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Abstract
We study a discrete-time model with diffusion that describe the dynamics of viral
infections by using nonstandard finite difference (NSFD) scheme. The original model
we considered was a viral infection model with cellular infection and general
nonlinear incidence. We analyze thoroughly the dynamical properties of both
discrete and original continuous models and show that the discrete system is
dynamically consistent with the original continuous model, including positivity and
boundedness of solutions, equilibria, and their global properties. The results imply
that the NSFD scheme can efficiently preserve the global dynamics properties of the
corresponding continuous model. Some numerical simulations are carried out to
validate the theoretical results.
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1 Introduction
The classical within-host virus dynamics model is a system that includes three variables:

uninfected cells T(t), infected cells I(t), and free virus particles V (t) at time t (see [1, 2]).
However, to take some features into consideration of a real system, such as delay between
the moment of infection and the moment when the infected cell begins to produce the
virus, additional classes of cells may be added to the system. For instance, for cells in the
latent state an additional class, the class of exposed cells W (t) has been introduced in [3],
and the model reads as follows:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

T ′ = λ – dT(t) – β1T(t)V (t),

W ′ = β1X(t)V (t) – (δ + γ )W (t),

I ′ = γ W (t) – pI(t),

V ′ = kI(t) – cV (t),

(1)

where T(t), W (t), I(t), and V (t) denote concentrations of uninfected cells, exposed cells,
productively infected cells, and free virus particles at time t, respectively, λ is the recruit-
ment rate of the uninfected cells, β1 is the virus-to-cell infection rate. d, δ, p, and c are
the mortality rate of uninfected cells, exposed cells, infected cells, and free virus particles,
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respectively, and 1/γ is the average time of the latent state. Free virus is produced from
infected cells at the rate kI . The global dynamical behavior of model (1) has been studied
in [3] by constructing Lyapunov functions.

Recent study shows that the interaction between pathogens and the immune response
actually tends to be local within the body of infected hosts (see [4]). Hence, it is necessary
to study the effect of spatial structure on virus dynamics, and much attention has been
attracted by many researchers (see [5–9] and references therein). For example, Wang et
al. [5] considered the following model taking the random mobility of viruses into account:

⎧
⎪⎪⎨

⎪⎪⎩

∂T
∂t = λ – dT(x, t) – β1T(x, t)V (x, t),
∂I
∂t = β1T(x, t)V (x, t) – pI(x, t),
∂V
∂t = D�V (x, t) + kI(x, t) – cV (x, t),

(2)

where T(x, t), I(x, t), and V (x, t) denote the densities of uninfected cells, infected cells, and
free virus at position x at time t, respectively, D is the diffusion coefficient, and � is the
Laplacian operator.

Notice that the studies mentioned only focus on virus-to-cell spread in the bloodstream.
However, some works reveal that cell-to-cell infection is also vital to spread of virus in vivo
(see [10–14]). Motivated by this fact, some models have been proposed to investigate the
dynamics of within-host virus dynamics models to take both virus-to-cell and cell-to-cell
infections into consideration (see [15–20] and references therein). However, the bilinear
incidence rate is a simple description of the infection in the references mentioned. As
mentioned in [21], a general incidence rate may help us to gain the unification theory by
the omission of unessential details. Hence, inspired by the aforementioned work, we study
the following model with general nonlinear incidence:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂T
∂t = λ – dT(t, x) – β1T(x, t)f (V (x, t)) – β2T(x, t)g(I(x, t)),
∂W
∂t = β1T(x, t)f (V (x, t)) + β2T(x, t)g(I(x, t)) – (δ + γ )W (x, t),

∂I
∂t = γ W (x, t) – pI(x, t),
∂V
∂t = D�V (x, t) + kI(x, t) – cV (x, t).

(3)

Here, β2 is the cell-to-cell infection rate, and the other parameters have the same means
as in system (1). The incidences are assumed to be the nonlinear responses to the con-
centrations of virus particles and infected cells, taking the forms β1T(x, t)f (V (x, t)) and
β2T(x, t)g(I(x, t)), where f and g denote the forces of infection by virus particles and in-
fected cells and satisfy the following properties (see [22, 23]):

f (0) = g(0) = 0, f ′(V ) > 0, g ′(I) > 0, f ′′(V ) ≤ 0, g ′′(I) ≤ 0. (4)

It then follows from the mean value theorem that

f ′(V )V ≤ f (V ) ≤ f ′(0)V , g ′(I)I ≤ g(I) ≤ g ′(0)I, for I, V ≥ 0. (5)

Epidemiologically, condition (4) indicates that: (i) the disease cannot spread if there is
no infection; (ii) the incidences β1Tf (V ) and β2Tg(I) become faster as the densities of
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the virus particles and infected cells increase; (iii) the per capita infection rates by virus
particles and infected cells will slow down due to certain inhibition effect since (5) implies
that ( f (V )

V )′ ≤ 0 and ( g(I)
I )′ ≤ 0.

Obviously, the incidence rate with condition (4) contains the bilinear and saturation
incidences. Thus, models (1) and (2) can be regarded as two particular cases of model (3).

In this paper, we assume that model (3) is subject to the initial value conditions

T(x, 0) = ψ1(x) ≥ 0, W (x, 0) = ψ2(x) ≥ 0,

I(x, 0) = ψ3(x) ≥ 0, V (x, 0) = ψ4(x) ≥ 0, x ∈ 	,
(6)

and the Neumann boundary condition

∂V
∂�n = 0, t > 0, x ∈ ∂	, (7)

where 	 is a bounded domain in R
n with smooth boundary ∂	, and ∂

∂�n is an outward
normal vector of ∂	.

It is worth noticing that discrete epidemic models have also been paid much attention
by many researchers (see [24–26] and references therein). On one hand, discrete epidemic
models have advantages in describing an infectious disease in comparison with continuous
models since epidemic data are often collected at discrete times (such as daily, monthly,
yearly, etc.). On the other hand, for some certain practical purposes, it is often necessary
to obtain solutions of model (3) that describe the evolution of all variables with time. How-
ever, as we know, an exact analytical solution of differential equation system (3) is gener-
ally difficult or even impossible to be determined. Therefore, technical discretization is
needed to obtain good analytical approximations of the solutions (see [27]). Meanwhile,
we should keep in mind that the obtained discrete model should preserve the major dy-
namical properties of the original continuous model as much as possible. However, since
a discrete model generally can exhibit more complicated dynamical behavior than con-
tinuous models such as bifurcations and chaos (see [25, 28] and references therein). For-
tunately, a nonstandard finite difference scheme (NSFD) has been proposed by Mickens
[29] and received much attention (see [20, 30–38] and references therein). One important
advantage of Mickens’ scheme is that it performs well in preserving the major dynami-
cal properties of the approximated original continuous models (see [20, 35–38]). More
recently, Qin et al. [38] applied the NSFD scheme to discretized system (2) and showed
that the discrete model has the same dynamics as the original system. Hence, following
the idea of [29, 38], by applying the NSFD scheme to system (3) we obtain the following
discrete system:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Tm
n+1–Tm

n
�t = λ – dTm

n+1 – β1Tm
n+1f (V m

n ) – β2Tm
n+1g(Im

n ),
W m

n+1–W m
n

�t = β1Tm
n+1f (V m

n ) + β2Tm
n+1g(Im

n ) – (δ + γ )W m
n+1,

Im
n+1–Im

n
�t = γ W m

n+1 – pIm
n+1,

V m
n+1–V m

n
�t = D V m+1

n+1 –2V m
n+1+V m–1

n+1
(�x)2 + kIm

n+1 – cV m
n+1.

(8)

Here we assume that x ∈ 	 = [a, b], �t > 0 is the time step size, and �x = b–a
N is the space

stepsize with positive integer N . Denote the mesh points as {(tn, xm), m = 0, 1, 2, . . . , N ,
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n ∈ N}, where tn = n�t and xm = a + m�x. Let (Tm
n , W m

n , Im
n , V m

n ) be the approximations
of the solution (T(xm, tn), W (xm, tn), I(xm, tn), V (xm, tn)) of system (3) at each point. For
convenience, we use an (N + 1)-dimensional vector

Un =
(
U0

n , U1
n , . . . , UN

n
)T

to represent the approximation T , W , I , or V at time tn, the notation (·)T for the transpo-
sition of a vector, and the notation U ≥ 0, meaning that all components of a vector U are
nonnegative. The discrete initial conditions take the form

Tm
0 = ψ1(xm) ≥ 0, W m

0 = ψ2(xm) ≥ 0, Im
0 = ψ3(xm) ≥ 0,

V m
0 = ψ4(xm) ≥ 0 for m ∈ {0, 1, . . . , N},

(9)

and the discrete boundary conditions take the form

V –1
n = V 0

n , V N
n = V N+1

n for n ∈N.

The goal of this paper is to show that the discrete system (8) by using Mickens’ scheme
can efficiently preserve the global asymptotic stability of the equilibria to the correspond-
ing continuous system (3). The organization of this paper is as follows. In Sect. 2, we study
the global dynamics of the continuous system (3). In Sect. 3, we investigate the global dy-
namics of the discrete system (8). It is then followed by numerical simulations in Sect. 4.
A brief conclusion ends the paper.

2 Dynamics behavior of system (3)
In this section, we study the threshold dynamics of the diffused system (3). First, we es-
tablish the global existence, positivity, and boundedness of solutions.

Theorem 2.1 For any given initial data satisfying condition (6), there exists a unique so-
lution of problem (3)–(7) defined on [0, +∞), and this solution remains nonnegative and
bounded for all t > 0.

Proof The system can be written abstractly in the Banach space X = C(	̄)×C(	̄) in the
form

U ′(t) = AU(t) + F
(
U(t)

)
, t > 0,

U(0) = U0 ∈ X,
(10)

where U = col(T , W , I, V ), U0 = col(ψ1,ψ2,ψ3,ψ4), AU = col(0, 0, 0, D�V ), and

F
(
U(t)

)
=

⎛

⎜
⎜
⎜
⎝

λ – dT(t, x) – β1T(x, t)f (V (x, t)) – β2T(x, t)g(I(x, t))
β1T(x, t)f (V (x, t)) + β2T(x, t)g(I(x, t)) – (δ + γ )W (x, t)

γ W (x, t) – pI(x, t)
kI(x, t) – cV (x, t)

⎞

⎟
⎟
⎟
⎠

.

It is clear that F is locally Lipschitz in X. It follows from [39] that system (3) admits a
unique local solution on [0, Tmax), where Tmax is the maximal existence time for solution
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of system (3). In addition, system (3) can be written in the form

∂T
∂t

= F1(T , W , I, V ),

∂W
∂t

= F2(T , W , I, V ),

∂I
∂t

= F3(T , W , I, V ),

∂V
∂t

– D�V (x, t) = F4(T , W , I, V ).

It is easy to see that the functions Fi(T , W , I, V ), 1 ≤ i ≤ 4, are continuously dif-
ferentiable and satisfy the following conditions: F1(0, W , I, V ) = λ ≥ 0, F2(T , 0, I, V ) =
β1T(x, t)f (V (x, t)) +β2T(x, t)g(I(x, t)) ≥ 0, F3(T , W , 0, V ) = γ W ≥ 0, F4(T , W , I, 0) = kI ≥ 0
for all T ≥ 0, W ≥ 0, I ≥ 0, V ≥ 0. Since the initial data of system (3) are nonnegative, and
from [40] we deduce the positivity of the local solution.

Next, we show the boundedness of solution. Let G(x, t) = T(x, t) + W (x, t) + I(x, t). Then
follows from system (3) that

∂G(x, t)
∂t

= λ – dT – δW – pI

≤ λ – μG(x, t),

where μ = min{d, δ, p}. Then we have

G(x, t) ≤ G(x, 0)e–μt +
λ

μ

(
1 – e–μt).

Thus, T , W , and I are bounded. To proceed, it remains to prove the boundedness of V .
From system (3) we have

⎧
⎪⎪⎨

⎪⎪⎩

∂V
∂t – D�V = kI – cV ,
∂V
∂�n = 0,

V (x, 0) = ψ4(x) ≤ ‖ψ4‖∞ = maxx∈	̄ ψ4(x).

(11)

By the comparison principle (see [41]) we obtain that V (x, t) ≤ Ṽ (t), where Ṽ (t) =
ψ4(x)e–ct + k

c ‖I‖(1 – e–ct) is the solution of the problem

⎧
⎨

⎩

dṼ
dt = k‖I‖ – cṼ ,

Ṽ (0) = ‖ψ4‖∞.

Then the boundedness of V is deduced from Ṽ (t) ≤ max{ k
c ‖I‖,‖ψ4‖∞ for (x, t) ∈ 	̄ ×

[0, Tmax)}. Therefore, we have proved that T(x, t), W (x, t), I(x, t), and V (x, t) are bounded
on 	̄×[0, Tmax). Thus, it follows from the standard theory for semilinear parabolic systems
(see [42]) that Tmax = +∞. This completes the proof. �
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It is easy to see that system (3) has an infection-free steady state E0 = (T0, 0, 0, 0) with
T0 = λ

d . This is the only biologically meaningful equilibrium if

R0 =
λγ (β1kf ′(0) + β2cg ′(0))

dpc(δ + γ )
< 1,

which is the basic reproduction number of system (3). It then follows from system (3) that
a positive steady state E∗ = (T∗, W∗, I∗, V∗) must satisfy the following equations:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

λ = dT + β1Tf (V ) + β2Tg(I),

β1Tf (V ) + β2Tg(I) = (δ + γ )W ,

γ W = pI,

kI = cV .

(12)

Then we obtain that

λ – dT =
cp(δ + γ )V

kγ
, W =

pcV
γ k

, I =
cV
k

. (13)

This means that in order to have T ≥ 0, W , V > 0 at a steady state, we must have V ∈
(0, λkγ

pc(δ+γ ) ]. Substitution of the second and third equations of (13) into the second equation
of (12) gives

T =
(δ + γ )pcV

kγ (β1f (V ) + β2g( cV
k ))

.

Further, by substituting it into the first equation of (12) direct calculation yields

0 = λ –
pc(δ + γ )V

kγ
–

dpc(δ + γ )V
kγ (β1f (V ) + β2g( c

k V ))
=: F(V ). (14)

From (5) we have f (V ) – Vf ′(V ) ≥ 0 and g(I) – Ig ′(I) ≥ 0. Thus, for all V > 0, we obtain that

F ′(V ) = –
(δ + γ )pc

kγ
–

dpc(δ + γ )[β1(f (V ) – Vf ′(V )) + β2(g( cV
k ) – c

k g ′( cV
k ))]

kγ (β1f (V ) + β2g( cV
k ))2

< 0.

Furthermore, from (14) we have

lim
V→0+

F(V ) =
dpc(δ + γ )(R0 – 1)

γ (β1kf ′(0) + β2cg ′(0))
,

F
(

λkγ

pc(δ + γ )

)

= –
dpc(δ + γ )V

kγ (β1f ( λkγ

pc(δ+γ ) ) + β2g( λγ

p(δ+γ ) ))
< 0.

It follows that an infection steady state E∗ = (T∗, W∗, I∗, V∗) exists when R0 > 1.

Theorem 2.2 For system (3), we have:
(i) If R0 ≤ 1, then there exists a unique infection-free equilibrium E0;

(ii) If R0 > 1, then there exists a unique infection equilibrium E∗ besides E0.
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2.1 Global stability analysis
In this subsection, we establish the global asymptotic stability of the two steady states of
system (3) by constructing Lyapunov functions.

Theorem 2.3 If R0 ≤ 1, then the infection-free steady state E0 is globally asymptotically
stable.

Proof We construct a Lyapunov function as follows:

L1 =
∫

	

[

T(x, t) – T0 – T0 ln
T(x, t)

T0
+ W (x, t) +

δ + γ

r
I(x, t) +

β1T0f ′(0)
R0c

V (x, t)
]

dx.

Calculating dL1
dt along the solutions of system (3) and applying λ = dT0 and

∫

	
�V (x, t) dx =

0, we have

dL1

dt
=

∫

	

[(

1 –
T0

T(x, t)

)
(
λ – dT(x, t) – β1T(x, t)f

(
V (x, t)

)
– β2T(x, t)g

(
I(x, t)

))

+ β1T(x, t)f
(
V (x, t)

)
+ β2T(x, t)g

(
I(x, t)

)
– (δ + γ )W (x, t)

+
δ + γ

γ

(
γ W (x, t) – pI(x, t)

)
+

β1T0f ′(0)
R0c

(
kI(x, t) – cV (x, t)

)
]

dx

=
∫

	

[

dT0

(

1 –
T0

T(x, t)

)(

1 –
T(x, t)

T0

)

+ β1T0f
(
V (x, t)

)
+ β2T0g

(
I(x, t)

)

–
β1T0f ′(0)

R0
V (x, t) –

β2T0g ′(0)
R0

I(x, t)
]

dx

≤
∫

	

[

dT0

(

1 –
T0

T(x, t)

)(

1 –
T(x, t)

T0

)

+
β1T0f ′(0)

R0
(R0 – 1)V (x, t)

+
β2T0g ′(0)

R0
(R0 – 1)I(x, t)

]

dx.

Here, we used condition (5). Therefore, if R0 ≤ 1, then dL1
dt ≤ 0. Furthermore, it can be

shown that the largest invariant subset of { dL1
dt = 0} is the singleton {E0}. Using LaSalle’s

invariance principle, we derive that E0 is globally asymptotically stable. This completes
the proof. �

Theorem 2.4 If R0 > 1, then the infection steady state E∗ is globally asymptotically stable.

Proof We construct a Lyapunov function as follows:

L2 =
∫

	

[

T(x, t) – T∗ – T∗ ln
T(x, t)

T∗
+ W (x, t) – W∗ – W∗ ln

W (x, t)
W∗

+
δ + γ

γ

(

I(x, t) – I∗ – I∗ ln
I(x, t)

I∗

)

+
β1T∗f (V∗)

kI∗

(

V (x, t) – V∗ – V∗ ln
V (x, t)

V∗

)]

dx.
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Calculating the time derivative of L2 along the trajectories of system (3), we obtain

dL2

dt
=

∫

	

[(

1 –
T∗

T(x, t)

)
(
λ – dT(x, t) – β1T(x, t)f

(
V (x, t)

)
– β2T(x, t)g

(
I(x, t)

))

+
(

1 –
W∗

W (x, t)

)
(
β1T(x, t)f

(
V (x, t)

)
+ β2T(x, t)g

(
I(x, t)

)
– (δ + γ )W (x, t)

)

+
δ + γ

γ

(

1 –
I∗

I(x, t)

)
(
γ W (x, t) – pI(x, t)

)

+
β1T∗f (V∗)

kI∗

(

1 –
V∗

V (x, t)

)
(
D�V (x, t) + kI(x, t) – cV (x, t)

)
]

dx.

Using the equilibrium conditions for E∗

(δ + γ )W∗ = β1T∗f (V∗) + β2T∗g(I∗), γ W∗ = pI∗, kI∗ = cV∗,

we have

dL2

dt
=

∫

	

[

dT∗
(

1 –
T∗

T(x, t)

)(

1 –
T(x, t)

T∗

)

+
(

1 –
T∗

T(x, t)

)

× (
β1T∗f (V∗) + β2T∗g(I∗) – β1T(x, t)f

(
V (x, t)

)
– β2T(x, t)g

(
I(x, t)

))

+
(

1 –
W∗

W (x, t)

)(

β1T(x, t)f
(
V (x, t)

)
+ β2T(x, t)g

(
I(x, t)

)

–
(
β1T∗f (V∗) + β2T∗g(I∗)

)W (x, t)
W∗

)

+
(
β1T∗f (V∗) + β2T∗g(I∗)

)

×
(

1 –
I∗

I(x, t)

)(
W (x, t)

W∗
–

I(x, t)
I∗

)

+ β1T∗f (V∗)
(

1 –
V∗

V (x, t)

)

×
(

I(x, t)
I∗

–
V (x, t)

V∗

)

+
β1T∗f (V∗)

kI∗
D�V (x, t)

(

1 –
V∗

V (x, t)

)]

dx.

Recalling that
∫

	
�V (x, t) dx = 0 and

∫

	

�V (x,t)
V (x,t) dx =

∫

	

‖∇V (x,t)‖2

V 2(x,t) dx, we have

dL2

dt
=

∫

	

[

dT∗
(

1 –
T∗

T(x, t)

)(

1 –
T(x, t)

T∗

)

+ β1T∗f (V∗)
(

4 –
T∗

T(x, t)

–
I∗W (x, t)
I(x, t)W∗

–
T(x, t)f (V (x, t))W∗

T∗f (V∗)W (x, t)
–

I(x, t)V∗
I∗V (x, t)

+
f (V (x, t))

f (V∗)
–

V (x, t)
V∗

)

+ β2T∗g(I∗)
(

3 –
T∗

T(x, t)
–

I∗W (x, t)
I(x, t)W∗

–
T(x, t)g(I(x, t))W∗

T∗g(I∗)W (x, t)

+
g(I(x, t))

g(I∗)
–

I(x, t)
I∗

)]

dx –
β1T∗f (V∗)

kI∗
DV∗

∫

	

‖∇V (x, t)‖2

V 2(x, t)
dx

=
∫

	

{

dT∗
(

1 –
T∗

T(x, t)

)(

1 –
T(x, t)

T∗

)

+ β1T∗f (V∗)
[

ϕ

(
T∗

T(x, t)

)

+ ϕ

(
W (x, t)I∗
W∗I(x, t)

)

+ ϕ

(
I(x, t)V∗
I∗V (x, t)

)

+ ϕ

(
T(x, t)f (V (x, t))W∗

T∗f (V∗)W (x, t)

)

+
f (V (x, t))

f (V∗)
–

V (x, t)
V∗

+ ln
f (V∗)V (x, t)
f (V (x, t))V∗

]

+ β2T∗g(I∗)
[

ϕ

(
T∗

T(x, t)

)
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+ ϕ

(
I∗W (x, t)
I(x, t)W∗

)

+ ϕ

(
T(x, t)g(I(x, t))W∗

T∗g(I∗)W (x, t)

)

+
g(I(x, t))

g(I∗)
–

I(x, t)
I∗

+ ln
g(I∗)I(x, t)
g(I(x, t))I∗

]}

dx –
β1T∗f (V∗)

kI∗
DV∗

∫

	

‖∇V (x, t)‖2

V 2(x, t)
dx

=
∫

	

{

dT∗
(

1 –
T∗

T(x, t)

)(

1 –
T(x, t)

T∗

)

+ β1T∗f (V∗)
[

ϕ

(
T∗

T(x, t)

)

+ ϕ

(
W (x, t)I∗
W∗I(x, t)

)

+ ϕ

(
I(x, t)V∗
I∗V (x, t)

)

+ ϕ

(
T(x, t)f (V (x, t))W∗

T∗f (V∗)W (x, t)

)

+ ϕ

(
f (V∗)V (x, t)
f (V (x, t))V∗

)

+
(

f (V (x, t))
f (V∗)

–
V (x, t)

V∗

)(

1 –
f (V∗)

f (V (x, t))

)]

+ β2T∗g(I∗)
[

ϕ

(
T∗

T(x, t)

)

+ ϕ

(
I∗W (x, t)
I(x, t)W∗

)

+ ϕ

(
T(x, t)g(I(x, t))W∗

T∗g(I∗)W (x, t)

)

+ ϕ

(
g(I∗)I(x, t)
g(I(x, t))I∗

)

+
(

g(I(x, t))
g(I∗)

–
I(x, t)

I∗

)(

1 –
g(I∗)

g(I(x, t))

)]}

dx

–
β1T∗f (V∗)

kI∗
DV∗

∫

	

‖∇V (x, t)‖2

V 2(x, t)
dx,

where ϕ(x) = 1 + ln x – x (x > 0) which has a global maximum at x = 1 and satisfies ϕ(1) = 0.
Moreover, from conditions (5) we easily obtain the following inequalities:

f (V )
f (V∗)

≥ V
V∗

for V ≤ V∗,
f (V )
f (V∗)

≤ V
V∗

for V ≥ V∗,

g(I)
g(I∗)

≥ I
I∗

for I ≤ I∗,
g(I)
g(I∗)

≤ I
I∗

for I ≥ I∗,

which imply that

(
f (V )
f (V∗)

–
V
V∗

)(

1 –
f (V∗)
f (V )

)

≤ 0,
(

g(I)
g(I∗)

–
I
I∗

)(

1 –
g(I∗)
g(I)

)

≤ 0.

Then, it follows that dL2
dt ≤ 0, and dL2

dt = 0 if and only if T = T∗, W = W∗, I = I∗, and V = V∗.
Hence, the largest invariant subset of { dL2

dt = 0} is the singleton {E∗}. Thus, the global
asymptotic stability of the infection steady state E∗ follows from LaSalle’s invariance prin-
ciple. This completes the proof. �

3 Dynamics behavior of system (8)
The global asymptotic stability of the equilibria for the continuous system (3) have been
obtained by constructing Lyapunov functions in Sect. 2. A natural question is whether the
discrete system (8) can efficiently preserve the global asymptotic stability of the equilibria
for corresponding continuous system (3). In this section, we deal with this problem.

It is easy to verify that system (8) has the same equilibria as system (3). We also denote the
two equilibria as E0 = (T0, 0, 0, 0) and E∗ = (T∗, W∗, I∗, V∗). Rearranging the formulations



Xu et al. Advances in Difference Equations  (2018) 2018:108 Page 10 of 17

in equations of (8) yields

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Tm
n+1 = λ�t+Tm

n
1+�t(d+β1f (V m

n )+β2g(Im
n )) ,

W m
n+1 = W m

n +�t(β1Tm
n+1f (V m

n )+β2Tm
n+1g(Im

n ))
1+�t(δ+γ ) ,

Im
n+1 = Im

n +�tγ W m
n+1

1+�tp ,

AVn+1 = Vn + k�tIn+1,

(15)

where the square matrix A of dimension (N + 1) × (N + 1) is given by

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

c1 c2 0 · · · 0 0 0
c2 c3 c2 · · · 0 0 0
0 c2 c3 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · c3 c2 0
0 0 0 · · · c2 c3 c2

0 0 0 · · · 0 c2 c1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

with c1 = 1 + D�t/(�x)2 + c�t, c2 = –D�t/(�x)2, and c3 = 1 + 2D�t/(�x)2 + c�t. Hence,
A is nonsingular, and the last equation of system (15) is equivalent to

Vn+1 = A–1(Vn + k�tIn+1).

Since all parameters in (8) are positive, it is clear that if the initial values satisfy Tn ≥ 0,
Wn ≥ 0, In ≥ 0, Vn ≥ 0, then the solution remains positive for all m ≥ 0 by mathematical
induction. Therefore, we can obtain the following result.

Theorem 3.1 Given �t > 0 and �x > 0, the solutions of system (8) satisfy Tn ≥ 0, Wn ≥ 0,
In ≥ 0, Vn ≥ 0 for all n ∈N.

3.1 Global stability
In this subsection, we establish the global stability of the infection-free steady state and
the infection steady state of system (8) by constructing discrete Lyapunov functions.

Theorem 3.2 Given �t > 0 and �x > 0, if R0 ≤ 1, then the infection-free equilibrium E0

of system (8) is globally asymptotically stable.

Proof Define a discrete Lyapunov function

Gn =
N∑

m=0

1
�t

[

Tm
n – T0 – T0 ln

Tm
n

T0
+ W m

n +
δ + γ

γ

(

1 +
γ

δ + γ

β2T0g ′(0)
R0

�t
)

Im
n

+
β1T0f ′(0)

cR0
(1 + c�t)V m

n

]

.

Since x – 1 ≥ ln x for all x > 0, it is clear that Gn ≥ 0 for all n ∈N. Then we have

Gn+1 – Gn =
N∑

m=0

1
�t

[

Tm
n+1 – Tm

n + T0 ln
Tm

n
Tm

n+1
+ W m

n+1 – W m
n
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+
δ + γ

γ

(

1 +
γ

δ + γ

β2T0g ′(0)
R0

�t
)

× (
Im

n+1 – Im
n

)

+
β1T0f ′(0)

cR0
(1 + c�t)

(
V m

n+1 – V m
n

)
]

≤
N∑

m=0

1
�t

[(

1 –
T0

Tm
n+1

)
(
Tm

n+1 – Tm
n

)
+ W m

n+1 – W m
n

+
δ + γ

γ

(

1 +
γ

δ + γ

β2T0g ′(0)
R0

�t
)

× (
Im

n+1 – Im
n

)

+
β1T0f ′(0)

cR0
(1 + c�t)

(
V m

n+1 – V m
n

)
]

=
N∑

m=0

[(

1 –
T0

Tm
n+1

)
(
dT0 – dTm

n+1 – β1Tm
n+1f

(
V m

n
)

– β2Tm
n+1g

(
Im

n
))

+ β1Tm
n+1f

(
V m

n
)

+ β2Tm
n+1g

(
Im

n
)

– (δ + γ )W m
n+1 +

δ + γ

γ

(
γ W m

n+1 – pIm
n+1

)

+
β2T0g ′(0)

R0

(
Im

n+1 – Im
n

)
+

β1T0f ′(0)
cR0

(
kIm

n+1 – cV m
n+1

)

+
β1T0f ′(0)

R0

(
V m

n+1 – V m
n

)
+

β1T0f ′(0)D
cR0(�x)2

(
V m+1

n+1 – 2V m
n+1 + V m–1

n+1
)
]

≤
N∑

m=0

[

dT0

(

1 –
T0

Tm
n+1

)(

1 –
Tm

n+1
T0

)

+
β1T0f ′(0)

R0
(R0 – 1)V m

n

+
β2T0g ′(0)

R0
(R0 – 1)Im

n

]

+
β1T0f ′(0)D
cR0(�x)2

(
V N+1

n+1 – V N
n+1 + V –1

n+1 – V 0
n+1

)

=
N∑

m=0

[

dT0

(

1 –
T0

Tm
n+1

)(

1 –
Tm

n+1
T0

)

+
β1T0f ′(0)

R0
(R0 – 1)V m

n

+
β2T0g ′(0)

R0
(R0 – 1)Im

n

]

.

It then follows that if R0 ≤ 1, then

Gn+1 – Gn ≤ 0

for all n ∈N, which implies that Gn is a decreasing sequence. Since Gn ≥ 0, there is a limit
limn→∞ Gn ≥ 0, which yields limn→∞(Gn+1 – Gn) = 0. Thus, we have:

(1) If R0 < 1, then it follows from limn→∞(Gn+1 – Gn) = 0 that limn→∞ Tm
n = T0 and

limn→∞ Im
n = limn→∞ V m

n = 0. Further, from system (8) we have limn→∞ W m
n = 0.

(2) If R0 = 1, then it follows from limn→∞(Gn+1 – Gn) = 0 that limn→∞ Tm
n = T0. By the

first equation of system (8) we obtain that β1T0f (V m
n ) + β2T0g(Im

n ) = 0. Since T0 > 0,
then from (4) we have Im

n = V m
n = 0. Furthermore, from the second equation of

system (8) we obtain that W m
n = 0.

Thus, we conclude that if R0 ≤ 1, then E0 is globally asymptotically stable. This completes
the proof. �

Theorem 3.3 Given �t > 0 and �x > 0, the infection equilibrium E∗ of system (8) is glob-
ally asymptotically stable when R0 > 1.
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Proof Define a discrete Lyapunov function

G̃n =
N∑

m=0

1
�t

{

Tm
n – T∗ – T∗ ln

Tm
n

T∗
+ W m

n – W∗ – W∗ ln
W m

n
W∗

+
δ + γ

γ

(

Im
n – I∗ – I∗ ln

Im
n
I∗

)

+
β1T∗f (V∗)

kI∗

(

V m
n – V∗ – V∗ ln

V m
n

V∗

)

+ �tβ1T∗f (V∗)ϕ
(

f (V m
n )

f (V∗)

)

+ �tβ2T∗g(I∗)ϕ
(

g(Im
n )

g(I∗)

)}

,

where ϕ(x) = x – 1 – ln x (x > 0) has a global minimum at x = 1 and satisfies ϕ(1) = 0.
The difference of G̃n satisfies

G̃n+1 – G̃n =
N∑

m=0

1
�t

{

Tm
n+1 – Tm

n + T∗ ln
Tm

n
Tm

n+1
+ W m

n+1 – W m
n + W∗ ln

W m
n

W m
n+1

+
δ + γ

γ

(

Im
n+1 – Im

n + I∗ ln
Im

n
Im

n+1

)

+
β1T∗f (V∗)

kI∗

(

V m
n+1 – V m

n

+ V∗ ln
V m

n
V m

n+1

)

+ �tβ1T∗f (V∗)
(

f (V m
n+1)

f (V∗)
–

f (V m
n )

f (V∗)
+ ln

f (V m
n )

f (V m
n+1)

)

+ �tβ2T∗g(I∗)
(

g(Im
n+1)

g(I∗)
–

g(Im
n )

g(I∗)
+ ln

g(Im
n )

g(Im
n+1)

)}

≤
N∑

m=0

1
�t

{(

1 –
T∗

Tm
n+1

)
(
Tm

n+1 – Tm
n

)
+

(

1 –
W∗

W m
n+1

)
(
W m

n+1 – W m
n

)

+
δ + γ

γ

(

1 –
I∗

Im
n+1

)
(
Im

n+1 – Im
n

)
+

β1T∗f (V∗)
kI∗

(

1 –
V∗

V m
n+1

)

× (
V m

n+1 – V m
n

)
+ �tβ1T∗f (V∗)

(
f (V m

n+1)
f (V∗)

–
f (V m

n )
f (V∗)

+ ln
f (V m

n )
f (V m

n+1)

)

+ �tβ2T∗g(I∗)
(

g(Im
n+1)

g(I∗)
–

g(Im
n )

g(I∗)
+ ln

g(Im
n )

g(Im
n+1)

)}

=
N∑

m=0

{(

1 –
T∗

Tm
n+1

)
(
λ – dTm

n+1 – β1Tm
n+1f

(
V m

n
)

– β2Tm
n+1g

(
Im

n
))

+
(

1 –
W∗

W m
n+1

)
(
β1Tm

n+1f
(
V m

n
)

+ β2Tm
n+1g

(
Im

n
)

– (δ + γ )W m
n+1

)

+
δ + γ

γ

(

1 –
I∗

Im
n+1

)
(
γ W m

n+1 – pIm
n+1

)

+
β1T∗f (V∗)

kI∗

(

1 –
V∗

V m
n+1

)(

D
V m+1

n+1 – 2V m
n+1 + V m–1

n+1
(�x)2 + kIm

n+1 – cV m
n+1

)

+ β1T∗f (V∗)
(

f (V m
n+1)

f (V∗)
–

f (V m
n )

f (V∗)
+ ln

f (V m
n )

f (V m
n+1)

)

+ β2T∗g(I∗)
(

g(Im
n+1)

g(I∗)
–

g(Im
n )

g(I∗)
+ ln

g(Im
n )

g(Im
n+1)

)}

.
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Using the equilibrium condition (12) for E∗, we obtain that

G̃n+1 – G̃n ≤
N∑

m=0

{

dT∗
(

1 –
T∗

Tm
n+1

)(

1 –
Tm

n+1
T∗

)

+
(
β1T∗f (V∗) + β2T∗g(I∗)

)

×
(

1 –
T∗

Tm
n+1

)

+
(
β1Tm

n+1f
(
V m

n
)

+ β2Tm
n+1g

(
Im

n
))

(
T∗

Tm
n+1

– 1
)

+
(
β1Tm

n+1f
(
V m

n
)

+ β2Tm
n+1g

(
Im

n
))

(

1 –
W∗

W m
n+1

)

+
(
β1T∗f (V∗) + β2T∗g(I∗)

)
(

1 –
W m

n+1
W∗

)

+
(
β1T∗f (V∗) + β2T∗g(I∗)

)
(

1 –
I∗

Im
n+1

)(
W m

n+1
W∗

–
Im

n+1
I∗

)

+ β1T∗f (V∗)
(

1 –
V∗

V m
n+1

)(
Im

n+1
I∗

–
V m

n+1
V∗

)

+ β1T∗f (V∗)
(

f (V m
n+1)

f (V∗)
–

f (V m
n )

f (V∗)
+ ln

f (V m
n )

f (V m
n+1)

)

+ β2T∗g(I∗)
(

g(Im
n+1)

g(I∗)
–

g(Im
n )

g(I∗)
+ ln

g(Im
n )

g(Im
n+1)

)}

+
N∑

m=0

Dβ1T∗f (V∗)
kI∗(�x)2

(

1 –
V∗

V m
n+1

)
(
V m+1

n+1 – 2V m
n+1 + V m–1

n+1
)

=
N∑

m=0

{

dT∗
(

1 –
T∗

Tm
n+1

)(

1 –
Tm

n+1
T∗

)

+ β2T∗f (V∗)
[

4 –
T∗

Tn+1

–
Tn+1f (V m

n )W∗
T∗f (V∗)W m

n+1
–

I∗W m
n+1

Im
n+1W∗

–
V∗Im

n+1
V m

n+1I∗
+

f (V m
n+1)

f (V∗)
–

V m
n+1

V∗

+ ln
f (V m

n )
f (V m

n+1)

]

+ β2T∗g(I∗)
[

3 –
T∗

Tm
n+1

–
Tm

n+1g(Im
n )W∗

T∗g(I∗)W m
n+1

–
I∗W m

n+1
Im

n+1W∗
+

g(Im
n+1)

g(I∗)
–

Im
n+1
I∗

+ ln
g(Im

n )
g(Im

n+1)

]}

–
N–1∑

m=0

DV∗β1T∗f (V∗)
kI∗(�x)2

(V m+1
n+1 – V m

n+1)2

V m+1
n+1 V m

n+1

=
N∑

m=0

{

dT∗
(

1 –
T∗

Tm
n+1

)(

1 –
Tm

n+1
T∗

)

+ β1T∗f (V∗)
[

–ϕ

(
T∗

Tm
n+1

)

– ϕ

(
Tm

n+1f (V m
n )W∗

T∗f (V∗)W m
n+1

)

– ϕ

(
I∗W m

n+1
Im

n+1W∗
)

– ϕ

(
V∗Im

n+1
V m

n+1I∗

)

+
f (V m

n+1)
f (V∗)

–
V m

n+1
V∗

+ ln
f (V∗)V m

n+1
f (V m

n+1)V∗

]

+ β2T∗g(I∗)
[

–ϕ

(
T∗

Tm
n+1

)

– ϕ

(
I∗W m

n+1
Im

n+1W∗

)

– ϕ

(
Tm

n+1g(Im
n )W∗

T∗g(I∗)W m
n+1

)

+
g(Im

n+1)
g(I∗)

–
Im

n+1
I∗

+ ln
g(I∗)Im

n+1
g(Im

n+1)Im
n+1

]}

–
N–1∑

m=0

DV∗β1T∗f (V∗)
kI∗(�x)2

(V m+1
n+1 – V m

n+1)2

V m+1
n+1 V m

n+1
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=
N∑

m=0

{

dT∗
(

1 –
T∗

Tm
n+1

)(

1 –
Tm

n+1
T∗

)

+ β1T∗f (V∗)
[

–ϕ

(
T∗

Tm
n+1

)

– ϕ

(
Tm

n+1f (V m
n )W∗

T∗f (V∗)W m
n+1

)

– ϕ

(
I∗W m

n+1
Im

n+1W∗
)

– ϕ

(
V∗Im

n+1
V m

n+1I∗

)

– ϕ

(
f (V∗)V m

n+1
f (V m

n+1)V∗

)

+
(

1 –
f (V∗)

f (V m
n+1)

)(
f (V m

n+1)
f (V∗)

–
V m

n+1
V∗

)]

+ β2T∗g(I∗)
[

–ϕ

(
T∗

Tm
n+1

)

– ϕ

(
Tm

n+1g(Im
n )W∗

T∗g(I∗)W m
n+1

)

– ϕ

(
I∗W m

n+1
Im

n+1W∗

)

– ϕ

(
g(I∗)Im

n+1
g(Im

n+1)I∗

)

+
(

1 –
g(I∗)

g(Im
n+1)

)(
g(Im

n+1)
g(I∗)

–
Im

n+1
I∗

)]}

–
N–1∑

m=0

DV∗β1T∗f (V∗)
kI∗(�x)2

(V m+1
n+1 – V m

n+1)2

V m+1
n+1 V m

n+1
.

Similarly, we have

(

1 –
f (V∗)

f (V m
n+1)

)(
f (V m

n+1)
f (V∗)

–
V m

n+1
V∗

)

≤ 0,

(

1 –
g(I∗)

g(Im
n+1)

)(
g(Im

n+1)
g(I∗)

–
Im

n+1
I∗

)

≤ 0.

Thus, we get G̃n+1 – G̃n ≤ 0 for all n ∈N, that is, G̃n is a decreasing sequence. Furthermore,
since Gn > 0, there is a limit limn→∞ G̃n ≥ 0. Hence, limn→∞(G̃n+1 – G̃n) = 0. Combined
with system (8), we can show that limn→∞ Tm

n = T∗, limn→∞ W m
n = W∗, limn→∞ Im

n = I∗,
and limn→∞ V m

n = V∗ for all m ∈ {0, 1, . . . , N}, which implies that E∗ of system (8) is globally
asymptotically stable. This completes the proof. �

4 Numerical simulations
To illustrate our theoretical results obtained in the preceding sections, we carry out some
numerical simulations in this section. To this end, we use two sets of system parameters
that correspond to R0 < 1 (when E0 is globally asymptotically stable for both continuous
and discretized models) and R0 > 1 (when E∗ is globally asymptotically stable for both
continuous and discretized models). For convenience, we consider system (3) with f (V ) =
V , g(I) = I , and initial conditions

T(x, 0) = 100, W (x, 0) = 0.1, I(x, 0) = 0.1, V (x, 0) = 1, x ∈ [0, 10].

We first choose the parameters λ = 1, d = 0.1, β1 = 0.00025, β2 = 0.00065, δ = 0.02, γ =
0.2, p = 0.5, k = 500, c = 2.4. It follows that R0 = 0.1065 < 1. Theorem 3.2 implies that
the infection-free equilibrium E0 = (10, 0, 0, 0) is globally asymptotically stable, which is
numerically verified in Fig. 1.

Next, we set the parameters λ = 10, d = 0.1, β1 = 0.00025, β2 = 0.00065, δ = 0.02, γ = 0.2,
p = 0.5, k = 500, c = 2.4. It follows that R0 = 9.5879 > 1. By Theorem 3.3 the infection
equilibrium E∗ = (10.4298, 40.7137, 16.2855, 3392.8093) is globally asymptotically stable,
as shown in Fig. 2.
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Figure 1 R0 = 0.1065 < 1. The infection-free equilibrium E0 is globally asymptotically stable

Figure 2 R0 = 9.5879 > 1. The infection equilibrium E∗ is globally asymptotically stable

5 Conclusions
In this paper, we first investigate the global threshold dynamics of the equilibria of a whin-
host virus infection model with both virus-to-cell and cell-to-cell transmissions. We then
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derive the discrete model by applying Mickens’ nonstandard finite difference scheme. By
using discrete analogue Lyapunov functions we show that the global stability of the equi-
libria of the discrete model is completely determined by the basic reproduction number
R0. IfR0 ≤ 1, then the infection-free equilibrium is globally asymptotically stable, whereas
the infection equilibrium uniquely exists and is globally asymptotically stable whenR0 > 1.
The results show that Mickens’ discretization scheme can efficiently preserve the global
asymptotic stability and positivity and boundedness of the solutions of the corresponding
continuous model. Application of this method to a model with immune response or time
delay is our future work.
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