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Abstract
In this paper, we investigate the dynamics of a time-delayed prey–predator system
with θ -logistic growth. Our investigation indicates that the models based on delayed
differential equations (DDEs) with and without delay-dependent coefficient both
undergo Hopf bifurcation at their corresponding positive equilibria. It is shown that
stability switching occurs for the interior equilibrium of the model with
delay-dependent coefficient. For the DDEs model without delay-dependent
coefficient, increased time delay may destabilize a stable interior equilibrium.
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1 Introduction
In biomathematics, the interaction and interplay between different species have been
modeled by systems of differential equations. Such systems characterize the dynamics of
a variety of ecosystems. By constructing an ecological model, the relationship between
different species in the system is revealed. Analyzing such models yields the dynamics
of the system and may give a precise prediction on the evolution of populations in the
system. Recently, prey refuge has been integrated into ecological models to consider the
effects of the refuges on the coexistence of different species and on the stability of equilib-
ria of ecosystems [1–6]. Empirical and theoretical studies have both been carried out to
illustrate the influences of prey refuge on the population dynamics of the systems. Inves-
tigations indicate that the existence of prey refuge may stabilize the system and by using
such refuge, the prey population may refrain from extinction [7–13].

Tsoularis and Wallace [14] performed a thorough study on a variety of growth equations
to model population dynamics and presented a generalized form of the logistic growth
equation. Wonlyul and Kimun [15] analyzed a general Gause-type predator–prey model
and investigated the existence and non-existence of non-constant positive steady-state
solutions. Motivated by the works of Tsoularis and Wallace [14], and Wonlyul and Kimun
[15], we construct the following θ -logistic growth predator–prey system with prey refuge:

ẋ = rx
[

1 –
(

x
K

)θ]
–

βε2x2y
1 + ε2x2 – h1x,

ẏ =
βε2x2y
1 + ε2x2 – ay – h2y.

(1.1)
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In system (1.1), the predator’s fitness increases with the consumption of prey. If we assume
that for the predator species there is a time lag between the consumption of prey and the
increase of predators’ fitness, then time delay should be integrated into the model. The
ecological model incorporating such time delay is given by

ẋ = rx
[

1 –
(

x
K

)θ]
–

βε2x2y
1 + ε2x2 – h1x,

ẏ =
e–mτ βε2x(t – τ )2y(t – τ )

1 + ε2x(t – τ )2 – ay – h2y,

(1.2)

where x and y respectively denote the densities of prey and predator, and r, K , θ , β , ε, a,
and m take positive values. In system (1.2), the prey species has θ -logistic growth with
logistic index θ and intrinsic growth rate r. Here, K is the carrying capacity, β is the pre-
dation rate of predator, and ε ∈ (0, 1) is the refuge rate to prey. Obviously, 1 – ε is the
proportion of prey that is available for the predator. We use h1 and h2 to denote the rate
of harvesting or the environment feedback for prey and predator, respectively. We assume
that the predator has death rate a. The time lag between the consumption of prey and re-
ceiving corresponding increase in predator population is denoted by τ . We thus introduce
a delay-dependent coefficient e–mτ to describe the probability of the predators that con-
sume prey at time t – τ and still remain alive at time t. Such delay-dependent coefficient
may have considerable influences on the dynamical behaviors of the model and it has not
been investigated extensively in the literature. In the following, we compare the dynamical
behaviors of the model with and without the delay-dependent coefficient.

System (1.2) has the initial conditions

x(η) = φ(η) ≥ 0, y(η) = ψ(η) ≥ 0, η ∈ [–τ , 0],

φ(0) > 0, ψ(0) > 0,
(1.3)

where (φ(η),ψ(η)) ∈ C([–τ , 0], R2
+0) is the Banach space of continuous functions mapping

the interval [–τ , 0] into R2
+0, where R2

+0 = {(x, y) : x ≥ 0, y ≥ 0}.
It follows from the fundamental theory of functional differential equations [16] that sys-

tem (1.2) has a unique solution x(t), y(t) satisfying initial conditions (1.3).
This manuscript is organized as follows. In Sect. 2, we prove that solutions to system

(1.2) with initial conditions (1.3) are positive and ultimately bounded. In Sect. 3, we in-
vestigate the stability of the boundary equilibria of system (1.2). In Sect. 4, we show that
system (1.1) and (1.2) exhibits Hopf bifurcations at the interior equilibrium. Finally, we
perform numerical analysis to illustrate the main results of this article in Sect. 5.

2 Positivity and boundedness
For model (1.2) with initial conditions (1.3), we are particularly interested in the positivity
and boundedness of its solution. In this section, we prove that the solutions are positive
and ultimately bounded.

2.1 Positivity of solutions
Theorem 2.1 Solutions to system (1.2) with initial conditions (1.3) are positive for all t ≥ 0.
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Proof Assume that (x(t), y(t)) is a solution to system (1.2) satisfying initial conditions (1.3).
It follows from the first equation of model (1.2) that

x(t) = x(0)e
∫ t

0 {r[1–( x(ζ )
K )θ ]– βε2x(ζ )y(ζ )

1+ε2x(ζ )2
}dζ ,

implying that x(t) is positive.
Next we show that y(t) is positive on [0, +∞). Assume that there exists t1 such that y(t1) =

0, and y(t) > 0 for t ∈ [0, t1). It thus follows that ẏ(t1) ≤ 0. Using the second equation of (1.2),
we obtain

ẏ(t1) =
e–mτ βε2x(t – τ )2y(t1 – τ )

1 + ε2x(t1 – τ )2 – ay(t1) – h2y(t1)

=
e–mτ βε2x(t – τ )2y(t1 – τ )

1 + ε2x(t1 – τ )2

> 0.

The above expression is a contradiction, which completes the proof of positivity. �

In the following subsection, we show that the solutions are ultimately bounded.

2.2 Boundedness of solutions
Theorem 2.2 Positive solutions of system (1.2) with initial conditions (1.3) are ultimately
bounded.

Proof Suppose that (x(t), y(t)) is a solution to system (1.2) and satisfies conditions (1.3).
Then it follows from the first equation of (1.2) that

ẋ ≤ rx
[

1 –
(

x
K

)θ]
.

Thus, we have

x(t) ≤ x0K

[xβ
0 + (Kβ – xβ

0 )e–rθ t]
1
θ

.

That is to say,

lim sup
t→+∞

x(t) ≤ K .

It follows from the above discussion that, for sufficiently small ρ , there exists T1 > 0 such
that if t > T1, x(t) < K + ρ . In order to prove the boundedness of the solution, we construct
the following Lyapunov function:

V (t) = x(t – τ )e–mτ + y(t).
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Evaluating the derivative of V along the trajectories of system (1.2) yields

V̇ (t) = e–mτ rx(t – τ )
[

1 –
(

x(t – τ )
K

)θ]
– e–mτ h1x(t – τ )

– (a + h2)y(t)

≤ e–mτ (r – h1)x(t – τ ) – (a + h2)y(t)

≤ M0 – (a + h2)V (t),

where M0 = e–mτ (r – h1)(K + ρ). It thus follows that there exists M > 0 such that V (t) ≤ M
for all t large enough. We notice that M only depends on the parameters of system (1.2).
The above discussion implies that x(t), y(t) is ultimately bounded. �

3 Stability of the boundary equilibria
In the following, we consider the stability of the boundary equilibria of model (1.2) satis-
fying initial conditions (1.3).

Let R0 = Kε( r–h1
r )

1
θ
√

(a+h2)(βe–mτ –a–h2)
a+h2

, and always assume that r > h1 and β > a + h2. Then
system (1.2) has two boundary equilibria, given by E0 = (0, 0) and E1 = (K( r–h1

r )
1
θ , 0). If

R0 > 1, the system admits an interior (positive) equilibrium E∗ = (x∗, y∗), where

x∗ =
√

(a + h2)(βe–mτ – a – h2)
ε(βe–mτ – a – h2)

,

y∗ =
(1 + ε2x∗2)[r – h1 – r( x∗

K )θ ]
βε2x∗2 .

The characteristic equation of the model corresponding to E0 = (0, 0) is

(λ – r + h1)(λ + a + h2) = 0,

whose roots are obtained as

λ1 = r – h1 > 0 and λ2 = –a – h2 < 0.

It thus follows that equilibrium E0 is unstable.
The characteristic equation of the model with respect to E1 = (K , 0) is obtained as

[
λ + θ (r – h1)

][
λ + a + h2 –

βe–mτ ε2x2
1e–λτ

1 + ε2x2
1

]
= 0,

implying that

λ1 = –θ (r – h1)

and

λ + a + h2 –
βe–mτ ε2x2

1e–λτ

1 + ε2x2
1

= 0.
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Let

f (λ) = λ + a + h2 –
βe–mτ ε2x2

1e–λτ

1 + ε2x2
1

.

Therefore,

f (0) = a + h2 –
βe–mτ ε2x2

1
1 + ε2x2

1

=
a + h2

1 + ε2x2
1

(
1 – R2

0
)

and

lim
λ→∞ f (λ) = ∞

for any τ ≥ 0. Thus, if R0 ≤ 1, f (λ) = 0 has no positive root. If R0 > 1, f (λ) = 0 has at least
one positive root. It thus follows that, for all τ ≥ 0, when R0 ≤ 1, equilibrium E1 is stable.
When R0 > 1, the equilibrium is unstable.

The above results are summarized in the following conclusion.

Theorem 3.1
(i) For all τ ≥ 0, equilibrium E0 is always unstable.

(ii) For all τ ≥ 0, when R0 ≤ 1, equilibrium E1 is stable, and when R0 > 1, E1 is unstable.

4 The Hopf bifurcation
Hopf bifurcations have been observed in population dynamical systems [6, 17]. In this
section, we investigate the Hopf bifurcation of system (1.1).

4.1 Stability of a positive equilibrium for system (1.1)
When R0 > 1, system (1.2) admits an interior (positive) equilibrium E∗. Now, we consider
the characteristic equation of the linearized system of (1.2) near the interior (positive)
equilibrium E∗. The characteristic equation is then obtained as

P(λ, τ ) + Q(λ, τ )e–λτ = 0, (4.1)

where

P(λ, τ ) = λ2 + b1(τ )λ + b2(τ ),

Q(λ, τ ) = b3(τ )λ + b4(τ ),
(4.2)

and

b1(τ ) = a + h2 + rθ
(

x∗

K

)θ

–
βε2x∗y∗(ε2x∗2 – 1)

(1 + ε2x∗2)2 ,

b2(τ ) = (a + h2)
[

rθ
(

x∗

K

)θ

–
βε2x∗y∗(ε2x∗2 – 1)

(1 + ε2x∗2)2

]
,
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b3(τ ) = –
βε2x∗2e–mτ

1 + ε2x∗2 , (4.3)

b4(τ ) =
2β2ε4x∗3y∗e–mτ

(1 + ε2x∗2)3

–
βε2x∗2e–mτ

1 + ε2x∗2

[
rθ

(
x∗

K

)θ

–
βε2x∗y∗(ε2x∗2 – 1)

(1 + ε2x∗2)2

]
.

When τ = 0 or m = 0, we have R∗
0 = Kε( r–h1

r )
1
θ
√

(a+h2)(β–a–h2)
a+h2

. Substituting τ = 0 into (4.1)
yields

λ2 + A1λ + A2 = 0, (4.4)

where

A1 = b1(0) + b3(0)

= a + h2 + rθ
(

x∗

K

)θ

–
βε2x∗y∗(ε2x∗2 – 1)

(1 + ε2x∗2)2 –
βε2x∗2

1 + ε2x∗2

= rθ
(

x∗

K

)θ

–
βε2x∗y∗(ε2x∗2 – 1)

(1 + ε2x∗2)2 , (4.5)

and

A2 = b2(0) + b4(0)

= (a + h2)
[

rθ
(

x∗

K

)θ

–
βε2x∗y∗(ε2x∗2 – 1)

(1 + ε2x∗2)2

]

+
2β2ε4x∗3y∗

(1 + ε2x∗2)3 –
βε2x∗2

1 + ε2x∗2

[
rθ

(
x∗

K

)θ

–
βε2x∗y∗(ε2x∗2 – 1)

(1 + ε2x∗2)2

]

=
2β2ε4x∗3y∗

(1 + ε2x∗2)3 > 0.

Theorem 4.1
(i) If R∗

0 > 1 and A1 > 0, then the positive equilibrium E∗ of system (1.1) is asymptotically
stable.

(ii) If R∗
0 > 1 and A1 < 0, then system (1.1) is unstable.

Example 4.1 As an example, we choose the following system parameters (P1): r = 0.11,
K = 10, β = 0.3, a = 0.12, h1 = 0.01, h2 = 0.01, θ = 6, and ε = 0.7. We then obtain R∗

0 ≈
7.878654277 > 1 and A1 ≈ 0.0106755391 > 0, which guarantees that system (1.1) is stable
(see Fig. 1(a)).

In the following example, we choose (P2) as r = 0.11, K = 10, β = 0.2, a = 0.12, h1 =
0.01, h2 = 0.01, θ = 6, and ε = 0.7. It thus follows that R∗

0 ≈ 5.055645375 > 1 and A1 ≈
–0.0153729314 < 0, which guarantees that system (1.1) is unstable (see Fig. 1(b)).

4.2 The Hopf bifurcation of DDEs with delay-dependent coefficient
In this subsection, we investigate the Hopf bifurcation of the model with term e–mτ . We
notice that Eq. (4.1) is a second-degree exponential polynomial of λ and all the coefficients
of P and Q depend on τ .



Xie and Xu Advances in Difference Equations  (2018) 2018:122 Page 7 of 16

Figure 1 The positive equilibrium E∗ of system (1.1) is stable when β = 0.3 (a), and unstable when β = 0.2 (b).
The other parameter values are r = 0.11, K = 10, a = 0.12, h1 = 0.01, h2 = 0.01, θ = 6, and ε = 0.7. The initial
condition is x0 = 8 and y0 = 5

Before using the criterion established by Beretta and Kuang [18] to evaluate the exis-
tence of a purely imaginary root for the characteristic equation, we verify the following
properties for all τ ∈ [0, τmax), where τmax is the maximum value when E∗ exists.

(a) P(0, τ ) + Q(0, τ ) 
= 0;
(b) P(iω, τ ) + Q(iω, τ ) 
= 0;
(c) lim sup{| P(λ,τ )

Q(λ,τ ) | : |λ| → ∞, Reλ ≥ 0} < 1;
(d) F(ω, τ ) = |P(iω, τ )|2 – |Q(iω, τ )|2 has a finite number of zeros;
(e) Each positive root ω(τ ) of F(ω, τ ) = 0 is continuous and differentiable in τ whenever

it exists.
Here, P(λ, τ ) and Q(λ, τ ) are defined by (4.2).
Assume that τ ∈ [0, τmax). It thus follows from (4.2) and (4.3) that

P(0, τ ) + Q(0, τ ) = b2(τ ) + b4(τ ) =
2β2ε4x∗3y∗e–mτ

(1 + ε2x∗2)3 > 0.

Therefore,

P(iω, τ ) + Q(iω, τ ) = –ω2 + b2(τ ) + b4(τ )

+ iω
[
b1(τ ) + b3(τ )

] 
= 0.

Hence, (a) and (b) are satisfied.
It follows from (4.2) that

lim|λ|→+∞

∣∣∣∣Q(λ, τ )
P(λ, τ )

∣∣∣∣ = lim|λ|→+∞

∣∣∣∣ b3(τ )λ + b4(τ )
λ2 + b1(τ )λ + b2(τ )

∣∣∣∣
= 0,

which implies that condition (c) is satisfied.
For the function F defined in (d), it follows from

∣∣P(iω, τ )
∣∣2 = ω4 +

[
b1(τ )2 – 2b2(τ )

]
ω2 + b2(τ )2
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and

∣∣Q(iω, τ )
∣∣2 = b3(τ )2ω2 + b4(τ )2

that

F(ω, τ ) = ω4 + a1(τ )ω2 + a2(τ ),

where

a1(τ ) = b2
1(τ ) – 2b2(τ ) – b2

3(τ ),

a2(τ ) = b2
2(τ ) – b2

4(τ ).

Therefore, property (d) is satisfied. Assume that (ω0, τ0) is a point in its domain such that
F(ω0, τ0) = 0. It is easy to see that the partial derivatives Fω and Fτ exist and are contin-
uous in a certain neighborhood of (ω0, τ0), and Fω(ω0, τ0) 
= 0. Then the implicit function
theorem implies that condition (e) is satisfied as well.

Next, we assume that λ = iω (ω > 0) is a root of Eq. (4.1). Then, we substitute λ = iω into
Eq. (4.1) and separate its real and imaginary parts. Now, we obtain

ω2 – b2(τ ) = b3(τ )ω sinωτ + b4(τ ) cosωτ ,

b1(τ )ω = b4(τ ) sinωτ – b3(τ )ω cosωτ .
(4.6)

From (4.6), we have

sinωτ =
ω[b3(τ )(ω2 – b2(τ )) + b1(τ )b4(τ )]

b3(τ )ω2 + b2
4(τ )

, (4.7a)

cosωτ =
[b4(τ ) – b1(τ )b3(τ )]ω2 – b2(τ )b4(τ )

b3(τ )ω2 + b2
4(τ )

. (4.7b)

Using the definitions of P(λ, τ ) and Q(λ, τ ) in (4.2), it follows from property (a) that (4.2)
can be written as

sinωτ = Im
P(iω, τ )
Q(iω, τ )

(4.8a)

and

cosωτ = – Re
P(iω, τ )
Q(iω, τ )

. (4.8b)

Equations (4.8a) and (4.8b) imply that

∣∣P(iω, τ )
∣∣2 =

∣∣Q(iω, τ )
∣∣2.

Let I ∈ R+0 be the set where ω(τ ) is a positive root of

F(ω, τ ) =
∣∣P(iω, τ )

∣∣2 –
∣∣Q(iω, τ )

∣∣2.
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Assume that, for τ /∈ I , ω(τ ) is not defined. It thus follows that for all τ in I , ω(τ ) satisfies

F(ω, τ ) = 0. (4.9)

Letting ω2 = h, we obtain

F(h, τ ) = h2 + a1(τ )h + a2(τ ) = 0. (4.10)

Let


(τ ) = a1(τ )2 – 4a2(τ )

=
[
b2

1(τ ) – 2b2(τ ) – b2
3(τ )

]2 – 4
[
b2

2(τ ) – b2
4(τ )

]
.

Then, under the condition 
(τ ) ≥ 0, F(h, τ ) = 0 has real roots

h+(τ ) =
–a1(τ ) +

√

(τ )

2
,

h–(τ ) =
–a1(τ ) –

√

(τ )

2
.

Since

a1(τ ) = b2
1(τ ) – 2b2(τ ) – b2

3(τ )

=
[

a + h2 + rθ
(

x∗

K

)θ

–
βε2x∗y∗(ε2x∗2 – 1)

(1 + ε2x∗2)2

]2

– 2b2(τ ) –
[

βε2x∗2e–mτ

1 + ε2x∗2

]2

=
[

rθ
(

x∗

K

)θ

–
βε2x∗y∗(ε2x∗2 – 1)

(1 + ε2x∗2)2

]2

> 0,

we get the following conclusion.

Proposition 4.1 If R0 > 1 and a2(τ ) < 0, then F(h, τ ) = 0 has only one positive root h+. We
also have that F(ω, τ ) = 0 has a unique positive root given by ω =

√
h+.

Define θ (τ ) ∈ [0, 2π ), where sin θ (τ ) and cos θ (τ ) are respectively the right-hand sides of
(4.7a) and (4.7b). Here, θ (τ ) is expressed as (4.8a)–(4.8b).

For τ > 0, we have

ωτ = θ + 2nπ , n = 0, 1, 2, . . . . (4.11)

Now, we define the maps τn : I → R+0 as

τn(τ ) :=
θ (τ ) + 2nπ

ω(τ )
, τn > 0, n = 0, 1, 2, . . . . (4.12)

Here, ω(τ ) is a positive root of (4.10) in I .
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Construct continuous and differentiable functions Sn(τ ) : I → R,

Sn(τ ) = τ –
θ (τ ) + 2nπ

ω(τ )
, n = 0, 1, 2, . . . , (4.13)

in τ .
The following theorem is obtained using the method proposed by Beretta and Kuang

[18].

Theorem 4.2 If ω(τ ) is a positive root of (4.1) defined for τ ∈ I , I ⊆ R+0, and Sn(τ ∗) = 0 for
some n ∈ N0 at some τ ∗ ∈ I , then a pair of simple conjugate pure imaginary roots λ = ±iω
exist at τ = τ ∗ and they cross the imaginary axis from left to right when δ(τ ∗) > 0 and cross
the imaginary axis from right to left when δ(τ ∗) < 0. Here,

δ
(
τ ∗) = sign

{
Fω

′(ωτ ∗, τ ∗)} sign

{
dSn(τ )

dτ

∣∣∣∣
τ=τ∗

}
. (4.14)

It follows from Theorem 4.1 and the Hopf bifurcation theorem for functional differential
equations [16] that there exists a Hopf bifurcation. Details are summarized in the following
theorem.

Theorem 4.3 For system (1.2), the following conclusions hold:
(i) Assume that R0 > 1, A1 > 0, and the function S0(τ ) has no positive zero in I . Then

equilibrium E∗ is asymptotically stable for all τ ∈ [0, τmax).
(ii) Assume that R0 > 1, A1 > 0, a2(τ ) < 0, and the function S0(τ ) has positive zero in I .

Then there exists τ ∗ ∈ I such that equilibrium E∗ is asymptotically stable for
τ ∈ [0, τ ∗), and unstable for τ ∈ (τ ∗, τmax). A Hopf bifurcation occurs when τ = τ ∗.

Remark 4.1 If τ ≥ 1
m [lnβ – ln(a + h2 + a+h2

K2ε2( r–h1
r )

2
θ

)] := τmax, then R0 ≤ 1, y∗ ≤ 0 and equi-

librium E∗ converges to E1 = (K , 0).

4.3 The Hopf bifurcation of DDEs without delay-dependent coefficient
In this section, we consider the case when m = 0, i.e., the DDEs has no term e–mτ . Now, all
the coefficients of (4.2) are not related to the delay τ .

We denote bi = bi(0) (i = 1, . . . , 4). In this case, if R∗
0 > 1 and a2(0) > 0, then Eq. (4.1) has no

positive root. Thus, the positive equilibrium E∗ exists and is locally asymptotically stable
for all time delay τ ≥ 0.

If m = 0, R∗
0 > 1, and a2(0) < 0, then Eq. (4.1) has a unique positive root ω0, which satisfies

Eq. (4.9). It follows from (4.7b) that

τn =
1
ω0

arccos

{
(b4 – b1b3)ω2

0 – b2b4

b3ω
2
0 + b2

4

}

+
2nπ

ω0
, n = 0, 1, 2, . . . ,

at which Eq. (4.1) admits a pair of purely imaginary roots of the form ±iω0. Next, we show
that

d(Reλ)
dτ

∣∣∣∣
τ=τ0

> 0.
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The theorem signifies that there exists at least one eigenvalue with positive real part for
τ > τ0. Differentiating Eq. (4.1) with respect to τ yields

(2λ + b1)
dλ

dτ
+ b3e–λτ dλ

dτ
– τ (b3λ + b4)e–λτ dλ

dτ

= λ(b3λ + b4)e–λτ .

That is to say,

[
dλ

dτ

]–1

=
2λ + b1

λ(b3λ + b4)e–mτ
+

b3

λ(b3λ + b4)
–

τ

λ

=
2λ + b1

–λ(λ2 + b1λ + b2)
+

b3

λ(b3λ + b4)
–

τ

λ
.

Hence,

sign

{
d(Reλ)

dτ

}
λ=iω0

= sign

{
Re

(
dλ

dτ

)–1}
λ=iω0

= sign

{
Re

[
2λ + b1

–λ(λ2 + b1λ + b2)

]
λ=iω0

+ sign

[
b3

λ(b3λ + b4)

]
λ=iω0

}

= sign

{
b2

1 – 2b2 + 2ω2
0

b2
1ω

2
0 + (ω2

0 – b2)2 –
b2

3
b2

3ω
2
0 + b2

4

}
.

It follows from (4.7a)–(4.7b) that

(
ω2

0 – b2
)2 + b2

1ω
2
0 = b2

3ω
2
0 + b2

4,

which implies that

sign

{
d(Reλ)

dτ

}
λ=iω0

= sign

{
2ω2

0 + b2
1 – 2b2 – b2

3
b2

1ω
2
0 + (ω2

0 – b2)2

}
.

Therefore, if R∗
0 > 1 and a2(0) < 0, we have

d(Reλ)
dτ

∣∣∣∣
τ=τ0,ω=ω0

> 0.

By Rouché’s theorem [19], the root of the characteristic equation (4.1) crosses the imag-
inary axis from left to right as τ is increased continuously from a number less than τ0 to
a number greater than τ0. Therefore, both the transversality condition and the conditions
for Hopf bifurcation [16] are satisfied at τ = τ0. Thus, we obtain the following results for
system (1.2).

Theorem 4.4 Let m = 0, R∗
0 > 1 and A1 > 0. For system (1.2), we have the following results:

(i) If a2(0) > 0, then the positive equilibrium E∗ of system (1.2) is asymptotically stable
for all τ ≥ 0;
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(ii) If a2(0) < 0, then there exists a positive number τ0 such that the positive equilibrium
E∗ of system (1.2) is asymptotically stable for 0 < τ < τ0 and is unstable for τ > τ0. We
then obtain that system (1.2) undergoes a Hopf bifurcation at E∗ when τ = τ0.

5 Numerical simulations
In this section, we use numerical simulations to verify the theoretical results obtained in
previous sections.

The default parameters used in the simulations are as follows: r = 0.11, K = 10, a = 0.12,
h1 = 0.01, h2 = 0.01, ε = 0.7, and θ = 6. Here we use numerical simulations to compare
the dynamical behaviors of the model with and without delay-dependent coefficient. Four
groups of simulation results with different β and m are presented.

In simulation set (i), we choose β = 0.3 and m = 0.15 for the delay-dependent coeffi-
cient e–mτ . For simulation set (ii), we choose the same β = 0.3 and consider the dynamical
behaviors of the model without the delay-dependent coefficient. We then compare the
simulation results (i) and (ii) to reveal the effects of the delay-dependent coefficient on
the system’s dynamical behaviors. In simulation set (iii), we choose β = 0.2 and m = 0.15
for the delay-dependent coefficient e–mτ . Then simulation results (iv) of the model for the
same β = 0.2 with the absence of the delay-dependent coefficient are presented. We com-

Figure 2 Graph of function S0 (a). The positive equilibrium E∗ of system (1.2) is stable when τ = 0.4 (b),
τ = 5.4 (d), and unstable when τ = 0.6 (c). The other parameter values are r = 0.11, K = 10, β = 0.3, a = 0.12,
h1 = 0.01, h2 = 0.01,m = 0.15, θ = 6, and ε = 0.7. The initial condition for panels (b) and (c) is x0 = 8, y0 = 5.
Multiple initial conditions are used for panels (d)
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Figure 3 Graph of function S0 (a). The positive equilibrium E∗ of system (1.2) is stable when τ = 0.9 (b), and
unstable when τ = 3 (c), τ = 6 (d). The other parameter values are r = 0.11, K = 10, β = 0.3, a = 0.12, h1 = 0.01,
h2 = 0.01,m = 0, θ = 6, and ε = 0.7. Here the initial condition is x0 = 8, y0 = 5

pare the results (iii) and (iv) to consider the effects of the delay-dependent coefficient in
this scenario.

For parameter set (i), we have τmax ≈ 5.97 and I = [0, 5.97). The graph of S0(τ ) for τ ∈ I
is shown in Fig. 2(a). As indicated in Fig. 2(a), there are two positive critical values of the
delay τ , denoted by τ ∗ and τ ∗∗, respectively. Here, τ ∗ ≈ 0.5 and τ ∗∗ ≈ 5.1.

(1a) For τ = 0, as indicated in Fig. 1(a), the positive equilibrium of system (1.1) is stable.
(1b) For τ = 0.4 < τ ∗, the positive equilibrium of system (1.2) is stable (see Fig. 2(b)).
(1c) For τ = 0.6 ∈ (τ ∗, τ ∗∗), the positive equilibrium of system (1.2) is unstable and there

is a Hopf bifurcation when τ = τ ∗ (see Fig. 2(c)).
(1d) For τ = 5.1 ∈ (τ ∗∗, τmax), the positive equilibrium of system (1.2) is stable

(see Fig. 2(d)).
For parameter set (ii), we have τ ∗ ≈ 1 (see Fig. 3(a)).
(2a) For τ = 0, the positive equilibrium of system (1.1) is stable (see Fig. 1(a)).
(2b) For τ = 0.9 < τ ∗, the positive equilibrium of system (1.2) is stable (see Fig. 3(b)).
(2c) For τ = 3.6 > τ ∗, the positive equilibrium of system (1.2) is unstable

(see Fig. 3(c), (d)).
For parameter set (iii), we obtain τmax ≈ 3.27 and I = [0, 3.27). The graph of function

S0(τ ) for τ ∈ I is displayed in Fig. 4(a). As indicated in Fig. 4(a), there is only one positive
critical value of the delay τ , denoted by τ ∗. Here, τ ∗ ≈ 2.4.
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Figure 4 Graph of function S0 (a). The positive equilibrium E∗ of system (1.2) is unstable when τ = 1 (b),
τ = 2.65 (d), and stable when τ = 2 (c). The other parameter values are r = 0.11, K = 10, β = 0.2, a = 0.12,
h1 = 0.01, h2 = 0.01,m = 0.15, θ = 6, and ε = 0.7. The initial condition for panels (b) and (c) is x0 = 8, y0 = 5.
Multiple initial conditions are used for panels (d)

(3a) For τ = 0, as indicated in Fig. 1(b), the positive equilibrium of system (1.1) is
unstable.

(3b) For τ = 1, 2 < τ ∗, the positive equilibrium of system (1.2) is unstable
(see Fig. 4(b), (c)).

(3c) For τ = 2.65 ∈ (τ ∗, τmax), the positive equilibrium of system (1.2) is stable and there
is a Hopf bifurcation when τ = τ ∗ (see Fig. 4(d)).

For parameter set (iv), as shown in Fig. 5(a), there are no positive critical values of the
delay τ .

(4a) When τ = 0, as indicated in Fig. 1(b), the positive equilibrium of system (1.1) is
unstable.

(4b) When τ = 1, 2.65, 10, the positive equilibrium of system (1.2) is always unstable
(see Fig. 5(b), (c), (d)).

Bifurcation diagram Fig. 6 shows the evolution of the dynamics of system (1.2) for m = 0
with the variation of time delay. For small time delay τ , the interior equilibrium of the
system is stable. The stability of the interior equilibrium changes at τ ≈ 1. As indicated in
the figure, for large τ , the interior equilibrium is no longer stable and the system displays
cycling behaviors.
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Figure 5 Graph of function S0 (a). The positive equilibrium E∗ of system (1.2) is always unstable when τ = 1
(b), τ = 2.56, (c) or τ = 10 (d). The other parameter values are r = 0.11, K = 10, β = 0.2, a = 0.12, h1 = 0.01,
h2 = 0.01,m = 0, θ = 6, and ε = 0.7. Here, the initial condition is x0 = 8, y0 = 5

Figure 6 Bifurcation diagram of system (1.2) with the variation of delay τ for r = 0.11, K = 10, β = 0.3, a = 0.12,
h1 = 0.01, h2 = 0.01,m = 0, θ = 6, and ε = 0.7

6 Conclusions
In conclusion, the positive equilibrium of DDEs with delay-dependent coefficient dis-
plays stability switches and is ultimately stable under some conditions, indicating that a
long delay stabilizes the interior equilibrium [18]. However, a DDEs model without delay-
dependent coefficient usually behaves differently.
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