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Abstract
This paper mainly considers a class of two-layer Gilpin–Ayala predator–prey models
with time delays. By means of Mawhin’s continuation theorem of coincidence degree
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given to illustrate the validity of our main results.
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1 Introduction
In 1973, Ayala and Gilpin et al. [1] proposed the following model for studying the dynamics
of competition in the fruit fly:

⎧
⎨

⎩

x′(t) = r1x(t)[1 – ( x(t)
K1

)θ1 – a12
y(t)
K2

],

y′(t) = r2y(t)[1 – a21
x(t)
K1

– ( y(t)
K2

)θ2 ],
(1.1)

where ri is the intrinsic rate of growth of species, Ki is the environment carrying capacity
of species i in the absence of competition, θi provides a nonlinear measure of interspecific
interference, and aij provides a measure of interspecific interference. In the same year,
Gilpin and Ayala presented a more realistic and complicated competition model in the
literature [2] as follows:

x′
i(t) = rixi(t)

[

1 –
(

xi(t)
Ki

)θi

–
n∑

j=1,j �=i

aij(t)
xj(t)
Kj

]

, i = 1, 2, . . . , n, (1.2)
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where xi(t) is the ith-species population density of at time t, ri is the ith-species intrinsic
exponential growth rate, Ki is the ith-species environment carrying capacity in the absence
of competition, θi provides a nonlinear measure of intraspecific interference, and aij(t)
(i �= j) is the interspecific competition rate between the ith species and the jth species at
time t.

It is generally called to the Gilpin–Ayala population dynamics model such as (1.1) and
(1.2). Compared with the Lotka–Volterra population model, the Gilpin–Ayala population
model is important and essential due to its wide applications and advantages. In fact, it
is easy to see that the rate of change in the size of each species is a nonlinear function of
the sizes of the interacting species in the Gilpin–Ayala population model. However, the
rate of change in the size of each species is a linear function of the sizes of the interacting
species in the Lotka–Volterra population model. In addition, when the value of all nonlin-
ear measure of interspecific interference is equal to 1, the Gilpin–Ayala population model
is changed into the Lotka–Volterra population model. Therefore, as soon as it was put
forward, the Gilpin–Ayala models have been widely focused and deeply studied by many
scholars. For example, in [3], the author proved that system (1.1) is globally stable while
θi ≥ 1 and θi < 1 (i = 1, 2). In [4], the authors discussed the structure and global stabil-
ity of equilibria for system (1.1) with infinite delay. In addition, Li and Lu [5] studied the
following Gilpin–Ayala population model, more complicated than (1.2):

⎧
⎪⎪⎨

⎪⎪⎩

x′
i(t) = xi(t)[ri(t) –

∑n
j=1 aij(t)xαij

j (t)], i = 1, 2, . . . , m,

x′
i(t) = xi(t)[–ri(t) +

∑m
j=1 aij(t)xαij

j (t) –
∑n

j=m+1 aij(t)xαij
j (t)],

i = m + 1, . . . , n.

(1.3)

They obtained sufficient conditions for the existence of a unique globally attractive peri-
odic solution of system (1.3). For more work on the Gilpin–Ayala population model, one
could refer to [6–16] and the references cited therein.

Motivated by the above discussion, in this paper, we mainly study the two-layer Gilpin–
Ayala predator–prey model with time delays described by

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x′
i(t) = xi(t)[ri(t) –

∑n
k=1 aik(t)xαik

k (t) –
∑m

l=1 bil(t)xβil
n+l(t)

–
∑n

k=1 cik(t)xγik
k (t – τik(t)) –

∑m
l=1 dil(t)xδil

n+l(t – σil(t))],

x′
n+j(t) = xn+j(t)[–r̂j(t) +

∑n
k=1 âkj(t)x

α̂kj
k (t) –

∑m
l=1 b̂lj(t)x

β̂lj
n+l(t)

+
∑n

k=1 ĉkj(t)x
γ̂kj
k (t – τ̂kj(t)) –

∑m
l=1 d̂lj(t)x

δ̂lj
n+l(t – σ̂lj(t))],

(1.4)

where i = 1, 2, . . . , n, j = 1, 2, . . . , m, xi(t) (i = 1, 2, . . . , n) and xn+j(t) (j = 1, 2, . . . , m) stand for
the population density of ith prey and jth predator at time t, respectively. ri (i = 1, 2, . . . , n)
and r̂j(t) (j = 1, 2, . . . , m) present the ith prey natural growth rate and the jth predator
natural death rate at time t, respectively. aik(t), cik(t), b̂lj(t) and d̂lj(t) (i, k = 1, 2, . . . , n;
j, l = 1, 2, . . . , m) stand for the intraspecific competition rate between preys at time t. bil(t)
and dil(t) (i = 1, 2, . . . , n; l = 1, 2, . . . , m) are the predation rate of lth predator on ith prey at
time t. âkj(t) and ĉkj (k = 1, 2, . . . , n; j = 1, 2, . . . , m) are the conversion rate of kth prey to jth
predator at time t. τik(t), σil(t), τ̂kj(t) and σlj(t) (i, k = 1, 2, . . . , n; j, l = 1, 2, . . . , m) are the dis-
crete time delay at time t. The constants αik , βil , γik , δil , α̂kj, β̂lj, γ̂kj and δ̂lj (i, k = 1, 2, . . . , n;
j, l = 1, 2, . . . , m) provide a nonlinear measure of intraspecific interference.
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To the best of our knowledge, few authors have considered the existence and global
exponential stability of positive almost periodic solutions for model (1.4). However, the
previous papers deal with the permanence, periodic solution and their global attractivity of
the Gilpin–Ayala population models. Indeed, the effects of an almost periodically varying
environment are important for evolutionary theory as the selective forces on systems in
a fluctuating environment differ from those in a stable environment. Therefore, we will
establish some sufficient conditions of existence and global exponential stability of positive
almost periodic solutions for model (1.4).

The remain of this paper is organized as follows. In Sect. 2, we give some notations
and lemmas. In Sect. 3, some new sufficient criteria for the existence of positive almost
periodic solutions have been established by means of Mawhin’s continuation theorem of
coincidence degree theory. In Sect. 4, we also obtain the global exponential stability of
the positive almost periodic solution of this system by constructing appropriate Lyapunov
functionals and inequality techniques. As applications, an example and its simulation are
given to illustrate the validity of our main results in Sect. 5. Finally, we conclude with the
main results and their biological meaning in Sect. 6.

2 Preliminaries
In this section, we first recall some basic definitions and lemmas which are used in what
follows.

Definition 2.1 ([17]) Let u(t) : R→ R be continuous in t. u(t) is said to be almost periodic
on R, if, for any ε > 0, the set K(u, ε) = {δ : |u(t + δ) – u(t)| < ε,∀t ∈ R} is relatively dense,
that is, for any ε > 0, it is possible to find a real number l(ε) > 0, for any interval with length
l(ε), there exists a number δ = δ(ε) in this interval such that |u(t + δ) – u(t)| < ε, ∀t ∈ R.

Definition 2.2 A solution (x1(t), . . . , xn(t), xn+1(t), . . . , xn+m(t))T of (1.1) is called an almost
periodic solution if and only if xi(t) and xn+j(t) (i = 1, 2, . . . , n; j = 1, 2, . . . , m) are almost
periodic.

For convenience, we denote AP(R) is the set of all real valued, almost periodic functions
on R. For f ∈ AP(R), define

∧(f ) =
{

λ̃ ∈R : lim
T→∞

1
T

∫ T

0
f (s)e–iλ̃s ds �= 0

}

and

mod(f ) =

{ N∑

i=1

niλ̃i : ni ∈ Z, N ∈ N+, λ̃i ∈ ∧(f )

}

to be the set of Fourier exponents and the module of f , respectively. m(f ) = 1
T
∫ T

0 f (s) ds
be the mean value of f on interval [0, T], where T > 0 is a constant. Clearly, m(f ) depends
on T . m[f ] = limT→∞ 1

T
∫ T

0 f (s) ds. Suppose that f (t,φ) is almost periodic in t, uniformly
with respect to φ ∈ C([–σ , 0],R), let K(f , ε, S) denote the set of ε-almost periods with
respect to S ⊂ C([–σ , 0],R) and l(ε, S) denote the length of inclusion interval.
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Lemma 2.1 ([17]) Suppose that f and g are almost periodic. Then the following statements
are equivalent:

(i) mod(f ) ⊃ mod(g),
(ii) for any sequence {t∗

n}, if limn→∞ f (t + t∗
n) = f (t) for each t ∈R, then there exists a

subsequence {tn} ⊆ {t∗
n} such that limn→∞ g(t + tn) = f (t) for each t ∈R.

Lemma 2.2 ([17]) If u ∈ AP(R), then
∫ t

t–τ
u(s) ds is almost periodic.

Lemma 2.3 ([17]) If u(t) ∈ AP(R), then u(t) is bounded on R.

Lemma 2.4 ([18]) If f (t) ∈ AP(R), then there exists t0 ∈R such that f (t0) = m(f ).

Lemma 2.5 ([18]) Assume that u(t) ∈ AP(R) ∩ C1(R,R), then there exist two point se-
quences {ξk}∞k=1 and {ηk}∞k=1 such that u′(ξk) = u′(ηk) = 0, limk→∞ ξk = ∞, limk→∞ ηk = –∞.

Lemma 2.6 ([18]) Assume that u(t) ∈ AP(R) ∩ C1(R,R), then u(t) falls into one of the
following four cases:

(i) There are ξ ,η ∈ R such that u(ξ ) = supt∈R u(t) and u(η) = inft∈R u(t). In this case,
u′(ξ ) = u′(η) = 0.

(ii) There are no ξ ,η ∈R such that u(ξ ) = supt∈R u(t) and u(η) = inft∈R u(t). In this case,
for all ε > 0, there exist two points ξ ,η ∈R such that u′(ξ ) = u′(η) = 0,
u(ξ ) > supt∈R u(t) – ε and u(η) < inft∈R u(t) + ε.

(iii) There is a ξ ∈R such that u(ξ ) = supt∈R u(t) and there is no η ∈R such that
u(η) = inft∈R u(t). In this case, u′(ξ ) = 0 and for all ε > 0, there exists an η ∈ R such
that u′(η) = 0 and u(η) < inft∈R u(t) + ε.

(vi) There is an η ∈ R such that u(η) = inft∈R u(t) and there is no ξ ∈R such that
u(η) = supt∈R u(t). In this case, u′(η) = 0 and for all ε > 0, there exists an ξ ∈R such
that u′(ξ ) = 0 and u(ξ ) > supt∈R u(t) – ε.

For the sake of convenience, we denote vl = inft∈R v(t), vM = supt∈R v(t), here v(t) is a
continuous almost periodic function on R. For simplicity, we need to introduce some no-
tations as follows:

l+
i =
(

rM
i

al
ii

) 1
αii

, l+
n+j =
(∑n

k=1 âM
kj (l+

k )α̂kj +
∑n

k=1 ĉM
kj (l+

k )γ̂kj

b̂l
jj

) 1
β̂jj ,

l–
i =
( rl

i –
∑n

k=1,k �=i aM
ik (l+

k )αik –
∑m

l=1 bM
il (l+

n+l)βil –
∑n

k=1 cM
ik (l+

k )γik –
∑m

l=1 dM
il (l+

n+l)δil

aM
ii

) 1
αii

,

l–
n+j =
(∑n

k=1 âl
kj(l

–
k )α̂kj +

∑n
k=1 ĉl

kj(l
–
k )γ̂kj – r̂M

j –
∑m

l=1,l �=j b̂M
lj (l+

n+l)
β̂lj –
∑m

l=1 d̂M
lj (l+

n+l)
δ̂lj

b̂M
jj

) 1
β̂jj ,

where i = 1, 2, . . . , n, j = 1, 2, . . . , m.
Throughout this paper, we need the following assumptions.
(H1) ri(t), r̂j(t), aik(t), bil(t), cik(t), dil(t), âkj(t), b̂lj(t), ĉkj(t), d̂lj(t) (i, k = 1, 2, . . . , n; j, l =

1, 2, . . . , m) ∈ C(R,R+) and τik(t), σil(t), τ̂kj(t), σlj(t) (i, k = 1, 2, . . . , n; j, l = 1, 2, . . . ,
m) ∈ C(R,R+

0 ) are all continuous positive almost periodic functions with respect to
the time variable t, where R

– = (–∞, 0), R+ = (0,∞), R+
0 = [0,∞), R = (–∞, +∞).
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(H2) The nonlinear measures of intraspecific interference αik , βil , γik , δil , α̂kj, β̂lj, γ̂kj and
δ̂lj (i, k = 1, 2, . . . , n; j, l = 1, 2, . . . , m) are all the positive constants, that is, αik > 0,
βil > 0, γik > 0, δil > 0, α̂kj > 0, β̂lj > 0, γ̂kj > 0, δ̂lj > 0.

(H3) rl
i >
∑n

k=1,k �=i aM
ik (l+

k )αik +
∑m

l=1 bM
il (l+

n+l)βil +
∑n

k=1 cM
ik (l+

k )γik +
∑m

l=1 dM
il (l+

n+l)δil and
∑n

k=1 âl
kj(l

–
k )α̂kj +

∑n
k=1 ĉl

kj(l
–
k )γ̂kj > r̂M

j +
∑m

l=1,l �=j b̂M
lj (l+

n+l)
β̂lj +
∑m

l=1 d̂M
lj (l+

n+l)
δ̂lj , i =

1, 2, . . . , n; j = 1, 2, . . . , m.

3 Existence of positive almost periodic solution
In this section, by using Mawhin’s continuation theorem, we shall show the existence of
positive almost periodic solutions of (1.1).

Let X and Z be Banach spaces. L : Dom(L) ⊂ X → Z be a linear mapping and N : X ×
[0, 1] → Z is a continuous mapping. The mapping L will be called a Fredholm mapping
of index zero if dim Ker(L) = codim Im(L) < ∞ and Im(L) is closed in Z. If L is a Fredholm
mapping of index zero, then there exist continuous projectors P : X → X and Q : Z → Z
such that Im(P) = Ker(L) and Ker(Q) = Im(L) = Im(I – Q), and X = Ker(L) ⊕ Ker(P), Z =
Im(L)⊕ Im(Q). It follows that L|Dom(L)

⋂
Ker(P) : (I – P)X → Im(L) is invertible and its inverse

is denoted by KP . If � is a bounded open subset of X, the mapping N is called L-compact
on � × [0, 1], if QN(� × [0, 1]) is bounded and Kp(I – Q)N : � × [0, 1] → X is compact,
where I is the identity. Because Im(Q) is isomorphic to Ker(L), there exists an isomorphism
J : Im(Q) → Ker(L).

Let L be a Fredholm linear mapping with index zero and let N be a L-compact mapping
on �. Define mapping F : Dom(L)∩� → Z by F = L–N . If Lx �= Nx for all x ∈ Dom(L)∩∂�,
then by using P, Q, KP , J defined above, the coincidence degree of F in � with respect to
L is defined by

degL(F ,�) = deg
(
I – P –

(
J–1Q + KP(I – Q)

)
N ,�, 0

)
,

where deg(g,�, p) is the Leray–Schauder degree of g at p relative to �.
The Mawhin’s continuous theorem [19], p. 40, is given as follows:

Lemma 3.1 ([19]) Let L be a Fredholm mapping of index zero and N be L-compact on
� × [0, 1]. Assume

(a) for each λ ∈ (0, 1), every solution x of Lx = λN(x,λ) is such that x /∈ ∂� ∩ Dom(L);
(b) QN(x, 0) �= 0 for each x ∈ ∂� ∩ Ker(L);
(c) deg(JQN(x, 0),� ∩ Ker(L), 0) �= 0.

Then Lx = N(x, 1) has at least one solution in � ∩ Dom(L).

By making the substitution xi(t) = eui(t) (i = 1, 2, . . . , n), xn+j(t) = eun+j(t) (j = 1, 2, . . . , m),
then system (1.4) is rewritten in the form of

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u′
i(t) = ri(t) –

∑n
k=1 aik(t)eαik uk (t) –

∑m
l=1 bil(t)eβilun+l(t)

–
∑n

k=1 cik(t)eγik uk (t–τik (t))

–
∑m

l=1 dil(t)eδilun+l(t–σil(t)), i = 1, 2, . . . , n,

u′
n+j(t) = –r̂j(t) +

∑n
k=1 âkj(t)eα̂kjuk (t) –

∑m
l=1 b̂lj(t)eβ̂ljun+l(t)

+
∑n

k=1 ĉkj(t)eγ̂kjuk (t–τ̂kj(t))

–
∑m

l=1 d̂lj(t)eδ̂ljun+l(t–σ̂lj(t)), j = 1, 2, . . . , m.

(3.1)
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Let X = Z = V1 ⊕ V2, where

V1 =
{

w(t) =
(
w1(t), w2(t), . . . , wn+m(t)

)T : wk(t) ∈ AP(R), mod
(
wk(t)
)⊂ mod

(
Fk(t)
)
,

∀λ̃k ∈ ∧(wk(t)
)

satisfies |λ̃k| > β , k = 1, 2, . . . , n + m
}

,

V2 =
{

w(t) ≡ (c1, c2, . . . , cn+m) ∈R
n+m},

Fi(t) = ri(t) –
n∑

k=1

aik(t)eαikφk (0) –
m∑

l=1

bil(t)eβilφn+l(0) –
n∑

k=1

cik(t)eγikφk (–τik (t))

–
m∑

l=1

dil(t)eδilφn+l(–σil(t)), i = 1, 2, . . . , n,

Fn+j(t) = –r̂j(t) +
n∑

k=1

âkj(t)eα̂kjφk (0) –
m∑

l=1

b̂lj(t)eβ̂ljφn+l(0) +
n∑

k=1

ĉkj(t)eγ̂kjφk (–τ̂kj(t))

–
m∑

l=1

d̂lj(t)eδ̂ljφn+l(–σ̂lj(t)), j = 1, 2, . . . , m,

in which φk ∈ C([–σ , 0],R), k = 1, 2, . . . , n + m, σ = max1≤i,k≤n,1≤j,l≤m supt∈R{τik(t),σil(t),
τ̂ik(t), σ̂il(t)}, and β is a given constant. Define the norm

‖w‖ = max
1≤k≤n+m

sup
t∈R

∣
∣wk(t)
∣
∣, ∀w = (w1, w2, . . . , wn+m)T ∈ X = Z. (3.2)

Lemma 3.2 X = Z is a Banach space equipped with the norm ‖ · ‖ defined by (3.2).

Proof Assume that {w{k} = (w{k}
1 , w{k}

2 , . . . , w{k}
n+m)T } ⊂ V1 converge to w = (w1, w2, . . . , wn+m)T ,

that is, w{k}
h → wh, as k → ∞, h = 1, 2, . . . , n + m. Then it is easy to show that wh ∈ AP(R)

and mod(wh) ∈ mod(Fh). For any |̃λh| ≤ β , we have

lim
T→∞

1
T

∫ T

0
w{k}

h (t)e–ĩλht dt = 0, h = 1, 2, . . . , n + m,

therefore,

lim
T→∞

1
T

∫ T

0
w{k}

h (t)e–ĩλht dt = 0, h = 1, 2, . . . , n + m,

which implies w ∈ V1. Then it is not difficult to see that V1 is a Banach space equipped
with the norm ‖ · ‖. Thus, we can easily verify that X and Z are Banach spaces equipped
with the norm ‖ · ‖. The proof is complete. �

Lemma 3.3 Let L : X → Z, Lw = dw(t)
dt , then L is a Fredholm mapping of index zero.

Proof Clearly, L is a linear operator and Ker(L) = V2. We claim that Im(L) = V1. In fact,
we suppose that z(t) = (z1(t), z2(t), . . . , zn+m(t))T ∈ Im(L) ⊂ Z, then there exist z{1}(t) =
(z{1}

1 (t), z{1}
2 (t), . . . , z{1}

n+m(t))T ∈ V1 and constant vector z{2} = {z{2}
1 (t), z{2}

2 (t), . . . , z{2}
n+m(t)} ∈ V2

such that z(t) = z{1}(t) + z{2}, that is, zh(t) = z{1}
h (t) + z{2}

h , h = 1, 2, . . . , n + m. From Lemma 2.2
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and the definitions of zi(t) and z{1}
i (t), we know that

∫ t
t–σ

zh(s) ds and
∫ t

t–σ
z{1}

h (s) ds are al-
most periodic functions. So we have z{2}

h ≡ 0, h = 1, 2, . . . , n + m, then z{2} ≡ (0, 0, . . . , 0)T ,
which implies z(t) ∈ V1, that is, Im(L) ⊂ V1.

On the other hand, if w(t) = (w1(t), w2(t), . . . , wn+m(t))T ∈ V1 \ {(0, 0, . . . , 0)T }, then we
have
∫ t

0 wh(s) ds ∈ AP(R), h = 1, 2, . . . , n + m. If λ̃h �= 0, then we obtain

lim
T→∞

1
T

∫ T

0

(∫ t

0
wh(s) ds

)

e–ĩλjt dt =
1

ĩλh
lim

T→∞
1
T

∫ T

0
wh(t)e–ĩλht dt,

h = 1, 2, . . . , n + m. It follows that

∧
[∫ t

0
wh(s) ds – m

(∫ t

0
wh(s) ds

)]

= ∧(wh(t)
)
, h = 1, 2, . . . , n + m,

hence
∫ t

0
w(s) ds – m

(∫ t

0
w(s) ds

)

∈ V1 ⊂ X.

Note that
∫ t

0 w(s) ds – m(
∫ t

0 w(s) ds) is the primitive of w(t) in X, we have w(t) ∈ Im(L), that
is, V1 ⊂ Im(L). Therefore, Im(L) = V1.

Furthermore, one easily shows that Im(L) is closed in Z and

dim ker(L) = n + m = codim Im(L).

Therefore, L is a Fredholm mapping of index zero. The proof is complete. �

Lemma 3.4 Let N : X × (0, 1) → Z, N(u(t),λ) = (Nu
1 , Nu

2 , . . . , Nu
n+m)T , where

Nu
i = ri(t) – aii(t)eαiiui(t) – λ

n∑

k=1,k �=i

aik(t)eαik uk (t) – λ

m∑

l=1

bil(t)eβilun+l(t)

– λ

n∑

k=1

cik(t)eγik uk (t–τik (t)) – λ

m∑

l=1

dil(t)eδilun+l(t–σil(t)), i = 1, 2, . . . , n,

and

Nu
n+j = – r̂j(t) – b̂jj(t)eβ̂jjun+j(t) +

n∑

k=1

âkj(t)eα̂kjuk (t) – λ

m∑

l=1,l �=j

b̂lj(t)eβ̂ljun+l(t)

+
n∑

k=1

ĉkj(t)eγ̂kjuk (t–τ̂kj(t)) – λ

m∑

l=1

d̂lj(t)eδ̂ljun+l(t–σ̂lj(t)), j = 1, 2, . . . , m.

Define the projectors

P : X → Z, Pu =
(
m(u1), m(u2), . . . , m(un+m)

)T ,

Q : Z → Z, Qz =
(
m[z1], m[z2], . . . , m[zn+m]

)T .

Then N is L-compact on �, where � is an open bounded subset of X.
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Proof Obviously, P and Q are continuous projectors such that

Im(P) = Ker(L), Im(L) = Ker(Q).

It is clear that (I – Q)V2 = {(0, 0, . . . , 0)}, (I – Q)V1 = V1. Hence

Im(I – Q) = V1 = Im(L).

In view of

Im(P) = Ker(L), Im(L) = Ker(Q) = Im(I – Q),

we find that the inverse KP : Im(L) → Ker(P) ∩ Dom(L) of LP exists and is given by

KP(z) =
∫ t

0
z(s) ds – m

[∫ t

0
z(s) ds
]

.

Thus,

QNu =
(
m
[
Hu

1
]
, m
[
Hu

2
]
, . . . , m

[
Hu

n+m
])T ,

KP(I – Q)Nu = (f (u1) – Q(f (u1)), f (u2) – Q(f (u2)), . . . , f (un+m) – Q(f (un+m)))T ,

where

f (uh) =
∫ t

0

(
Hu

h – m
[
Hu

h
])

ds, h = 1, 2, . . . , n + m.

Clearly, QN and (I – Q)N are continuous. Now we show that KP is also continu-
ous. By assumptions, for any 0 < ε < 1, let lh(εh, S) be the length of the inclusion in-
terval of Kh(Fh, εh, S), h = 1, 2, . . . , n + m. Suppose that {zk(t)} ⊂ Im(L) = V1 and zk(t) =
(zk

1(t), zk
2(t), . . . , zk

n+m(t))T uniformly converges to z(t) = (z1(t), z2(t), . . . , zn+m(t))T , that is
zk

h → zh, as k → ∞, h = 1, 2, . . . , n + m. Because of
∫ t

0 zk(s) ds ∈ Z, k = 1, 2, . . . , there ex-
ists σh (0 < σh < εh) such that Kh(Fh,σh, S) ⊂ Kh(

∫ t
0 zk

h(s) ds,σh), h = 1, 2, . . . , n + m. Let
lh(σh, S) be the length of the inclusion interval of Kh(Fh,σh, S), h = 1, 2, . . . , n + m and
lh = max{lh(εh, S), lh(σh, S)}, h = 1, 2, . . . , n + m. It is easy to see that lh is the length of
the inclusion interval of Kh(Fh,σh, S) and Kh(Fh, εh, S), h = 1, 2, . . . , n + m. Hence, for any
t /∈ [0, lh], there exists ξt ∈ Kh(Fh,σh, S) ⊂ Kh(

∫ t
0 zk

h(s) ds,σh, S) such that t + ξt ∈ [0, lh],
h = 1, 2, . . . , n + m. So, by the definition of almost periodic function we have

∥
∥
∥
∥

∫ t

0
zk(s) ds

∥
∥
∥
∥

= max
1≤h≤n+m

sup
t∈R

∣
∣
∣
∣

∫ t

0
zk

h(s) ds
∣
∣
∣
∣

≤ max
1≤h≤n+m

sup
t∈[0,lh]

∣
∣
∣
∣

∫ t

0
zk

h(s) ds
∣
∣
∣
∣

+ max
1≤h≤n+m

sup
t /∈[0,lh]

∣
∣
∣
∣

∫ t

0
zk

h(s) ds –
∫ t+ξl

0
zk

h(s) ds +
∫ t+ξl

0
zk

h(s) ds
∣
∣
∣
∣
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≤ 2 max
1≤h≤n+m

sup
t∈[0,lh]

∣
∣
∣
∣

∫ t

0
zk

h(s) ds
∣
∣
∣
∣

+ max
1≤h≤n+m

sup
t /∈[0,lh]

∣
∣
∣
∣

∫ t

0
zk

h(s) ds –
∫ t+ξl

0
zk

h(s) ds
∣
∣
∣
∣

≤ 2 max
1≤h≤n+m

∣
∣
∣
∣

∫ lh

0
zk

h(s) ds
∣
∣
∣
∣ + max

1≤h≤n+m
εh. (3.3)

From (3.3), we conclude that
∫ t

0 z(s) ds is continuous, where z(t) = (z1(t), z2(t),
. . . , zn+m(t))T ∈ Im(L). Consequently, KP and KP(I – Q)Ny are continuous. Meanwhile, we
also have

∫ t
0 z(s) ds and KP(I – P)Nu are uniformly bounded in �. Further, it is not difficult

to verify that QN(�) is bounded and KP(I – Q)Nu is equicontinuous in �. By the Arzela–
Ascoli theorem, we have immediately conclude that KP(I – Q)N(�) is compact. Thus N is
L-compact on �. The proof is complete. �

Theorem 3.1 Assume that (H1)–(H3) hold. Then system (1.4) has at least one positive
almost periodic solution.

Proof In order to use Lemma 3.1 establishing the existence of positive almost periodic
solutions of (1.1), we set Banach space X and Z the same as those in Lemma 3.2 and set
mappings L, N , P, Q the same as those in Lemma 3.3 and Lemma 3.4, respectively. Then
we find that L is a Fredholm mapping of index zero and N is a continuous operator which
is L-compact on �̄.

Now we are in the position of searching for an appropriate open, bounded subset � for
the application of the continuation theorem. Corresponding to the operator equation

Lu = λN(u,λ), λ ∈ (0, 1),

we obtain

u′
i(t) = λ

[

ri(t) – aii(t)eαiiui(t) – λ

n∑

k=1,k �=i

aik(t)eαik uk (t) – λ

m∑

l=1

bil(t)eβilun+l(t)

– λ

n∑

k=1

cik(t)eγik uk (t–τik (t)) – λ

m∑

l=1

dil(t)eδilun+l(t–σil(t))

]

, i = 1, 2, . . . , n, (3.4)

and

u′
n+j(t) = λ

[

–r̂j(t) – b̂jj(t)eβ̂jjun+j(t) +
n∑

k=1

âkj(t)eα̂kjuk (t) – λ

m∑

l=1,l �=j

b̂lj(t)eβ̂ljun+l(t)

+
n∑

k=1

ĉkj(t)eγ̂kjuk (t–τ̂kj(t)) – λ

m∑

l=1

d̂lj(t)eδ̂ljun+l(t–σ̂lj(t))

]

, j = 1, 2, . . . , m. (3.5)

Assume that u ∈ X is an almost periodic solution of (3.4)–(3.5), for some λ ∈ (0, 1). Then,
by Lemma 2.6, for any ε > 0, there exist ξh,ηh ∈ R such that uh(ξh) > uM

h – ε, uh(ηh) < ul
h + ε

and u′
h(ξh) = u′

h(ηh) = 0, h = 1, 2, . . . , n + m. From this and (3.4)–(3.5), for i = 1, 2, . . . , n, j =
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1, 2, . . . , m, we have

ri(ξi) – aii(ξi)eαiiui(ξi) – λ

n∑

k=1,k �=i

aik(ξi)eαik uk (ξi) – λ

m∑

l=1

bil(ξi)eβilun+l(ξi)

– λ

n∑

k=1

cik(ξi)eγik uk (ξi–τik (ξi)) – λ

m∑

l=1

dil(ξi)eδilun+l(ξi–σil(ξi)) = 0, (3.6)

–r̂j(ξn+j) – b̂jj(ξn+j)eβ̂jjun+j(ξn+j) +
n∑

k=1

âkj(ξn+j)eα̂kjuk (ξn+j) – λ

m∑

l=1,l �=j

b̂lj(ξn+j)eβ̂ljun+l(ξn+j)

+
n∑

k=1

ĉkj(ξn+j)eγ̂kjuk (ξn+j–τ̂kj(ξn+j)) – λ

m∑

l=1

d̂lj(ξn+j)eδ̂ljun+l(ξn+j–σ̂lj(ξn+j)) = 0, (3.7)

ri(ηi) – aii(ηi)eαiiui(ηi) – λ

n∑

k=1,k �=i

aik(ηi)eαik uk (ηi) – λ

m∑

l=1

bil(ηi)eβilun+l(ηi)

– λ

n∑

k=1

cik(ηi)eγik uk (ηi–τik (ηi)) – λ

m∑

l=1

dil(ηi)eδilun+l(ηi–σil(ηi)) = 0, (3.8)

and

–r̂j(ηn+j) – b̂jj(ηn+j)eβ̂jjun+j(ηn+j) +
n∑

k=1

âkj(ηn+j)eα̂kjuk (ηn+j) – λ

m∑

l=1,l �=j

b̂lj(ηn+j)eβ̂ljun+l(ηn+j)

+
n∑

k=1

ĉkj(ηn+j)eγ̂kjuk (ηn+j–τ̂kj(ηn+j)) – λ

m∑

l=1

d̂lj(ηn+j)eδ̂ljun+l(ηn+j–σ̂lj(ηn+j)) = 0. (3.9)

On the one hand, according to (3.6), we have

al
iie

αiiui(ξi) ≤ aii(ξi)eαiiui(ξi)

< aii(ξi)eαiiui(ξi) + λ

n∑

k=1,k �=i

aik(ξi)eαik uk (ξi) + λ

m∑

l=1

bil(ξi)eβilun+l(ξi)

+ λ

n∑

k=1

cik(ξi)eγik uk (ξi–τik (ξi)) + λ

m∑

l=1

dil(ξi)eδilun+l(ξi–σil(ξi))

= ri(ξi) ≤ rM
i , (3.10)

which implies that

ui(ξi) < ln l+
i , i = 1, 2, . . . , n. (3.11)

By means of (3.7), we obtain

b̂l
jje

β̂jjun+j(ξn+j) ≤ b̂jj(ξn+j)eβ̂jjun+j(ξn+j)

< r̂j(ξn+j) + b̂jj(ξn+j)eβ̂jjun+j(ξn+j)

+ λ

m∑

l=1,l �=j

b̂lj(ξn+j)eβ̂ljun+l(ξn+j) + λ

m∑

l=1

d̂lj(ξn+j)eδ̂ljun+l(ξn+j–σ̂lj(ξn+j))
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=
n∑

k=1

âkj(ξn+j)eα̂kjuk (ξn+j) +
n∑

k=1

ĉkj(ξn+j)eγ̂kjuk (ξn+j–τ̂kj(ξn+j))

≤
n∑

k=1

âM
kj
(
l+
k
)α̂kj +

n∑

k=1

ĉM
kj
(
l+
k
)γ̂kj , (3.12)

which indicates that

un+j(ξn+j) < ln l+
n+j, j = 1, 2, . . . , m. (3.13)

Similar to (3.10)–(3.13), it follows from (3.8) and (3.9) that

ui(ηi) < ln l+
i , i = 1, 2, . . . , n, (3.14)

and

un+j(ηn+j) < ln l+
n+j, j = 1, 2, . . . , m. (3.15)

On the other hand, in view of (3.8), we obtain

rl
i ≤ ri(ηi) = aii(ηi)eαiiui(ηi) + λ

n∑

k=1,k �=i

aik(ηi)eαik uk (ηi) + λ

m∑

l=1

bil(ηi)eβilun+l(ηi)

+ λ

n∑

k=1

cik(ηi)eγik uk (ηi–τik (ηi)) + λ

m∑

l=1

dil(ηi)eδilun+l(ηi–σil(ηi))

≤ aM
ii eαiiui(ηi) +

n∑

k=1,k �=i

aM
ik
(
l+
k
)αik +

m∑

l=1

bM
il
(
l+
n+l
)βil

+
n∑

k=1

cM
ik
(
l+
k
)γik +

m∑

l=1

dM
il
(
l+
n+l
)δil , (3.16)

which implies that

ui(ηi) ≥ ln l–
i , i = 1, 2, . . . , n. (3.17)

According to (3.9), we get

n∑

k=1

âl
kj
(
l–
k
)α̂kj +

n∑

k=1

ĉl
kj
(
l–
k
)γ̂kj

≤
n∑

k=1

âkj(ηn+j)eα̂kjuk (ηn+j) +
n∑

k=1

ĉkj(ηn+j)eγ̂kjuk (ηn+j–τ̂kj(ηn+j))

= r̂j(ηn+j) + b̂jj(ηn+j)eβ̂jjun+j(ηn+j) + λ

m∑

l=1,l �=j

b̂lj(ηn+j)eβ̂ljun+l(ηn+j)

+ λ

m∑

l=1

d̂lj(ηn+j)eδ̂ljun+l(ηn+j–σ̂lj(ηn+j))

≤ r̂M
j + b̂M

jj eβ̂jjun+j(ηn+j) +
m∑

l=1,l �=j

b̂M
lj
(
l+
n+l
)β̂lj +

m∑

l=1

d̂M
lj
(
l+
n+l
)δ̂lj , (3.18)
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which implies that

un+j(ηn+j) ≥ ln l–
n+j, j = 1, 2, . . . , m. (3.19)

Similar to (3.16)–(3.19), it follows from (3.6) and (3.7) that

ui(ηi) ≥ ln l–
i , i = 1, 2, . . . , n (3.20)

and

un+j(ηn+j) ≥ ln l–
n+j, j = 1, 2, . . . , m. (3.21)

By (3.11), (3.13)–(3.15), (3.17), (3.19)–(3.21) and noticing that 0 < l–
h < l+

h (h = 1, 2, . . . , n +
m), we have, for all t ∈R,

ln l–
h ≤ uh(t) < ln l+

h , h = 1, 2, . . . , n + m. (3.22)

Denote the open bounded set � ⊂ X by � = I1 × I2 × · · · × In+m, where Ih = (ln l–
h –

θh), ln l+
h + θh), θh ∈ (0,∞) (h = 1, 2, . . . , n + m). Clearly, l+

h , l–
h and θh (h = 1, 2, . . . , n + m) are

independent of λ. Thus � satisfies the requirement (a) in Lemma 3.1.
Now we show that (b) of Lemma 3.1 holds, namely, we prove when u ∈ ∂� ∩ Ker(L) =

∂� ∩ R
n+m, QN(u, 0) �= (0, 0, . . . , 0)T . If it is not true, then when u ∈ ∂� ∩ Ker(L) = ∂� ∩

R
n+m, constant vector u = (u1, u2, . . . , un+m)T with u ∈ ∂� satisfies

m

(

ri(t) –
n∑

k=1

aik(t)eαik uk –
m∑

l=1

bil(t)eβilun+l –
n∑

k=1

cik(t)eγik uk –
m∑

l=1

dil(t)eδilun+l

)

= 0,

m

(

–r̂j(t) +
n∑

k=1

âkj(t)eα̂kjuk –
m∑

l=1

b̂lj(t)eβ̂ljun+l +
n∑

k=1

ĉkj(t)eγ̂kjuk –
m∑

l=1

d̂lj(t)eδ̂ljun+l

)

= 0.

In view of the mean value theorem of calculous, there exist n + m points ti, t̂j (i = 1, 2, . . . , n;
j = 1, 2, . . . , m) such that

ri(ti) –
n∑

k=1

aik(ti)eαik uk –
m∑

l=1

bil(ti)eβilun+l –
n∑

k=1

cik(ti)eγik uk –
m∑

l=1

dil(ti)eδilun+l

= 0, (3.23)

–r̂j(t̂j) +
n∑

k=1

âkj(t̂j)eα̂kjuk –
m∑

l=1

b̂lj(t̂j)eβ̂ljun+l +
n∑

k=1

ĉkj(t̂j)eγ̂kjuk –
m∑

l=1

d̂lj(t̂j)eδ̂ljun+l

= 0. (3.24)

By the analogous argument of (3.10)–(3.21), it follows from (3.23)–(3.24) that ln l–
h – θh <

uh < ln l+
h + θh (h = 1, 2, . . . , n + m), that is, u ∈ � ∩ R

n+m. This contradicts the fact that
u ∈ ∂� ∩R

n+m. So (b) of Lemma 3.1 holds.
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Next we show that (c) in Lemma 3.1 holds. Consider the following algebraic equation:

ri(t) – aii(t)eαiiui –
n∑

k=1,k �=i

aik(t)
(
l+
k
)αik –

m∑

l=1

bil(t)
(
l+
n+j
)βil

–
n∑

k=1

cik(t)
(
l+
k
)γik –

m∑

l=1

dil(t)
(
l+
n+j
)δil = 0, i = 1, 2, . . . , n, (3.25)

and

–r̂j(t) – b̂jj(t)eβ̂jjun+j +
n∑

k=1

âkj(t)
(
l–
k
)α̂kj – λ

m∑

l=1,l �=j

b̂lj(t)
(
l+
n+l
)β̂lj

+
n∑

k=1

ĉkj(t)
(
l–
k
)γ̂kj – λ

m∑

l=1

d̂lj(t)
(
l+
n+l
)δ̂lj = 0, j = 1, 2, . . . , m. (3.26)

Obviously, (3.25)–(3.26) has an unique solution (u∗
1, u∗

2, . . . , u∗
n+m). It is easy to verify that

ln l–
h – θh < u∗

h < ln l+
h + θh (h = 1, 2, . . . , n + m). Therefore, (u∗

1, u∗
2, . . . , u∗

n+m) ∈ �. Since
Ker(L) = Im(Q), we can take J = I . A direct computation gives

deg
{

JQN(u, 0),� ∩ Ker(L), (0, 0, . . . , 0)T}

= sign

[ n∏

i=1

m∏

j=1

(
–aii(t)u∗

i
)(

–b̂jj(t)u∗
n+j
)
]

= ±1.

So far, we have proved that � satisfies all the assumptions in Lemma 3.1. Hence, system
(3.1) has at least an almost periodic solution (u1(t), u2(t), . . . , un+m(t)). Therefore, system
(1.4) has at least one positive almost periodic solution (eu1(t), eu2(t), . . . , eun+m(t)). The proof
is complete. �

4 Global exponential stability
The aim of this section is to derive the sufficient condition of a unique globally exponen-
tially stable positive almost periodic solution of (1.4).

Under the assumption of Theorem 3.1, we know that system (1.4) has at least one
positive almost periodic solution (x1(t), x2(t), . . . , xn+m(t)) satisfying l–

h ≤ xh(t) < l+
h (h =

1, 2, . . . , n + m). Now let ρ be a positive constant satisfying 0 < ρ < min1≤h≤n+m{l–
h }. We

assume further that
(H4) τik(t), σil(t), τ̂kj(t), σlj(t)(i, k = 1, 2, . . . , n; j, l = 1, 2, . . . , m) ∈ C1(R,R+

0 ) satisfy 0 ≤
τ ′

ik(t), σ ′
il(t), τ̂ ′

kj(t) σ ′
lj(t) < 1 (i, k = 1, 2, . . . , n; j, l = 1, 2, . . . , m).

(H5) αii ≥ max1≤k≤n,1≤l≤m{αik ,βil,γik , δil}, β̂jj ≥ max1≤k≤n,1≤l≤m{α̂kj, β̂lj, γ̂kj, δ̂lj}, i = 1,
2, . . . , n, j = 1, 2, . . . , m.

(H6) –αiiρal
ii +
∑n

k=1,k �=i αkkρ
αki
αkk aM

ki +
∑m

l=1 β̂llρ

α̂li
β̂ll âM

li +
∑n

k=1 αkkρ
γki
αkk cM

ki +
∑m

l=1 β̂llρ

γ̂li
β̂ll ĉM

li <

0 and –β̂jjρb̂l
jj +
∑n

k=1 αkkρ
βjk
αkk bM

jk +
∑m

l=1,l �=j β̂llρ

β̂jl
β̂ll b̂M

jl +
∑n

k=1 αkkρ
δjk
αkk dM

jk

+
∑m

l=1 β̂llρ

δ̂jl
β̂ll d̂M

jl < 0, i = 1, 2, . . . , n; j = 1, 2, . . . , m.
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Making the change of variable yi(t) = 1
ρ

xαii
i (t) (i = 1, 2, . . . , n), yn+j(t) = 1

ρ
xβ̂jj

n+j(t) (j =
1, 2, . . . , m), then system (1.4) is transformed into
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y′
i(t) = αiiyi(t)[ri(t) –

∑n
k=1 ρ

αik
αii aik(t)y

αik
αii

k (t) –
∑m

l=1 ρ
βil
αii bil(t)y

βil
αii
n+l(t)

–
∑n

k=1 ρ
γik
αii cik(t)y

γik
αii

k (t – τik(t)) –
∑m

l=1 ρ
δil
αii dil(t)y

δil
αii
n+l(t – σil(t))],

y′
n+j(t) = β̂jjyn+j(t)[–r̂j(t) +

∑n
k=1 ρ

α̂kj
β̂jj âkj(t)y

α̂kj
β̂jj

k (t) –
∑m

l=1 ρ

β̂lj
β̂jj b̂lj(t)y

β̂lj
β̂jj
n+l(t)

+
∑n

k=1 ρ

γ̂kj
β̂jj ĉkj(t)y

γ̂kj
β̂jj

k (t – τ̂kj(t)) –
∑m

l=1 ρ

δ̂lj
β̂jj d̂lj(t)y

δ̂lj
β̂jj
n+l(t – σ̂lj(t))].

(4.1)

Obviously, y(t) = (y1(t), . . . , yn(t), yn+1(t), . . . , yn+m(t))T is the positive almost periodic solu-

tion of system (4.1), where yi(t) = 1
ρ

xαii
i (t) (i = 1, 2, . . . , n), yn+j(t) = 1

ρ
xβ̂jj

n+j(t) (j = 1, 2, . . . , m).
From Theorem 3.1, we know that l–

h ≤ xh(t) < l+
h (h = 1, 2, . . . , n + m). Therefore,

1 <
1
ρ

(
l–
i
)αii ≤ yi(t) <

1
ρ

(
l+
i
)αii , 1 <

1
ρ

(
l–
n+j
)β̂jj ≤ yn+j(t) <

1
ρ

(
l+
n+j
)β̂jj . (4.2)

Theorem 4.1 Assume that (H1)–(H6) hold. Then for system (1.4) there exists a unique
positive almost periodic solution which is globally exponentially stable.

Proof According to conditions (H1)–(H3), it follows from Theorem 3.1 that system
(4.1) has a positive almost periodic solution y(t) = (y1(t), y2(t), . . . , yn+m(t))T . Let y(t) =
(y1(t), y2(t), . . . , yn+m(t))T be any positive solution of system (4.1). Now we construct a Lya-
punov functional V (t) = V1(t) + V2(t), where

V1(t) =
n∑

i=1

∣
∣ln yi(t) – ln yi(t)

∣
∣ +

m∑

j=1

∣
∣ln yn+j(t) – ln yn+j(t)

∣
∣ (4.3)

and

V2(t) =
n∑

i=1

n∑

k=1

αiiρ
γik
αii cM

ik

∫ t

t–τik (t)

∣
∣y

γik
αii

k (s) – y
γik
αii

k (s)
∣
∣ds

+
n∑

i=1

m∑

l=1

αiiρ
δil
αii dM

il

∫ t

t–σil(t)

∣
∣y

δil
αii
n+l(s) – y

δil
αii
n+l(s)
∣
∣ds

+
m∑

j=1

n∑

k=1

β̂jjρ

γ̂kj
β̂jj ĉM

kj

∫ t

t–τ̂kj(t)

∣
∣y

γ̂kj
β̂jj

k (s) – y

γ̂kj
β̂jj

k (s)
∣
∣ds

+
m∑

j=1

m∑

l=1

β̂jjρ

δ̂lj
β̂jj d̂M

lj

∫ t

t–σ̂lj(t)

∣
∣y

δ̂lj
β̂jj
n+l(s) – y

δ̂lj
β̂jj
n+l(s)
∣
∣ds. (4.4)

From the definition of V (t), we easily see that V (0) < +∞ and V (t) ≥ V1(t). Noticing that
sgn(ln yh(t) – ln yh(t)) = sgn(yh(t) – yh(t)) (h = 1, 2, . . . , n + m), we have

D+(∣∣ln yi(t) – ln yi(t)
∣
∣
)

= sgn
(
ln yi(t) – ln yi(t)

)
(

y′
i(t)

yi(t)
–

y′
i(t)

yi(t)

)
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= sgn
(
yi(t) – yi(t)

)
(

y′
i(t)

yi(t)
–

y′
i(t)

yi(t)

)

= sgn
(
yi(t) – yi(t)

)
[

–αiiρaii(t)
(
yi(t) – yi(t)

)

–
n∑

k=1,k �=i

αiiρ
αik
αii aik(t)

(
y

αik
αii

k (t) – y
αik
αii

k (t)
)

–
m∑

l=1

αiiρ
βil
αii bil(t)

(
y

βil
αii
n+l(t) – y

βil
αii
n+l(t)
)

–
n∑

k=1

αiiρ
γik
αii cik(t)

(
y

γik
αii

k
(
t – τik(t)

)
– y

γik
αii

k
(
t – τik(t)

))

–
m∑

l=1

αiiρ
δil
αii dil(t)

(
y

δil
αii
n+l
(
t – σil(t)

)
– y

δil
αii
n+l
(
t – σil(t)

))
]

≤ –αiiρal
ii
∣
∣yi(t) – yi(t)

∣
∣ +

n∑

k=1,k �=i

αiiρ
αik
αii aM

ik
∣
∣y

αik
αii

k (t) – y
αik
αii

k (t)
∣
∣

+
m∑

l=1

αiiρ
βil
αii bM

il
∣
∣y

βil
αii
n+l(t) – y

βil
αii
n+l(t)
∣
∣ +

n∑

k=1

αiiρ
γik
αii cM

ik
∣
∣y

γik
αii

k
(
t – τik(t)

)
– y

γik
αii

k
(
t – τik(t)

)∣
∣

+
m∑

l=1

αiiρ
δil
αii dM

il
∣
∣y

δil
αii
n+l
(
t – σil(t)

)
– y

δil
αii
n+l
(
t – σil(t)

)∣
∣, i = 1, 2, . . . , n, (4.5)

and

D+(∣∣ln yn+j(t) – ln yn+j(t)
∣
∣
)

= sgn
(
ln yn+j(t) – ln yn+j(t)

)
(y′

n+j(t)
yn+j(t)

–
y′

n+j(t)
yn+j(t)

)

= sgn
(
yn+j(t) – yn+j(t)

)
(y′

n+j(t)
yn+j(t)

–
y′

n+j(t)
yn+j(t)

)

= sgn
(
yn+j(t) – yn+j(t)

)

×
[

–β̂jjρb̂jj(t)
(
yn+j(t) – yn+j(t)

)
+

n∑

k=1

β̂jjρ

α̂kj
β̂jj âkj(t)

(
y

α̂kj
β̂jj

k (t) – y

α̂kj
β̂jj

k (t)
)

–
m∑

l=1,l �=j

β̂jjρ

β̂lj
β̂jj b̂lj(t)

(
y

β̂lj
β̂jj
n+l(t) – y

β̂lj
β̂jj
n+l(t)
)

+
n∑

k=1

β̂jjρ

γ̂kj
β̂jj ĉkj(t)

(
y

γ̂kj
β̂jj

k
(
t – τ̂kj(t)

)
– y

γ̂kj
β̂jj

k
(
t – τ̂kj(t)

))

–
m∑

l=1

β̂jjρ

δ̂lj
β̂jj d̂lj(t)

(
y

δ̂lj
β̂jj
n+l
(
t – σ̂lj(t)

)
– y

δ̂lj
β̂jj
n+l
(
t – σ̂lj(t)

))
]

≤ –β̂jjρb̂l
jj
∣
∣yn+j(t) – yn+j(t)

∣
∣ +

n∑

k=1

β̂jjρ

α̂kj
β̂jj âM

kj
∣
∣y

α̂kj
β̂jj

k (t) – y

α̂kj
β̂jj

k (t)
∣
∣
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+
m∑

l=1,l �=j

β̂jjρ

β̂lj
β̂jj b̂M

lj
∣
∣y

β̂lj
β̂jj
n+l(t) – y

β̂lj
β̂jj
n+l(t)
∣
∣

+
n∑

k=1

β̂jjρ

γ̂kj
β̂jj ĉM

kj
∣
∣y

γ̂kj
β̂jj

k
(
t – τ̂kj(t)

)
– y

γ̂kj
β̂jj

k
(
t – τ̂kj(t)

)∣
∣

+
m∑

l=1

β̂jjρ

δ̂lj
β̂jj d̂M

lj
∣
∣y

δ̂lj
β̂jj
n+l
(
t – σ̂lj(t)

)
– y

δ̂lj
β̂jj
n+l
(
t – σ̂lj(t)

)∣
∣, j = 1, 2, . . . , m. (4.6)

By the condition (H4), we obtain

(∫ t

t–τik (t)

∣
∣y

γik
αii

k (s) – y
γik
αii

k (s)
∣
∣ds
)′

=
∣
∣y

γik
αii

k (t) – y
γik
αii

k (t)
∣
∣ –
∣
∣y

γik
αii

k
(
t – τik(t)

)
– y

γik
αii

k
(
t – τik(t)

)∣
∣
(
1 – τ ′

ik(t)
)

≤ ∣∣y
γik
αii

k (t) – y
γik
αii

k (t)
∣
∣ –
∣
∣y

γik
αii

k
(
t – τik(t)

)
– y

γik
αii

k
(
t – τik(t)

)∣
∣, (4.7)

(∫ t

t–σil(t)

∣
∣y

δil
αii
n+l(s) – y

δil
αii
n+l(s)
∣
∣ds
)′

=
∣
∣y

δil
αii
n+l(t) – y

δil
αii
n+l(t)
∣
∣ –
∣
∣y

δil
αii
n+l
(
t – σil(t)

)
– y

δil
αii
n+l
(
t – σil(t)

)∣
∣
(
1 – σ ′

il(t)
)

≤ ∣∣y
δil
αii
n+l(t) – y

δil
αii
n+l(t)
∣
∣ –
∣
∣y

δil
αii
n+l
(
t – σil(t)

)
– y

δil
αii
n+l
(
t – σil(t)

)∣
∣, (4.8)

(∫ t

t–τ̂kj(t)

∣
∣y

γ̂kj
β̂jj

k (s) – y

γ̂kj
β̂jj

k (s)
∣
∣ds
)′

=
∣
∣y

γ̂kj
β̂jj

k (t) – y

γ̂kj
β̂jj

k (t)
∣
∣ –
∣
∣y

γ̂kj
β̂jj

k
(
t – τ̂kj(t)

)
– y

γ̂kj
β̂jj

k
(
t – τ̂kj(t)

)∣
∣
(
1 – τ̂ ′

kj(t)
)

≤ ∣∣y
γ̂kj
β̂jj

k (t) – y

γ̂kj
β̂jj

k (t)
∣
∣ –
∣
∣y

γ̂kj
β̂jj

k
(
t – τ̂kj(t)

)
– y

γ̂kj
β̂jj

k
(
t – τ̂kj(t)

)∣
∣ (4.9)

and

(∫ t

t–σ̂lj(t)

∣
∣y

δ̂lj
β̂jj
n+l(s) – y

δ̂lj
β̂jj
n+l(s)
∣
∣ds
)′

=
∣
∣y

δ̂lj
β̂jj
n+l(t) – y

δ̂lj
β̂jj
n+l(t)
∣
∣ –
∣
∣y

δ̂lj
β̂jj
n+l
(
t – σ̂lj(t)

)
– y

δ̂lj
β̂jj
n+l
(
t – σ̂lj(t)

)∣
∣
(
1 – σ̂ ′

lj(t)
)

≤ ∣∣y
δ̂lj
β̂jj
n+l(t) – y

δ̂lj
β̂jj
n+l(t)
∣
∣ –
∣
∣y

δ̂lj
β̂jj
n+l
(
t – σ̂lj(t)

)
– y

δ̂lj
β̂jj
n+l
(
t – σ̂lj(t)

)∣
∣. (4.10)

By (H5), we have 0 < αik
αii

, βil
αii

, γik
αii

, δil
αii

, α̂kj
β̂jj

, β̂lj
β̂jj

, γ̂kj
β̂jj

, δ̂lj
β̂jj

≤ 1. Observe that g(x) = |ax – bx| is an
increasing function for a ≥ 1 and x > 0. Therefore, according to (4.1) and (4.5)–(4.10), we
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derive

D+V (t) ≤
n∑

i=1

[

–αiiρal
ii
∣
∣yi(t) – yi(t)

∣
∣ +

n∑

k=1,k �=i

αkkρ
αki
αkk aM

ki
∣
∣y

αki
αkk
i (t) – y

αki
αkk
i (t)
∣
∣

+
m∑

l=1

β̂llρ

α̂li
β̂ll âM

li
∣
∣y

α̂li
β̂ll
i (t) – y

α̂li
β̂ll
i (t)
∣
∣ +

n∑

k=1

αkkρ
γki
αkk cM

ki
∣
∣y

γki
αkk
i (t) – y

γki
αkk
i (t)
∣
∣

+
m∑

l=1

β̂llρ

γ̂li
β̂ll ĉM

li
∣
∣y

γ̂li
β̂ll
i (t) – y

γ̂li
β̂ll
i (t)
∣
∣

]

+
m∑

j=1

[

–β̂jjρb̂l
jj
∣
∣yn+j(t) – yn+j(t)

∣
∣

+
n∑

k=1

αkkρ
βjk
αkk bM

jk
∣
∣y

βjk
αkk
n+j (t) – y

βjk
αkk
n+j (t)
∣
∣ +

m∑

l=1,l �=j

β̂llρ

β̂jl
β̂ll b̂M

jl
∣
∣y

β̂jl
β̂ll
n+j(t) – y

β̂jl
β̂ll
n+j(t)
∣
∣

+
n∑

k=1

αkkρ
δjk
αkk dM

jk
∣
∣y

δjk
αkk
n+j (t) – y

δjk
αkk
n+j (t)
∣
∣ +

m∑

l=1

β̂llρ

δ̂jl
β̂ll d̂M

jl
∣
∣y

δ̂jl
β̂ll
n+j(t) – y

δ̂jl
β̂ll
n+j(t)
∣
∣

]

≤
n∑

i=1

[

–αiiρal
ii
∣
∣yi(t) – yi(t)

∣
∣ +

n∑

k=1,k �=i

αkkρ
αki
αkk aM

ki
∣
∣yi(t) – yi(t)

∣
∣

+
m∑

l=1

β̂llρ

α̂li
β̂ll âM

li
∣
∣yi(t) – yi(t)

∣
∣ +

n∑

k=1

αkkρ
γki
αkk cM

ki
∣
∣yi(t) – yi(t)

∣
∣

+
m∑

l=1

β̂llρ

γ̂li
β̂ll ĉM

li
∣
∣yi(t) – yi(t)

∣
∣

]

+
m∑

j=1

[

–β̂jjρb̂l
jj
∣
∣yn+j(t) – yn+j(t)

∣
∣

+
n∑

k=1

αkkρ
βjk
αkk bM

jk
∣
∣yn+j(t) – yn+j(t)

∣
∣ +

m∑

l=1,l �=j

β̂llρ

β̂jl
β̂ll b̂M

jl
∣
∣yn+j(t) – yn+j(t)

∣
∣

+
n∑

k=1

αkkρ
δjk
αkk dM

jk
∣
∣yn+j(t) – yn+j(t)

∣
∣ +

m∑

l=1

β̂llρ

δ̂jl
β̂ll d̂M

jl
∣
∣yn+j(t) – yn+j(t)

∣
∣

]

=
n∑

i=1

[

–αiiρal
ii +

n∑

k=1,k �=i

αkkρ
αki
αkk aM

ki +
m∑

l=1

β̂llρ

α̂li
β̂ll âM

li +
n∑

k=1

αkkρ
γki
αkk cM

ki

+
m∑

l=1

β̂llρ

γ̂li
β̂ll ĉM

li

]
∣
∣yi(t) – yi(t)

∣
∣ +

m∑

j=1

[

–β̂jjρb̂l
jj +

n∑

k=1

αkkρ
βjk
αkk bM

jk

+
m∑

l=1,l �=j

β̂llρ

β̂jl
β̂ll b̂M

jl +
n∑

k=1

αkkρ
δjk
αkk dM

jk

+
m∑

l=1

β̂llρ

δ̂jl
β̂ll d̂M

jl

]
∣
∣yn+j(t) – yn+j(t)

∣
∣. (4.11)

In addition, from the condition (H6), there exists a positive constant κ such that

–αiiρal
ii +

n∑

k=1,k �=i

αkkρ
αki
αkk aM

ki +
m∑

l=1

β̂llρ

α̂li
β̂ll âM

li +
n∑

k=1

αkkρ
γki
αkk cM

ki +
m∑

l=1

β̂llρ

γ̂li
β̂ll ĉM

li + κ < 0
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and

–β̂jjρb̂l
jj +

n∑

k=1

αkkρ
βjk
αkk bM

jk +
m∑

l=1,l �=j

β̂llρ

β̂jl
β̂ll b̂M

jl +
n∑

k=1

αkkρ
δjk
αkk dM

jk +
m∑

l=1

β̂llρ

δ̂jl
β̂ll d̂M

jl + κ < 0.

The above two inequalities together with (4.11) lead to

D+V (t) ≤ –κ

n+m∑

h=1

∣
∣yh(t) – yh(t)

∣
∣. (4.12)

Integrating both sides of (4.12) with respect to t, we have

V (t) + κ

∫ t

0

n+m∑

h=1

∣
∣yh(s) – yh(s)

∣
∣ds ≤ V (0) < +∞, t ≥ 0. (4.13)

Equation (4.13) shows that

∫ t

0

n+m∑

h=1

∣
∣yh(s) – yh(s)

∣
∣ds ≤ V (0)

κ
< +∞, t ≥ 0, (4.14)

which implies that

n+m∑

h=1

∣
∣yh(s) – yh(s)

∣
∣ ∈ L1[0, +∞). (4.15)

(4.2) means that yh(t) (h = 1, 2, . . . , n + m) is uniformly bounded from below and above, and
so ln yh(t) is bounded. From | ln yh(t) – ln yh(t)| ≤ V1(t) ≤ V (t) ≤ V (0), we get

yh(t)e–V (0) ≤ yh(t) ≤ yh(t)eV (0). (4.16)

(4.16) and (4.2) show that yh(t), yh(t), h = 1, 2, . . . , n + m are uniformly bounded. This fact
together with (4.1) lead to y′

h(t), y′
h(t), h = 1, 2, . . . , n + m are uniformly bounded on [0, +∞).

Therefore
∑n+m

h=1 |yh(s) – yh(s)| is uniformly continuous on [0, +∞). From (4.14) we know
that
∑n+m

h=1 |yh(s) – yh(s)| is integrable on [0, +∞). By Barbalat’s lemma (Lemma 1.2.2 and
Lemma 1.2.3, [20]), we can conclude that

lim
t→+∞
∣
∣yh(t) – yh(t)

∣
∣ = 0, h = 1, 2, . . . , n + m. (4.17)

Thus, we have proved that the positive almost periodic solution (y1(t), y2(t), . . . , yn+m(t))T

of system (4.1) is globally attractive.
Next, we shall prove that the positive almost periodic solution (y1(t), y2(t), . . . , yn+m(t))T

of system (4.1) is globally exponentially stable. In fact, in the light of (4.2) and (4.17), we
know that, for any ε > 0 (ε enough small), there exists T > 0 such that for t > T

1 <
1
ρ

(
l–
i
)αii – ε ≤ yi(t) – ε < yi(t) < yi(t) + ε <

1
ρ

(
l+
i
)αii + ε (4.18)
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and

1 <
1
ρ

(
l–
n+j
)β̂jj – ε ≤ yn+j(t) – ε < yn+j(t) < yn+j(t) + ε <

1
ρ

(
l+
n+j
)β̂jj + ε. (4.19)

By (4.18)–(4.19) and the mean value theorem of calculus, we have

∣
∣ln yi(t) – ln yi(t)

∣
∣ =
∣
∣
∣
∣

1
Ai

∣
∣
∣
∣

∣
∣yi(t) – yi(t)

∣
∣≤ |yi(t) – yi(t)|

1
ρ

(l–
i )αii – ε

(4.20)

and

∣
∣ln yn+j(t) – ln yn+j(t)

∣
∣ =
∣
∣
∣
∣

1
An+j

∣
∣
∣
∣

∣
∣yn+j(t) – yn+j(t)

∣
∣≤ |yn+j(t) – yn+j(t)|

1
ρ

(l–
n+j)

β̂jj – ε
, (4.21)

where i = 1, 2, . . . , n, j = 1, 2, . . . , m, Ah (h = 1, 2, . . . , n + m) lies between yh(t) and yh(t). Ac-
cording to (H6), there exists a constant μ > 0 such that

–αiiρal
ii +

n∑

k=1,k �=i

αkkρ
αki
αkk aM

ki +
m∑

l=1

β̂llρ

α̂li
β̂ll âM

li +
n∑

k=1

αkkρ
γki
αkk cM

ki

+
m∑

l=1

β̂llρ

γ̂li
β̂ll ĉM

li +
μ

1
ρ

(l–
i )αii – ε

< 0, i = 1, 2, . . . , n, (4.22)

and

–β̂jjρb̂l
jj +

n∑

k=1

αkkρ
βjk
αkk bM

jk +
m∑

l=1,l �=j

β̂llρ

β̂jl
β̂ll b̂M

jl +
n∑

k=1

αkkρ
δjk
αkk dM

jk

+
m∑

l=1

β̂llρ

δ̂jl
β̂ll d̂M

jl +
μ

1
ρ

(l–
n+j)

β̂jj – ε
< 0, j = 1, 2, . . . , m. (4.23)

Construct the Lyapunov functional W (t) = eμtV1(t) + V2(t). Applying (4.11), (4.22) and
(4.23), we have

D+W (t) ≤
n∑

i=1

[

–αiiρal
ii +

n∑

k=1,k �=i

αkkρ
αki
αkk aM

ki +
m∑

l=1

β̂llρ

α̂li
β̂ll âM

li +
n∑

k=1

αkkρ
γki
αkk cM

ki

+
m∑

l=1

β̂llρ

γ̂li
β̂ll ĉM

li +
μ

1
ρ

(l–
i )αii – ε

]
∣
∣yi(t) – yi(t)

∣
∣

+
m∑

j=1

[

–β̂jjρb̂l
jj +

n∑

k=1

αkkρ
βjk
αkk bM

jk +
m∑

l=1,l �=j

β̂llρ

β̂jl
β̂ll b̂M

jl +
n∑

k=1

αkkρ
δjk
αkk dM

jk

+
m∑

l=1

β̂llρ

δ̂jl
β̂ll d̂M

jl +
μ

1
ρ

(l–
n+j)

β̂jj – ε

]
∣
∣yn+j(t) – yn+j(t)

∣
∣ < 0. (4.24)

Equation (4.24) means that

W (t) < W (T) = eμT V1(T) + V2(T) ≤ eμT V (T) ≤ eμT V (0), t > 0. (4.25)
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Similar to (4.18)–(4.21), we also have

∣
∣ln yi(t) – ln yi(t)

∣
∣ >

|yi(t) – yi(t)|
1
ρ

(l+
i )αii + ε

,

∣
∣ln yn+j(t) – ln yn+j(t)

∣
∣ >

|yn+j(t) – yn+j(t)|
1
ρ

(l+
n+j)

β̂jj + ε
.

(4.26)

(4.25) and (4.26) lead to

eμt

1
ρ

(l+
i )αii + ε

∣
∣yi(t) – yi(t)

∣
∣≤ eμt

n∑

i=1

|yi(t) – yi(t)|
1
ρ

(l+
i )αii + ε

< eμtV1(t) ≤ W (t) < eμT V (0)

and

eμt

1
ρ

(l+
n+j)

β̂jj + ε

∣
∣yn+j(t) – yn+j(t)

∣
∣≤ eμt

m∑

j=1

|yn+j(t) – yn+j(t)|
1
ρ

(l+
n+j)

β̂jj + ε
< eμtV1(t) ≤ W (t) < eμT V (0).

Letting ε → 0+ in the above two inequalities, we have

∣
∣yh(t) – yh(t)

∣
∣ < Me–μt , h = 1, 2, . . . , n + m, t > 0, (4.27)

where M = eμT V (0) max1≤i≤n,1≤j≤m{ 1
ρ

(l+
i )αii , 1

ρ
(l+

n+j)
β̂jj}. (4.27) indicates that the unique pos-

itive almost periodic solution (y1(t), y2(t), . . . , yn+m(t))T of system (4.1) is globally exponen-
tially stable.

Now let us to show that the unique positive almost periodic solution (x1(t), x2(t), . . . ,
xn+m(t))T of system (1.4) is globally exponentially stable.

Indeed, by the mean value theorem of calculus and (4.18)–(4.19), we have

∣
∣xi(t) – xi(t)

∣
∣ = ρ

1
αii
∣
∣y

1
αii
i (t) – y

1
αii
i (t)
∣
∣≤ Ni(ε)

αii
ρ

1
αii
∣
∣yi(t) – yi(t)

∣
∣ (4.28)

and

∣
∣xn+j(t) – xn+j(t)

∣
∣ = ρ

1
β̂jj
∣
∣y

1
β̂jj
n+j(t) – y

1
β̂jj
n+j(t)
∣
∣≤ Nn+j(ε)

β̂jj
ρ

1
β̂jj
∣
∣yn+j(t) – yn+j(t)

∣
∣, (4.29)

where i = 1, 2, . . . , n, j = 1, 2, . . . , m,

Ni(ε) = max

{(
1
ρ

(
l–
i
)αii – ε

) 1–αii
αii

,
(

1
ρ

(
l+
i
)αii + ε

) 1–αii
αii
}

,

Nn+j(ε) = max

{(
1
ρ

(
l–
n+j
)β̂jj – ε

) 1–β̂jj
β̂jj ,
(

1
ρ

(
l+
n+j
)β̂jj + ε

) 1–β̂jj
β̂jj
}

.

Letting ε → 0+ in (4.28)–(4.29), and employing (4.27)–(4.29), we obtain

∣
∣xh(t) – xh(t)

∣
∣ < M∗e–μt , h = 1, 2, . . . , n + m, t > 0, (4.30)
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where M∗ = M max1≤i≤n,1≤j≤m{Ni(0)
αii

ρ
1

αii , Nn+j(0)
β̂jj

ρ

1
β̂jj }. Thus, we have proved that the unique

positive almost periodic solution (x1(t), x2(t), . . . , xn+m(t))T of system (1.4) is globally ex-
ponentially stable. The proof of Theorem 4.1 is complete. �

5 Illustrative example
Consider the following two-layer Gilpin–Ayala predator–prey model with time delays:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x′
1(t) = x1(t)[r(t) – a(t)xα

1 (t) – b(t)xβ
2 (t) – c(t)xγ

1 (t – τ (t))

– d(t)xδ
2(t – σ (t))],

x′
2(t) = x2(t)[–r̂(t) + â(t)xα̂

1 (t) – b̂(t)xβ̂
2 (t) + ĉ(t)xγ̂

1 (t – τ̂ (t))

– d̂(t)xδ̂
2(t – σ̂ (t))],

(5.1)

where α = 3
4 , β = 1

2 , γ = 1
3 , δ = 1

4 , α̂ = 3, β̂ = 4, γ̂ = 3
2 , δ̂ = 1, r(t) = 10 + cos

√
2t, r̂(t) =

2+sin
√

3t
20 , a(t) = 6 + sin

√
2t, b(t) = 2–sin

√
3t

10 , c(t) = 1+| sin
√

2t|
10 , d(t) = 2+cos

√
5t

10 , â(t) = 3–cos
√

2t
5 ,

b̂(t) = 7+sin
√

7t
2 , ĉ(t) = 1+2| sin

√
2t|

40 , d̂(t) = 2+cos
√

3t
10 and

τ (t) =

⎧
⎨

⎩

1+sin
√

2t
4 , 2kπ√

2 – π

2
√

2 ≤ t ≤ 2kπ√
2 + π

2
√

2 , k ∈ Z,
1–sin

√
2t

4 , 2kπ√
2 + π

2
√

2 ≤ t ≤ 2kπ√
2 + 3π

2
√

2 , k ∈ Z,

σ (t) =

⎧
⎨

⎩

1+sin
√

3t
3 , 2kπ√

3 – π

2
√

3 ≤ t ≤ 2kπ√
3 + π

2
√

3 , k ∈ Z,
1–sin

√
3t

3 , 2 kπ√
3 + π

2
√

3 ≤ t ≤ 2kπ√
3 + 3π

2
√

3 , k ∈ Z,

τ̂ (t) =

⎧
⎨

⎩

1–cos
√

2t
3 , 2kπ√

2 ≤ t ≤ 2kπ√
2 + π√

2 , k ∈ Z,
1+cos

√
2t

3 , 2kπ√
2 + π√

2 ≤ t ≤ 2kπ√
2 + 2π√

2 , k ∈ Z,

σ̂ (t) =

⎧
⎨

⎩

2–cos
√

3t
4 , 2kπ√

3 ≤ t ≤ 2kπ√
3 + π√

3 , k ∈ Z,
2+cos

√
3t

4 , 2 kπ√
3 + π√

3 ≤ t ≤ 2kπ√
3 + 2π√

3 , k ∈ Z.

Obviously, r(t), r̂(t), a(t), b(t), c(t), d(t), â(t), b̂(t), ĉ(t), d̂(t), τ (t), σ (t), τ̂ (t) and σ̂ (t) are all
positive almost periodic functions. By simple calculation, we have rM = 11, rl = 9, r̂M = 3

20 ,
r̂l = 1

20 , aM = 7, al = 5, bM = 3
10 , bl = 1

10 , cM = 1
5 , cl = 1

10 , dM = 3
10 , dl = 1

10 , âM = 4
5 , âl = 2

5 ,
b̂M = 4, b̂l = 3, ĉM = 3

40 , ĉl = 1
40 , d̂M = 3

10 , d̂l = 1
10 and

l+
1 =
(

rM

al

) 1
α

=
(

11
2

) 4
3
≈ 2.8613,

l+
2 =
(

âM(l+
1 )α̂ + ĉM(l+

1 )γ̂

b̂l

) 1
β̂

≈ 1.590,

l–
1 =
(

rl – bM(l+
2 )β – cM(l+

1 )γ – dM(l+
2 )δ

aM

) 1
α

≈ 1.1951,

l–
2 =
(

âl(l–
1 )α̂ + ĉl(l–

1 )γ̂ – r̂M – d̂M(l+
2 )δ̂

b̂M

) 1
β̂

≈ 1.1303,

9 = rl > bM(l+
2
)β + cM(l+

1
)γ + dM(l+

2
)δ
≈ 0.9991,

âl(l–
1
)α̂ + ĉl(l–

1
)γ̂

≈ 0.7155 > r̂M + d̂M(l+
2
)δ̂
≈ 0.6270.
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Thus, the assumptions (H1)–(H3) are satisfied. So we derive from Theorem 3.1 that system
(5.1) has at least one positive almost periodic solution (x1(t), x2(t)) satisfying 1.1951 ≤
x1(t) < 2.8613 and 1.1303 ≤ x2(t) < 1.590.

In addition, obviously, 0 < 1 – τ ′(t) = 1 –
√

2| cos
√

2t|
4 < 1, 0 < 1 – σ ′(t) = 1 –

√
3| cos

√
3t|

3 < 1,
0 < 1 – τ̂ ′(t) = 1 –

√
2| sin

√
2t|

3 < 1, 0 < 1 – σ̂ ′(t) = 1 –
√

3| sin
√

3t|
4 < 1, α = 3

4 > max{β ,γ , δ} =
max{ 1

2 , 1
3 , 1

4 } = 1
2 , β̂ = 4 > max{α̂, γ̂ , δ̂} = max{3, 3

2 , 1} = 3. Take ρ = 1 < min{l–
1 , l–

2 } ≈ 1.1303,
we have

–αρal + β̂ρ
α̂

β̂ âM + αρ
γ
α cM + β̂ρ

γ̂

β̂ ĉM = –0.10 < 0,

–β̂ρb̂l + αρ
β
α bM + αρ

δ
α dM + β̂ρ

δ̂

β̂ d̂M = –10.35 < 0.

Thus we verify that (H4)–(H6) hold. Therefore, according to Theorem 4.1, we conclude
that the unique positive almost periodic solution (x1(t), x2(t)) of system (5.1) is globally
exponentially stable.

6 Conclusions
Compared with the Lotka–Volterra models, the Gilpin–Ayala models are more advanta-
geous because the rate of change in the size of each species is a nonlinear function of the
sizes of the interacting species in the Gilpin–Ayala models and the rate of change in the
size of each species is a linear function of the sizes of the interacting species the Lotka–
Volterra models. It is more precise to describe some ecosystems by the Gilpin–Ayala mod-
els than by the Lotka–Volterra models. Therefore, we mainly study a class of two-layer
Gilpin–Ayala predator–prey model with time delays in this paper. By means of Mawhin’s
continuation theorem of coincidence degree theory, we obtain some new sufficient con-
ditions of the existence of positive almost periodic solutions. We also obtain the global
exponential stability of the positive almost periodic solution for this system by construct-
ing appropriate Lyapunov functionals and smart transformations. Our results provide a
theoretical basis for the detection and artificial control of some ecological systems with
periodic or almost periodic phenomena.
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