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Abstract
A non-selective harvesting Lotka–Volterra amensalism model incorporating partial
closure for the populations is proposed and studied in this paper. Local and global
stability of the boundary and interior equilibria are investigated. By introducing the
harvesting, the dynamic behaviors of the system become complicated. Depending
on the fraction of the stock available for harvesting, the system maybe extinction,
partial survival or two species may coexist in a stable state. Our results supplement
and complement the main results of Xiong, Wang, and Zhang (Adv. Appl. Math.
5(2):255-261, 2016).
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1 Introduction
Amensalism is one of the basic interactions between the species, where a species inflicts
harm on the other species without any costs or benefits received by the other. During the
last decade, many scholars [1–15] investigated the dynamic behaviors of the amensalism
model. Such topics as the local stability of the equilibrium [1, 5, 12, 14], the existence of the
positive periodic solution [2, 11, 13], extinction of the species [3], bifurcation of the system
with delay [7] and the influence of the refuge [10, 14] have been studied and many excellent
results have been obtained. Recently, Xiong et al. [1] proposed the following amensalism
model:

dN1

dt
= r1N1

(
1 –

N1

P1
– u

N2

P1

)
,

dN2

dt
= r2N2

(
1 –

N2

P2

)
,

(1.1)

where ri, Pi, u, i = 1, 2, are all positive constants. The system admits four equilibria:

A(0, 0), B(P1, 0), C(0, P2), D(P1 – uP2, P2).
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Concerned with the stability property of the above equilibria, the authors obtained the
following results.

Theorem A
(1) A(0, 0) is unstable;
(2) B(P1, 0) is a saddle point, thus is unstable;
(3) if u < P1

P2
, C(0, P2) is a saddle point and consequently unstable; if u > P1

P2
, C(0, P2) is a

stable node;
(4) if u < P1

P2
, D(P1 – uP2, P2) is a stable node.

On the other hand, as was pointed out by Chakraborty et al. [16], the study of resource
management, including fisheries, forestry, and wildlife management, has great impor-
tance. They argued that it is necessary to harvest the population, but harvesting should be
regulated so that both the ecological sustainability and conservation of the species can be
implemented in a long run. Already, they proposed a non-selective harvesting predator–
prey system incorporating partial closure for the populations, they investigated the local
and global stability property of the system, and some interesting results related to the op-
timal harvesting were obtained.

Though there are many papers concerned with the harvesting of the ecosystem system
[15–26], to this day, seldom did scholars consider the influence of harvesting on the amen-
salism model. Stimulated by the works of Xiong et al. [1] and Chakraborty et al. [16], in
this paper, we propose the following non-selective harvesting Lotka–Volterra amensalism
model incorporating partial closure for the populations:

dN1

dt
= r1N1

(
1 –

N1

P1
– u

N2

P1

)
– q1EmN1,

dN2

dt
= r2N2

(
1 –

N2

P2

)
– q2EmN2,

(1.2)

where ri, Pi, u, i = 1, 2, are all positive constants. ri(Pi) represents the intrinsic growth rate
(environmental carrying capacity) of the ith species, E is the combined fishing effort used
to harvest and m(0 < m < 1) is the fraction of the stock available for harvesting. One could
refer to [1, 16] for more background and the adjustment of system (1.2).

As far as system (1.2) is concerned, one interesting issue is the following:
Find out the influence of the parameter m, which reflects the fraction of the stock available

for harvesting.
The paper is arranged as follows. We investigate the existence and locally stability prop-

erty of the equilibrium solutions of system (1.2) in the next section. In Sect. 3, by con-
structing some suitable Lyapunov function, we investigate the global stability property of
the equilibria. The influence of the parameter m is then discussed in Sect. 4. Some exam-
ples together with their numeric simulations are presented in Sect. 5 to show the feasibility
of the main results. We end this paper with a brief discussion.

2 Local stability of the equilibria
The system always admits the boundary equilibrium A(0, 0).

If r1 > Emq1 holds, the system admits the boundary equilibrium B(N10, 0), where N10 =
P1(r1–Emq1)

r1
.
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If r2 > Emq2 holds, the system admits the boundary equilibrium C(0, N20), where N20 =
P2(r2–Emq2)

r2
.

If r1r2P1 + r1umEP2q2 > r1r2uP2 + r2mq1EP1 and r2 > Emq2 hold, then the system admits
a unique positive equilibrium

(
N∗

1 , N∗
2
)

=
(

r1r2P1 + r1umEP2q2 – r1r2uP2 – r2mq1EP1

r1r2
,

P2(r2 – Emq2)
r2

)
.

We shall now investigate the local stability property of the above equilibria.
The variational matrix of the system of Eq. (1.2) is

V (N1, N2) =

(
L1 – ur1N1

P1

0 L2

)
, (2.1)

where

L1 =
r1P1 – 2r1N1 – r1uN2 – EP1mq1

P1
,

L2 =
r2P2 – 2N2r2 – EP2mq2

P2
.

Theorem 2.1
(1) Assume that

m > max

{
r1

Eq1
,

r2

Eq2

}
(2.2)

holds, then A(0, 0) is locally stable, otherwise it is unstable;
(2) Assume that

r2

Eq2
< m <

r1

Eq1
(2.3)

holds, then B(N10, 0) is locally stable, otherwise it is unstable;
(3) Assume that

r1r2(P1 – uP2)
r2q1EP1 – r1uEP2q2

< m <
r2

Eq2
(2.4)

holds, then C(0, N20) is locally stable, otherwise it is unstable;
(4) Assume that

m < min

{
r2

Eq2
,

r1r2(P1 – uP2)
r2q1EP1 – r1uEP2q2

}
(2.5)

holds, then D(N∗
1 , N∗

2 ) is locally stable.

Proof (1) From (2.1) we could see that the Jacobian of the system about the equilibrium
point A(0, 0) is given by

(
r1 – Emq1 0

0 r2 – Emq2

)
. (2.6)
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The eigenvalues of the matrix are λ1 = r1 –Emq1,λ2 = r2 –Emq2. Hence, under assumption
(2.2), λ1 < 0,λ2 < 0, and A(0, 0) is locally stable, otherwise it is unstable;

(2) The Jacobian of the system about the equilibrium point B(N10, 0) is given by

(
Emq1 – r1 (Emq1 – r1)u

0 r2 – Emq2

)
. (2.7)

The eigenvalues of the matrix are λ1 = Emq1 – r1,λ2 = r2 – Emq2. Under assumption (2.3),
λ1 < 0,λ2 < 0, and B(N10, 0) is locally stable, otherwise it is unstable;

(3) The Jacobian of the system about the equilibrium point C(0, N20) is given by

(
r1r2P1+r1umEP2q2–r1r2uP2–r2mq1EP1

r2P1
0

0 Emq2 – r2

)
. (2.8)

Under assumption (2.4), the two eigenvalues of the matrix satisfy

λ1 =
r1r2P1 + r1umEP2q2 – r1r2uP2 – r2mq1EP1

r2P1
< 0, λ2 = Emq2 – r2 < 0.

Consequently, C(0, N20) is locally stable, otherwise it is unstable;
(4) Noting that the positive equilibrium D(N∗

1 , N∗
2 ) satisfies

r1

(
1 –

N∗
1

P1
– u

N∗
2

P1

)
– q1Em = 0,

r2

(
1 –

N∗
2

P2

)
– q2Em = 0,

(2.9)

combining with (2.1) and (2.9), we could see that the Jacobian of the system about the
equilibrium point D(N∗

1 , N∗
2 ) is given by

(
– r1N∗

1
P1

– r1N∗
1 u

P1

0 – r2N∗
2

P2

)
. (2.10)

The eigenvalues of the variational matrix (2.10) are the roots λ1 = – r1N∗
1

P1
< 0,λ2 = – r2N∗

2
P2

< 0.
Thus, D(N∗

1 , N∗
2 ) is locally stable.

The proof of Theorem 2.1 is finished. �

3 Global stability
One interesting problem is to further investigate the global stability property of the equi-
libria of system (1.2), since the global one means that despite the random initial condition,
the finial dynamic behaviors of the system could be forecasted. In this aspect, we could
obtain the following result.

Theorem 3.1
(1) Assume that

m > max

{
r1

Eq1
,

r2

Eq2

}
(3.1)
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holds, then A(0, 0) is globally asymptotically stable;
(2) Assume that

r2

Eq2
< m <

r1

Eq1
(3.2)

holds, then B(N10, 0) is globally asymptotically stable;
(3) Assume that

r2

Eq2
> m >

r1

Eq1
(3.3)

holds, then C(0, N20) is globally asymptotically stable;
(4) Assume that

m < min

{
r2

Eq2
,

r1r2(P1 – uP2)
r2q1EP1 – r1uEP2q2

}
(3.4)

holds, then D(N∗
1 , N∗

2 ) is globally asymptotically stable.

Proof We will prove Theorem 3.1 by constructing some suitable Lyapunov functions.
(1) We define a Lyapunov function

V1(N1, N2) = N1 + N2.

One could easily see that the function V1 is zero at the equilibrium A(0, 0) and is positive
for all other positive values of N1 and N2. The time derivative of V1 along the trajectories
of (1.2) is

D+V1(t)

= N1

(
r1

(
1 –

N1

P1
– u

N2

P1

)
– q1Em

)
+ N2

(
r2

(
1 –

N2

P2

)
– q2Em

)

= (r1 – q1Em)N1 –
r1

P1
N2

1 –
u
P1

N1N2

+ (r2 – Eq2m)N2 –
r2

P2
N2

2 . (3.5)

Obviously, under assumption (3.1), D+V1(t) < 0 strictly for all N1, N2 > 0 except the bound-
ary equilibrium A(0, 0), where D+V1(t) = 0. Thus, V1(N1, N2) satisfies Lyapunov’s asymp-
totic stability theorem, and the boundary equilibrium A(0, 0) of system (1.2) is globally
asymptotically stable.

(2) Noting that (N10, 0) satisfies

r1

(
1 –

N10

P1

)
– q1Em = 0, (3.6)

we define a Lyapunov function

V2(N1, N2) = η

(
N1 – N10 – N10 ln

N1

N10

)
+ N2,
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where η is a suitable constant to be determined in the subsequent steps. One could easily
see that the function V2 is zero at the equilibrium B(N10, 0) and is positive for all other pos-
itive values of N1 and N2. By applying (3.6), the time derivative of V2 along the trajectories
of (1.2) is

D+V2(t)

= η(N1 – N10)
(

r1

(
1 –

N1

P1
– u

N2

P1

)
– q1Em

)

+ N2

(
r2

(
1 –

N2

P2

)
– q2Em

)

= η(N1 – N10)
(

r1

P1
(N10 – N1) – r1u

N2

P1

)

+ (r2 – Eq2m)N2 –
r2

P2
N2

2

= –
r1η

P1
(N1 – N10)2 –

r1uη

P1
N1N2

+
N10r1uη

P1
N2 + (r2 – Eq2m)N2 –

r2

P2
N2

2

= –
r1η

P1
(N1 – N10)2 –

r1uη

P1
N1N2

+
(

N10r1uη

P1
+ (r2 – Eq2m)

)
N2 –

r2

P2
N2

2 .

Noting that r2 < Emq2, we can choose η = (Eq2m–r2)P1
N10r1u > 0, and

D+V2(t) = –
r1η

P1
(N1 – N10)2 –

r1u
P1

N1N2 –
r2

P2
N2

2 .

Therefore, D+V2(t) < 0 strictly for all N1, N2 > 0 except the boundary equilibrium B(N10, 0),
where D+V2(t) = 0. Thus, V2(N1, N2) satisfies Lyapunov’s asymptotic stability theorem, and
the boundary equilibrium B(N10, 0) of system (1.2) is globally asymptotically stable.

(3) Noting that C(0, N20) satisfies

r2

(
1 –

N20

P2

)
– q2Em = 0, (3.7)

we define a Lyapunov function

V3(N1, N2) = N1 + N2 – N20 – N20 ln
N2

N20
.

One could easily see that the function V3 is zero at the equilibrium C(0, N20) and is positive
for all other positive values of N1 and N2. By using (3.3) and (3.7), the time derivative of
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V3 along the trajectories of (1.2) is

D+V3(t)

= r1N1

(
1 –

N1

P1
– u

N2

P1

)
– q1EmN1

+ (N2 – N20)
(

r2

(
1 –

N2

P2

)
– q2Em

)

= (r1 – q1Em)N1 –
r1

P1
N2

1 –
r1u
P1

N1N2

+ (N2 – N20)
r2

P2
(N20 – N2)

= (r1 – q1Em)N1 –
r1

P1
N2

1 –
r1u
P1

N1N2 –
r2

P2
(N2 – N20)2. (3.8)

Therefore, D+V3(t) < 0 strictly for all N1, N2 > 0 except the boundary equilibrium C(0, N20),
where D+V3(t) = 0. Thus, V3(N1, N2) satisfies Lyapunov’s asymptotic stability theorem, and
the boundary equilibrium C(0, N20) of system (1.2) is globally asymptotically stable.

(4) Noting that D(N∗
1 , N∗

2 ) satisfies

r1

(
1 –

N∗
1

P1
– u

N∗
2

P1

)
– q1Em = 0,

r2

(
1 –

N∗
2

P2

)
– q2Em = 0,

(3.9)

we define a Lyapunov function

V4(x, y) = η1

(
N1 – N∗

1 – N∗
1 ln

N1

N∗
1

)
+ η2

(
N2 – N∗

2 – N∗
2 ln

N2

N∗
2

)
,

where η1 and η2 are suitable constants to be determined in the subsequent steps. One
could easily see that the function V4 is zero at the equilibrium D(N∗

1 , N∗
2 ) and is positive

for all other positive values of N1 and N2. By applying (3.9), the time derivative of V4 along
the trajectories of (1.2) is

D+V4(t)

= η1
(
N1 – N∗

1
)(

r1

(
1 –

N1

P1
– u

N2

P1

)
– q1Em

)

+ η2
(
N2 – N∗

2
)(

r2

(
1 –

N2

P2

)
– q2Em

)

= η1
(
N1 – N∗

1
)( r1N∗

1
P1

+
r1uN∗

2
P1

–
r1N1

P1
–

r1uN2

P1

)

+ η2
(
N2 – N∗

2
)( r2N∗

2
P2

–
r2N2

P2

)

= –
r1

P1
η1

(
N1 – N∗

1
)2 –

r1uη1

P1

(
N1 – N∗

1
)(

N2 – N∗
2
)

–
r2η2

P2

(
N2 – N∗

2
)2. (3.10)
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Now let us take η1 = 1,η2 = 2r1u2P2
r2P1

, then

D+V4(t)

= –
r1

P1

(
N1 – N∗

1
)2 –

r1u
P1

(
N1 – N∗

1
)(

N2 – N∗
2
)

–
2r1u2

P1

(
N2 – N∗

2
)2

=
r1

P1

[(
N1 – N∗

1
)2 + u

(
N1 – N∗

1
)(

N2 – N∗
2
)

+ u2(N2 – N∗
2
)2]

= –
r1

P1

(
N1 – N∗

1 , N2 – N∗
2
)(

1 u
2

u
2 u2

)(
N1 – N∗

1

N2 – N∗
2

)
. (3.11)

Since
(

1 u
2

u
2 u2

)

is positive definite, it follows that D+V4(t) < 0 strictly for all N1, N2 > 0 except the positive
equilibrium C(N∗

1 , N∗
2 ), where D+V4(t) = 0. Thus, V4(N1, N2) satisfies Lyapunov’s asymp-

totic stability theorem, and the positive equilibrium D(N∗
1 , N∗

2 ) of system (1.2) is globally
asymptotically stable. This ends the proof of Theorem 3.1. �

Remark 3.1 Theorems 2.1 and 3.1 show that if system (1.2) admits the unique positive
equilibrium, then the positive equilibrium is globally asymptotically stable.

Remark 3.2 Compared with Theorems 2.1 and 3.1, one could see that in three cases, the
local stability of the equilibrium also implies the global one. However, to ensure C(0, N20)
is globally stable, we need assumption (3.3) since our condition is a set of sufficient con-
ditions, maybe it is not the necessary one. Whether (2.4) is enough to ensure the globally
attractivity of C(0, N20) or not is still unknown. Obviously, we could not deal with this
problem by constructing a suitable Lyapunov function.

Remark 3.3 From Theorem 3.1(4) and the biological meaning of the parameter m, we can
draw the conclusion: if the fraction of the stock available for harvesting is limited, then
two species could coexist in the long run, despite the initial state.

4 The influence of the parameter m
Now let us consider the influence of the parameter on the finial density of the two species.

dN∗
1

dm
=

EP2q2r1u – EP1q1r2

r1r2
,

thus
(1) If P2q2r1u > P1q1r2, then dN∗

1
dt > 0, and N∗

1 is the strictly increasing function of m;
(2) If P2q2r1u < P1q1r2, then dN∗

1
dt < 0, and N∗

1 is the strictly decreasing function of m.
Since

dN∗
2

dm
=

EP2q2

r2
< 0,

then N∗
2 is the strictly decreasing function of m.
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5 Numerical simulations
Example 5.1 Consider the following amensalism system:

dN1

dt
= N1

(
1 – N1 –

1
2

N2

)
– 4mN1,

dN2

dt
= N2(1 – N2) – 2mN2.

(5.1)

Here, corresponding to system (1.2), we take r1 = r2 = P1 = P2 = E = 1, q1 = 4, q2 = 2, u = 1
2 .

(1) For the system without harvesting, i.e., for m = 0, the system admits a unique
positive equilibrium ( 1

2 , 1) (see Fig. 1, Fig. 2);
(2) Take m = 0.6, then m > max{ r1

Eq1
, r2

Eq2
}, and both species will be driven to extinction

(see Fig. 3, Fig. 4);
(3) Take m = 0.3, then r1

Eq1
< m < r2

Eq2
, and C(0, 0.4) is globally attractive, that is, N2 will

be driven to extinction, and N1 is globally attractive (see Fig. 5, Fig. 6);
(4) Take m = 0.1, then m < min{ r2

Eq2
, r1r2(P1–uP2)

r2q1EP1–r1uEP2q2
} = 1

6 and D(0.2, 0.8) is globally
attractive, that is, both species could coexist in a stable state (see Fig. 7, Fig. 8).

6 Discussion
With the aim of the ecological sustainability and conservation of the species to be imple-
mented in a long run, in this paper, we propose a non-selective harvesting Lotka–Volterra

Figure 1 Numeric simulations of the first components of system (5.1) withm = 0, the initial conditions
(x(0), y(0)) = (0.5, 0.1), (0.8, 1), (0.3, 3), and (0.7, 2), respectively
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Figure 2 Numeric simulations of the second components of system (5.1) withm = 0, the initial conditions
(x(0), y(0)) = (0.5, 0.1), (0.8, 1), (0.3, 3), and (0.7, 2), respectively

Figure 3 Numeric simulations of the first components of system (5.1) withm = 0.6, the initial conditions
(x(0), y(0)) = (0.5, 0.1), (0.8, 1), (0.3, 3), and (0.7, 2), respectively
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Figure 4 Numeric simulations of the second components of system (5.1) withm = 0.6, the initial conditions
(x(0), y(0)) = (0.5, 0.1), (0.8, 1), (0.3, 3), and (0.7, 2), respectively

Figure 5 Numeric simulations of the first components of system (5.1) withm = 0.3, the initial conditions
(x(0), y(0)) = (0.5, 0.1), (0.8, 1), (0.3, 3), and (0.7, 2), respectively
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Figure 6 Numeric simulations of the second components of system (5.1) withm = 0.3, the initial conditions
(x(0), y(0)) = (0.5, 0.1), (0.8, 1), (0.3, 3), and (0.7, 2), respectively

Figure 7 Numeric simulations of the first components of system (5.1) withm = 0.1, the initial conditions
(x(0), y(0)) = (0.5, 0.1), (0.8, 1), (0.3, 3), and (0.7, 2), respectively
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Figure 8 Numeric simulations of the second components of system (5.1) withm = 0.1, the initial conditions
(x(0), y(0)) = (0.5, 0.1), (0.8, 1), (0.3, 3), and (0.7, 2), respectively

amensalism model incorporating partial closure for the populations, i.e., system (1.2),
which can be seen as the generalization of system (1.1), and the model is more suitable
for the real situation.

With the introducing of harvesting, the dynamic behaviors of the system become very
complicated. Depending on the fraction of the stock that could be harvested, the system
may have positive equilibrium, which is globally asymptotically stable, which means that
two species could coexist in a stable state; or one of the species will be driven to extinction,
or both of the species could be driven to extinction.

To sum up, to ensure the conservation of the species, we need to restrict the harvesting
to a limited area. Otherwise, although we can afford the area which could not be harvested,
the species may still be driven to extinction. Theorem 2.1 and 3.1 give some threshold on
m, which ensures the coexistence of the two species. The results obtained in this paper
maybe useful in designing the natural protection area.
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