˙̃q(t) + Q2q̃(t – δ)

]
. (25)
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It follows from equalities or inequalities (18)–(25) and Lemma 4 that

V̇ (t) ≤ q̃∗(t)
(
–P1D – DP1 + P2 + δ2P3 + P4 + 	R	 + 	S1	

)
q̃(t)

+ q̃∗(t)P1Af
(
q̃(t)

)
+ f ∗(q̃(t)

)
A∗P1q̃(t) + q̃∗(t)P1Bf

(
q̃(t – τ )

)

+ f ∗(q̃(t – τ )
)
B∗P1q̃(t) + q̃∗(t)P1C

[∫ t

–∞
k(t – s)f

(
q(s)

)
ds

]

+
[∫ t

–∞
k(t – s)f

(
q(s)

)
ds

]∗
C∗P1q̃(t) + q̃∗(t)DP1D

[∫ t

t–δ

q̃(s) ds
]

+
[∫ t

t–δ

q̃(s) ds
]∗

DP1Dq̃(t) + ˙̃q∗(t)
(
–Q∗

1 – Q1
) ˙̃q(t)

+ ˙̃q∗(t)
(
–Q∗

1D – Q2
)
q̃(t – δ) + q̃∗(t – δ)

(
–DQ1 – Q∗

2
) ˙̃q(t)

+ ˙̃q∗(t)Q∗
1Af

(
q̃(t)

)
+ f ∗(q̃(t)

)
A∗Q1 ˙̃q(t) + ˙̃q∗(t)Q∗

1Bf
(
q̃(t – τ )

)

+ f ∗(q̃(t – τ )
)
B∗Q1 ˙̃q(t) + ˙̃q∗(t)Q∗

1C
[∫ t

–∞
k(t – s)f

(
q(s)

)
ds

]

+
[∫ t

–∞
k(t – s)f

(
q(s)

)
ds

]∗
C∗Q1 ˙̃q(t)

+ q̃∗(t – δ)
(
–P2 – Q∗

2D – DQ2
)
q̃(t – δ)

+ q̃∗(t – δ)Q∗
2Af

(
q̃(t)

)
+ f ∗(q̃(t)

)
A∗Q2q̃(t – δ)

+ q̃∗(t – δ)Q∗
2Bf

(
q̃(t – τ )

)
+ f ∗(q̃(t – τ )

)
B∗Q2q̃(t – δ)

+ q̃∗(t – δ)Q∗
2C

[∫ t

–∞
k(t – s)f

(
q(s)

)
ds

]

+
[∫ t

–∞
k(t – s)f

(
q(s)

)
ds

]∗
CQ2q̃(t – δ)

+ q̃∗(t – τ )(–P4 + 	S2	)q̃(t – τ ) – f ∗(q̃(t)
)
S1f

(
q̃(t)

)

– f ∗(q̃(t)
)
A∗P1D

[∫ t

t–δ

q̃(s) ds
]

–
[∫ t

t–δ

q̃(s) ds
]∗

DP1Af
(
q̃(t)

)

– f ∗(q̃(t – τ )
)
S2f

(
q̃(t – τ )

)
– f ∗(q̃(t – τ )

)
B∗P1D

[∫ t

t–δ

q̃(s) ds
]

–
[∫ t

t–δ

q̃(s) ds
]∗

DP1Bf
(
q̃(t – τ )

)
–

[∫ t

–∞
k(t – s)f

(
q(s)

)
ds

]∗
R

×
[∫ t

–∞
k(t – s)f

(
q(s)

)
ds

]
–

[∫ t

t–δ

q̃(s) ds
]∗

P3

[∫ t

t–δ

q̃(s) ds
]

–
[∫ t

–∞
k(t – s)f

(
q(s)

)
ds

]∗
C∗P1D

[∫ t

t–δ

q̃(s) ds
]

–
[∫ t

t–δ

q̃(s) ds
]∗

DP1C
[∫ t

–∞
k(t – s)f

(
q(s)

)
ds

]

≤ ∣∣q̃(t)
∣∣T(

–P1Ď – ĎP1 + P2 + δ2P3 + P4 + 	R	 + 	S1	
)∣∣q̃(t)

∣∣

+
∣∣q̃(t)

∣∣T P1Ã
∣∣f (q̃(t)

)∣∣ +
∣∣f (q̃(t)

)∣∣T ÃT P1
∣∣q̃(t)

∣∣ +
∣∣q̃(t)

∣∣T P1B̃
∣∣f (q̃(t – τ )

)∣∣

+
∣∣f (q̃(t – τ )

)∣∣T B̃T P1
∣∣q̃(t)

∣∣ +
∣∣q̃(t)

∣∣T P1C̃
∣∣∣∣
∫ t

–∞
k(t – s)f

(
q(s)

)
ds

∣∣∣∣
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+
∣∣∣∣
∫ t

–∞
k(t – s)f

(
q(s)

)
ds

∣∣∣∣
T

C̃T P1
∣∣q̃(t)

∣∣ +
∣∣q̃(t)

∣∣T D̂P1D̂
∣∣∣∣
∫ t

t–δ

q̃(s) ds
∣∣∣∣

+
∣∣∣∣
∫ t

t–δ

q̃(s) ds
∣∣∣∣
T

D̂P1D̂
∣∣q̃(t)

∣∣ +
∣∣ ˙̃q(t)

∣∣T(
–QT

1 – Q1
)∣∣ ˙̃q(t)

∣∣

+
∣∣ ˙̃q(t)

∣∣T(
QT

1 D̂ + Q2
)∣∣q̃(t – δ)

∣∣ +
∣∣q̃(t – δ)

∣∣T(
D̂Q1 + QT

2
)∣∣ ˙̃q(t)

∣∣
+

∣∣ ˙̃q(t)
∣∣T QT

1 Ã
∣∣f (q̃(t)

)∣∣ +
∣∣f (q̃(t)

)∣∣T ÃT Q1
∣∣ ˙̃q(t)

∣∣ +
∣∣ ˙̃q(t)

∣∣T QT
1 B̃

∣∣f (q̃(t – τ )
)∣∣

+
∣∣f (q̃(t – τ )

)∣∣T B̃T Q1
∣∣ ˙̃q(t)

∣∣ +
∣∣ ˙̃q(t)

∣∣T QT
1 C̃

∣∣∣∣
∫ t

–∞
k(t – s)f

(
q(s)

)
ds

∣∣∣∣

+
∣∣∣∣
∫ t

–∞
k(t – s)f

(
q(s)

)
ds

∣∣∣∣
T

C̃T Q1
∣∣ ˙̃q(t)

∣∣

+
∣∣q̃(t – δ)

∣∣T(
–P2 – QT

2 Ď – ĎQ2
)∣∣q̃(t – δ)

∣∣
+

∣∣q̃(t – δ)
∣∣T QT

2 Ã
∣∣f (q̃(t)

)∣∣ +
∣∣f (q̃(t)

)∣∣T ÃT Q2
∣∣q̃(t – δ)

∣∣
+

∣∣q̃(t – δ)
∣∣T QT

2 B̃
∣∣f (q̃(t – τ )

)∣∣ +
∣∣f (q̃(t – τ )

)∣∣T B̃T Q2
∣∣q̃(t – δ)

∣∣

+
∣∣q̃(t – δ)

∣∣T QT
2 C̃

∣∣∣∣
∫ t

–∞
k(t – s)f

(
q(s)

)
ds

∣∣∣∣

+
∣∣∣∣
∫ t

–∞
k(t – s)f

(
q(s)

)
ds

∣∣∣∣
T

C̃Q2
∣∣q̃(t – δ)

∣∣

+
∣∣q̃(t – τ )

∣∣T (–P4 + 	S2	)
∣∣q̃(t – τ )

∣∣ –
∣∣f (q̃(t)

)∣∣T S1
∣∣f (q̃(t)

)∣∣

+
∣∣f (q̃(t)

)∣∣T ÃT P1D̂
∣∣∣∣
∫ t

t–δ

q̃(s) ds
∣∣∣∣ +

∣∣∣∣
∫ t

t–δ

q̃(s) ds
∣∣∣∣
T

D̂P1Ã
∣∣f (q̃(t)

)∣∣

–
∣∣f (q̃(t – τ )

)∣∣T S2
∣∣f (q̃(t – τ )

)∣∣ +
∣∣f (q̃(t – τ )

)∣∣T B̃T P1D̂
∣∣∣∣
∫ t

t–δ

q̃(s) ds
∣∣∣∣

+
∣∣∣∣
∫ t

t–δ

q̃(s) ds
∣∣∣∣
T

D̂P1B̃
∣∣f (q̃(t – τ )

)∣∣ –
∣∣∣∣
∫ t

–∞
k(t – s)f

(
q(s)

)
ds

∣∣∣∣
T

R

×
∣∣∣∣
∫ t

–∞
k(t – s)f

(
q(s)

)
ds

∣∣∣∣ –
∣∣∣∣
∫ t

t–δ

q̃(s) ds
∣∣∣∣
T

P3

∣∣∣∣
∫ t

t–δ

q̃(s) ds
∣∣∣∣

+
∣∣∣∣
∫ t

–∞
k(t – s)f

(
q(s)

)
ds

∣∣∣∣
T

C̃T P1D̂
∣∣∣∣
∫ t

t–δ

q̃(s) ds
∣∣∣∣

+
∣∣∣∣
∫ t

t–δ

q̃(s) ds
∣∣∣∣
T

D̂P1C̃
∣∣∣∣
∫ t

–∞
k(t – s)f

(
q(s)

)
ds

∣∣∣∣
≤ αT
α, (26)

where

α =
(∣∣q̃T (t)

∣∣, ∣∣ ˙̃qT (t)
∣∣, ∣∣q̃T (t – δ)

∣∣, ∣∣q̃T (t – τ )
∣∣, ∣∣f T(

q̃(t)
)∣∣,

∣∣f T(
q̃(t – τ )

)∣∣,
∣∣∣∣
∫ t

–∞
k(t – s)f

(
q(s)

)
ds

∣∣∣∣
T

,
∣∣∣∣
∫ t

t–δ

q̃(s) ds
∣∣∣∣
T)T

.

Therefore, we conclude that V̇ (t) is negative definite because of LMI (9). Moreover, it
is obvious that V (t) is radially unbounded. Then the equilibrium point of system (1) is
globally asymptotically stable by standard Lyapunov theorem. �
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Remark 2 It should be noted that RVNNs and CVNNs are special cases of QVNNs. So
the results of the paper can also be applied to RVNNs and CVNNs in the form of (1).

4 Numerical examples
In this section, two numerical examples will illustrate the effectiveness of the proposed
results.

Example 1 Suppose that the parameters of QVNNs (1) are given as follows:

Ď =

(
0.3 0
0 0.3

)
, D̂ =

(
0.32 0

0 0.32

)
,

Ǎ = (ǎij)2×2, Â = (âij)2×2,

B̌ = (b̌ij)2×2, B̂ = (b̂ij)2×2,

Č = (čij)2×2, Ĉ = (ĉij)2×2,

	 =

(
0.2 0
0 0.2

)
, δ = 0.5, τ = 1,

where

ǎ11 = –0.1 – 0.1ı – 0.1j – 0.1κ ,

ǎ12 = –0.1 – 0.1ı – 0.1j – 0.1κ ,

ǎ21 = –0.15 – 0.15ı – 0.15j – 0.15κ ,

ǎ22 = –0.1 – 0.1ı – 0.1j – 0.1κ ,

â11 = 0.1 + 0.1ı + 0.1j + 0.1κ ,

â12 = 0.1 + 0.1ı + 0.1j + 0.1κ ,

â21 = 0.15 + 0.15ı + 0.15j + 0.15κ ,

â22 = 0.1 + 0.1ı + 0.1j + 0.1κ ,

b̌11 = –0.1 – 0.1ı – 0.1j – 0.1κ ,

b̌12 = –0.05 – 0.05ı – 0.05j – 0.05κ ,

b̌21 = –0.1 – 0.1ı – 0.1j – 0.1κ ,

b̌22 = –0.1 – 0.1ı – 0.1j – 0.1κ ,

b̂11 = 0.1 + 0.1ı + 0.1j + 0.1κ ,

b̂12 = 0.05 + 0.05ı + 0.05j + 0.05κ ,

b̂21 = 0.1 + 0.1ı + 0.1j + 0.1κ ,

b̂22 = 0.1 + 0.1ı + 0.1j + 0.1κ ,

č11 = –0.05 – 0.05ı – 0.05j – 0.05κ ,

č12 = –0.075 – 0.075ı – 0.075j – 0.075κ ,
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č21 = –0.1 – 0.1ı – 0.1j – 0.1κ ,

č22 = –0.05 – 0.05ı – 0.05j – 0.05κ ,

ĉ11 = 0.05 + 0.05ı + 0.05j + 0.05κ ,

ĉ12 = 0.075 + 0.075ı + 0.075j + 0.075κ ,

ĉ21 = 0.1 + 0.1ı + 0.1j + 0.1κ ,

ĉ22 = 0.05 + 0.05ı + 0.05j + 0.05κ .

According to the matrices Ǎ, Â, B̌, B̂, Č and Ĉ, we get the following matrices:

Ã =

(
0.2 0.2
0.3 0.2

)
, B̃ =

(
0.2 0.1
0.2 0.2

)
, C̃ =

(
0.1 0.15
0.2 0.1

)
.

Then, by using YALMIP with solver of SDPT3 in MATLAB, we obtain the feasible solu-
tions of LMI (9) in Theorem 2 as follows:

P1 =

(
36.4456 0

0 23.2727

)
, P2 =

(
0.0807 0

0 0.0625

)
,

P3 =

(
12.6787 0

0 7.8742

)
, P4 =

(
3.0234 0

0 1.7847

)
,

Q1 =

(
0.3209 0

0 0.2297

)
, Q2 =

(
0.0793 0

0 0.0647

)
,

R =

(
54.7847 0

0 38.6931

)
, S1 =

(
91.8249 0

0 60.4696

)
,

S2 =

(
75.0553 0

0 43.9460

)
.

Therefore, according to Theorem 2, the QVNNs (1) have a unique equilibrium point which
is globally robust stable.

In what follows, we consider a special model in this example and give simulation results
for the sake of verification of the proposed results. We choose the following fixed network
parameters:

D =

(
0.3 0
0 0.32

)
, A = (aij)2×2, B = (bij)2×2,

C = (cij)2×2, J =

(
0.1 – 0.1ı – 0.2j + 0.05κ

–0.2 + 0.1ı + 0.05j – 0.1κ

)
,

(27)

where

a11 = 0.1 – 0.1ı + 0.08j – 0.1κ ,

a12 = –0.1 + 0.1ı – 0.1j + 0.05κ ,
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a21 = 0.15 + 0.1ı – 0.15j – 0.1κ ,

a22 = 0.08 – 0.08ı + 0.1j + 0.1κ ,

b11 = 0.1 – 0.06ı + 0.1j + 0.09κ ,

b12 = 0.05 + 0.05ı – 0.05j – 0.03κ ,

b21 = –0.1 + 0.1ı – 0.08j – 0.05κ ,

b22 = 0.1 – 0.1ı + 0.1j + 0.08κ ,

c11 = 0.05 – 0.03ı + 0.05j – 0.04κ ,

c12 = –0.07 + 0.05ı – 0.06j + 0.05κ ,

c21 = 0.1 + 0.1ı – 0.1j – 0.08κ ,

c22 = 0.05 – 0.05ı + 0.05j + 0.03κ .

Besides, we choose the following functions as the activations and the delay kernel:

f1(u) = f2(u) = 0.1
(|u + 1| – |u – 1|), ∀u ∈H,

k(s) = e–s, ∀s ∈ [0, +∞).

Based on these fixed parameters, we perform numerical simulation of the system by
employing the fourth-order Runge–Kutta methods. Figures 1, 2, 3 and 4 show that the
four parts of the states of the considered system, where the initial conditions are cho-
sen by 10 random constant vectors. It can be seen from these figures that each neuron
state converges to the stable equilibrium point, which is (0.4339 – 0.4488ı – 0.5384j +
0.1301κ , –0.6699 + 0.4545ı + 0.0010j – 0.4327κ)T .

Figure 1 The first part of the state trajectories for system (1) with parameters (27)
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Figure 2 The second part of the state trajectories for system (1) with parameters (27)

Figure 3 The third part of the state trajectories for system (1) with parameters (27)

Remark 3 Although the NNs (1) are quaternion-valued, the stability criteria are expressed
in the form of LMIs (4) and (9), which are real-valued. In Example 1, we see that these LMIs
can be checked directly by the mathematical software MATLAB.

Remark 4 In [35], the authors considered the robust stability of QVNNs with both leakage
and discrete delays but without distributed delay. The criteria obtained in [35] cannot
be applied to check the robust stability of the system in Example 1, since the system has
distributed delay.
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Figure 4 The fourth part of the state trajectories for system (1) with parameters (27)

Figure 5 The first part of the state trajectories for system (1) with δ = 4.6

Remark 5 For investigating the effects of time delays on the system, we set leakage delay
δ = 4.6, 5.5, and 8 in Example 1. Then we find that the equilibrium point of the system
is unstable. Figures 5, 6 and 7 show that the first part of the states of the system do not
converge to the equilibrium point.

Example 2 Suppose that the parameters of system (1) are given as follows:

Ď =

(
0.3 0
0 0.5

)
, D̂ =

(
0.5 0
0 0.7

)
,
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Figure 6 The first part of the state trajectories for system (1) with δ = 5.5

Figure 7 The first part of the state trajectories for system (1) with δ = 8

Ǎ =

(
–0.4 – 0.3ı –0.32 – 0.24ı

–0.3 – 0.4ı –0.54 – 0.72ı

)
, Â =

(
0.3 + 0.4ı 0.32 + 0.24ı

0.3 + 0.4ı 0.72 + 0.54ı

)
,

B̌ =

(
–0.24 – 0.32ı –0.18 – 0.24ı

–0.3 – 0.4ı –0.32 – 0.24ı

)
, B̂ =

(
0.32 + 0.24ı 0.18 + 0.24ı

0.4 + 0.3ı 0.24 + 0.32ı

)
,

Č = Ĉ =

(
0 0
0 0

)
, 	 =

(
0.2 0
0 0.2

)
, δ = 0, τ = 2.
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According to the matrices Ǎ, Â, B̌, B̂, Č and Ĉ, we get the following matrices:

Ã =

(
0.5 0.4
0.5 0.9

)
, B̃ =

(
0.4 0.3
0.5 0.4

)
, C̃ =

(
0 0
0 0

)
.

Then, by using YALMIP with solver of SDPT3 in MATLAB, we obtain the feasible solu-
tions of LMI (9) in Theorem 2 as follows:

P1 =

(
10.0939 0

0 7.0398

)
, P2 =

(
0.0058 0

0 0.0077

)
,

P3 =

(
974.6 0

0 1190.1

)
, P4 =

(
1.4122 0

0 1.2880

)
,

Q1 =

(
0.0120 0

0 0.0075

)
, Q2 =

(
0.0053 0

0 0.0040

)
,

R =

(
0.0609 0

0 0.0848

)
, S1 =

(
40.2801 0

0 55.7370

)
,

S2 =

(
35.2199 0

0 32.0899

)
.

Therefore, according to Theorem 2, system (1) has a unique equilibrium point which is
globally robust stable.

Remark 6 In Example 2, the system parameters are complex-valued. So the system with
these parameters can be viewed as CVNNs. Moreover, since δ = 0 and Č = Ĉ = 0, the
CVNNs have no leakage delay nor distributed delay. Then we try to apply the criteria in
[22] to check the robust stability of the CVNNs. Via YALMIP with solver of SDPT3 in
MATLAB, we cannot find feasible solutions of LMIs in [22]. Therefore, the results ob-
tained in [22] cannot be applied to check the robust stability of the CVNNs.

5 Conclusion
In this paper, the robust stability problem of parametric uncertain QVNNs with both leak-
age, discrete and distributed delays has been investigated. Based on Homeomorphic map-
ping theorem and Lyapunov theorem, some criteria are obtained to check the existence,
uniqueness, and global robust stability of the equilibrium point of the delayed QVNNs.
Owing to using LMI approach and the modulus inequality technique, the presentation of
the obtained criteria is in the form of real-valued LMIs, which can be solved by the mathe-
matical software MATLAB directly and feasibly. In addition, two numerical examples are
provided to substantiate the effectiveness of the proposed LMI conditions. It should be
noted that the activation functions are continuous in this paper. Considering that the dis-
continuous neural network is one of the important dynamic systems, therefore, our further
works will research the stability problem of QVNNs with discontinuous activations.
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