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Abstract
In this paper, we investigate a class of boundary value problem of nonlinear
Hadamard fractional differential equations with a parameter. By means of the
properties of the Green function and Guo–Krasnosel’skii fixed-point theorem on
cones, the existence and nonexistence of positive solutions are obtained. Finally,
some examples are presented to show the effectiveness of our main results.
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1 Introduction
Fractional differential equations have given rise to abroad attention of many researchers
by the intensive development of the theory of fractional calculus itself. On the other hand,
fractional differential equations can better describe many phenomena than ordinary dif-
ferential equations in many diverse and widespread fields of science and engineering. For
the development of fractional calculus and applications, we refer the reader to [1–10] and
the references therein. For example, by employing the Avery–Henderson fixed-point the-
orem, Li [11] obtained the existence of positive solutions as considered for a fractional dif-
ferential equation with p-Laplacian operator. In [12], existence and uniqueness results for
a new class of boundary value problems of sequential fractional differential equations with
nonlocal non-separated boundary conditions involving lower-order fractional derivatives
were given by some standard fixed-point theorems. The existence and multiplicity of so-
lutions or positive solutions for nonlinear boundary value problems involving fractional
differential equations with kinds of boundary value conditions were studied by some well-
known fixed-point theorems, the lower and upper solutions method and the monotone
iterative technique; see [13, 14] and the references therein. For example, the authors of [15]
investigated the solutions of fractional integrodifferential equations with boundary value
conditions, respectively. In [16], the existence and multiplicity of positive solutions were
obtained for nonlinear Caputo fractional differential equations with integral boundary
conditions. Henderson and Luca investigated the positive solutions of nonlinear bound-
ary value problems for systems of fractional differential equations in the book [17]. In [18],
by applying the fixed-point theorem due to Leggett–Williams, the authors considered the
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existence of positive solutions for a system of fractional multi-point boundary value prob-
lem with p-Laplacian operator.

In the past ten years, most of the work on the topic is based on Riemann–Liouville-
and Caputo-type fractional differential equations. Recently, more and more scholars paid
attention to the boundary value problems of nonlinear Hadamard fractional differen-
tial equations [19–24]. By applying some standard fixed-point theorems, Ahmad and
Ntouyas [25, 26] studied the existence and uniqueness of solutions for Hadamard-type
fractional differential equations for boundary value problems and systems with integral
boundary conditions, respectively. Based on standard fixed-point theorems for multival-
ued maps, Ahmad et al. [27] investigated the existence of solutions for fractional bound-
ary value problems involving Hadamard-type fractional differential inclusions and inte-
gral boundary conditions. Aljoudi et al. [28] studied a nonlocal boundary value problem
of Hadamard-type coupled sequential fractional differential equations supplemented with
coupled strip conditions. By discussing a continuity, integrable estimation, and the asymp-
totic property on Mittag–Leffler functions, Li and Wang [29] investigated the existence of
solutions and finite-time stability for a class of nonlinear Hadamard fractional differential
equations with constant coefficient. In [30, 31], the existence of positive solutions for non-
linear Hadamard fractional differential equations with four-point coupled and coupled in-
tegral boundary conditions were given by the Guo–Krasnosel’skii fixed-point theorems,
respectively.

From the above review of the literature concerning fractional differential equations,
most of the authors investigated only the existence of solutions or positive solutions for
Hadamard fractional differential equations without considering the influence of a param-
eter. In this paper, we will study the influence of parameter intervals for Hadamard frac-
tional differential equation boundary value problems. Motivated by the work mentioned
above, we consider the following nonlinear Hadamard fractional differential equation with
a parameter:

(
Dαx

)
(t) + λa(t)f

(
x(t)

)
= 0, x(1) = (δx)(1) = (δx)(e) = 0,α ∈ (2, 3], t ∈ [1, e], (1)

where λ is a positive parameter, Dα is the left-sided Hadamard fractional derivative or-
der α, (δx)(t) = t dx(t)/dt, a : (1, e) → [0,∞) and f : [0,∞) → [0,∞) are two continuous
functions. The main aim of this paper is to investigate the above Hadamard fractional
differential equation boundary value problem (1). With the help of the properties of the
Green function and the Guo–Krasnosel’skii fixed-point theorem on cones, we establish
the existence and nonexistence of positive solutions. At the end, we give some examples
to illustrate the feasibility of our proposed theoretical results.

2 Preliminaries
For convenience of the reader, we present some necessary definitions and lemmas from
Hadamard fractional calculus theory in this section.

Definition 2.1 ([32]) The left-sided Hadamard fractional integrals of order α ∈R
+ of the

function y(t) are defined by

(
Iαy

)
(t) =

1
�(α)

∫ t

1

(
ln

t
s

)α–1

y(s)
ds
s

(1 ≤ t ≤ e),

where �(·) is the Gamma function.
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Definition 2.2 ([32]) The left-sided Hadamard fractional derivatives of order α ∈ [n –
1, n), n ∈ Z

+, of the function y(t) are defined by

(
Dαy

)
(t) =

1
�(n – α)

(
t

d
dt

)n ∫ t

1

(
ln

t
s

)n–α+1

y(s)
ds
s

(1 ≤ t ≤ e),

where �(·) is the Gamma function.

Now we will give the Green function of linear equation and some properties of the Green
function.

Lemma 2.1 Let α ∈ (0, 1] be fixed and y ∈ C[1, e], then the linear boundary value problem

(
Dαx

)
(t) + y(t) = 0, x(1) = (δx)(1) = (δx)(e) = 0,α ∈ (2, 3], t ∈ [1, e], (2)

has a unique solution which is given by the following integral representation of the solution:

x(t) =
∫ e

1
G(t, s)y(s)

ds
s

, t ∈ [1, e], (3)

where

G(t, s) =
1

�(α)

⎧
⎨

⎩
(1 – ln s)α–2(ln t)α–1, 1 ≤ t ≤ s ≤ e,

(1 – ln s)α–2(ln t)α–1 – (ln(t/s))α–1, 1 ≤ s ≤ t ≤ e.
(4)

Proof As argued in [32], the solution of Hadamard differential equation (2) can be written
the following equivalent integral equations:

x(t) = c1(ln t)α–1 + c2(ln t)α–2 + c3(ln t)α–3 –
1

�(α)

∫ t

1

(
ln

t
s

)α–1

y(s)
ds
s

, (5)

where c1, c2, c3 ∈ R. From the boundary condition x(1) = 0, we have c3 = 0. Furthermore,
from (5), we can get

(δx)(t) = c1(α – 1)(ln t)α–2 + c2(α – 2)(ln t)α–3 –
α – 1
�(α)

∫ t

1

(
ln

t
s

)α–2

y(s)
ds
s

. (6)

From the boundary condition (δx)(0) = (δx)(1) = 0 and (6), we obtain c2 = 0 and

c1 =
1

�(α)

∫ e

1
(1 – ln s)α–2y(s)

ds
s

. (7)

Substituting (7) and c2 = c3 = 0 into (5), we can observe

x(t) =
1

�(α)

∫ e

1
(1 – ln s)α–2(ln t)α–1y(s)

ds
s

–
1

�(α)

∫ t

1

(
ln

t
s

)α–1

y(s)
ds
s

=
∫ e

1
G(t, s)y(s)

ds
s

,

which implies (3). The proof is completed. �



Huang and Liu Advances in Difference Equations  (2018) 2018:96 Page 4 of 13

Lemma 2.2 Let G(t, s) be defined as in (4) and g(t) = (ln t)α–1. Then the following inequal-
ities hold:

G(t, s) ≥ 0, g(t)G(e, s) ≤ G(t, s) ≤ G(e, s), ∀1 ≤ s, t ≤ e.

Proof For 1 ≤ t ≤ s ≤ e, It is easy to see that G(t, s) ≥ 0 and g(t)G(e, s) = G(t, s) ≤ G(e, s).
For 1 ≤ s ≤ t ≤ e, we have

�(α)G(t, s) = (1 – ln s)α–2(ln t)α–1 –
(
ln(t/s)

)α–1

= (1 – ln s)α–2(ln t)α–1 – (1 – ln s/ ln t)α–1(ln t)α–1

≥ (1 – ln s)α–2(ln t)α–1 – (1 – ln s)α–1(ln t)α–1 = 0,

which implies G(t, s) ≥ 0. Let h(t) = (1 – ln s)α–2(ln t)α–1 – (ln(t/s))α–1 for 1 ≤ t ≤ e. Then

dh(t)/dt = (α – 1)
[
(1 – ln s)α–2(ln t)α–2 –

(
ln(t/s)

)α–2]

≥ (α – 1)(ln t)α–2[(1 – ln s)α–2 – (1 – ln s)α–2] = 0,

which implies that h(t) is the monotone nondecreasing function, i.e. G(t, s) ≤ G(e, s). On
the other hand,

G(t, s)
G(e, s)

=
(1 – ln s)α–2(ln t)α–1 – (ln(t/s))α–1

(1 – ln s)α–2 – (1 – ln s)α–1

≥ (1 – ln s)α–2(ln t)α–1 – (ln t – ln t ln s)α–1

(1 – ln s)α–2 – (1 – ln s)α–1 = (ln t)α–1 = g(t),

which implies g(t)G(e, s) ≤ G(t, s). The proof of Lemma 2.2 is completed. �

Our main results are based on the following Guo–Krasnosel’skii fixed-point theorem on
cones.

Lemma 2.3 ([33, 34]) Let X be a Banach space, and let P ⊂ X be a cone in X. Assume that
�1,�2 are open subsets of X with 0 ∈ �1 ⊂ �1 ⊂ �2, and let S : P → P be a completely
continuous operator such that, either

(B1) ‖Sw‖ ≤ ‖w‖, w ∈ P ∩ ∂�1, and ‖Sw‖ ≥ ‖w‖, w ∈ P ∩ ∂�2,
or

(B2) ‖Sw‖ ≥ ‖w‖, w ∈ P ∩ ∂�1, and ‖Sw‖ ≤ ‖w‖, w ∈ P ∩ ∂�2.
Then S has a fixed point in P ∩ (�2 \ �1).

Let E = C[1, e] be the Banach space endowed with the norm ‖x‖ = supt∈[1,e] |x(t)|. Define
the cone P ⊂ E by

P =
{

x ∈ E : x(t) ≥ g(t)‖x‖, t ∈ [1, e]
}

, g(t) = (ln t)α–1.

Suppose that x is a solution of boundary value problem (1). Then from Lemma 2.1, we
obtain

x(t) = λ

∫ e

1
G(t, s)a(s)f

(
x(s)

) ds
s

, t ∈ [1, e].
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We define an operator Sλ : P → E as follows:

(Sλx)(t) = λ

∫ e

1
G(t, s)a(s)f

(
x(s)

) ds
s

, t ∈ [1, e].

By Lemma 2.2, we have

‖Sλx‖ ≤ λ

∫ e

1
G(e, s)a(s)f

(
x(s)

) ds
s

,

(Sλx)(t) ≥ λ

∫ e

1
g(t)G(e, s)a(s)f

(
x(s)

) ds
s

≥ g(t)‖Sλx‖.

Thus, Sλ(P ) ⊂ P . Then we have the following lemma.

Lemma 2.4 Sλ : P → P is completely continuous.

Proof The operator Sλ : P → P is continuous in view of continuity of G(t, s), a(t) and
f (x(t)). By means of the Arzela–Ascoli theorem, Sλ : P → P is completely continu-
ous. �

3 Main results
In this section, we establish some sufficient conditions for the existence and nonexistence
of positive solutions for boundary value problem (1).

For convenience, we denote

F0 = lim sup
x→0+

f (x)
x

, F∞ = lim sup
x→+∞

f (x)
x

,

f0 = lim inf
x→0+

f (x)
x

, f∞ = lim inf
x→+∞

f (x)
x

,

C1 =
∫ e

1
G(e, s)a(s)

ds
s

, C2 =
∫ e

1
g(s)G(e, s)a(s)

ds
s

.

Theorem 3.1 If there exists l ∈ (1, e) such that g(l)f∞C2 > F0C1 holds, for each

λ ∈ ((
g(l)f∞C2

)–1, (F0C1)–1), (8)

then boundary value problem (1) has at least one positive solution. Here we impose
(g(l)f∞C2)–1 = 0 if f∞ = +∞ and (F0C1)–1 = +∞ if F0 = 0.

Proof Let λ satisfy (8) and ε > 0 be such that

(
g(l)(f∞ – ε)C2

)–1 ≤ λ ≤ (
(F0 + ε)C1

)–1. (9)

By the definition of F0, we see that there exists r1 > 0 such that

f (x) ≤ (F0 + ε)x, for 0 < x ≤ r1. (10)
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So if x ∈ P with ‖x‖ = r1, then, by (9) and (10), we have

‖Sλx‖ ≤ λ

∫ e

1
G(e, s)a(s)f

(
x(s)

) ds
s

≤ λ

∫ e

1
G(e, s)a(s)(F0 + ε)r1

ds
s

= λ(F0 + ε)r1C1 ≤ r1 = ‖x‖.

Hence, if we choose �1 = {x ∈ E : ‖x‖ < r1}, then we get

‖Sλx‖ ≤ ‖x‖, for x ∈ P ∩ ∂�1. (11)

Let r3 > 0 be such that

f (x) ≥ (f∞ – ε)x, for x ≥ r3. (12)

If x ∈ P with ‖x‖ = r2 = max{2r1, r3}, then from (9) and (12), we obtain

‖Sλx‖ ≥ (Sλx)(l) = λ

∫ e

1
G(e, s)a(s)f

(
x(s)

) ds
s

≥ λ

∫ e

1
g(l)G(e, s)a(s)f

(
x(s)

) ds
s

≥ λ

∫ e

1
g(l)G(e, s)a(s)(f∞ – ε)x(s)

ds
s

≥ λ

∫ e

1
g(l)g(s)G(e, s)a(s)(f∞ – ε)‖x‖ ds

s

= λg(l)C2(f∞ – ε)‖x‖ ≥ ‖x‖.

Thus, if we set �2 = {x ∈ E : ‖x‖ < r2}, then we get

‖Sλx‖ ≥ ‖x‖, for x ∈ P ∩ ∂�2. (13)

Now, from (11), (13), and Lemma 2.3, we guarantee that Sλ has a fixed point x ∈ P ∩ (�2 \
�1) with r1 ≤ ‖x‖ ≤ r2, and clearly x is a positive solution of boundary value problem (1).
This completes the proof of Theorem 3.1. �

Theorem 3.2 If there exists l ∈ (1, e) such that g(l)f∞C2 > F0C1 holds, for each

λ ∈ ((
g(l)f0C2

)–1, (F∞C1)–1), (14)

then boundary value problem (1) has at least one positive solution. Here we impose
(g(l)f0C2)–1 = 0 if f0 = +∞ and (F∞C1)–1 = +∞ if F∞ = 0.

Proof Let λ satisfy (14) and let ε > 0 be such that

(
g(l)(f0 – ε)C2

)–1 ≤ λ ≤ (
(F∞ + ε)C1

)–1. (15)

From the definition of f0, we see that there exists r1 > 0 such that

f (x) ≥ (f0 – ε)x, for 0 < x ≤ r1.
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Further, if x ∈ P with ‖x‖ = r1, then similar to the second part of Theorem 3.1, we can
obtain ‖Sλx‖ ≥ ‖x‖. Thus, if we choose �1 = {x ∈ E : ‖x‖ < r1}, then

‖Sλx‖ ≥ ‖x‖, for x ∈ P ∩ ∂�1. (16)

Next, we may choose R1 > 0 such that

f (x) ≤ (F∞ + ε)x, for x ≥ R1. (17)

We consider the following two cases.
Case 1. Suppose f is bounded. Then there exists some M > 0, such that

f (x) ≤ M, for x ∈ (0, +∞).

We define r3 = max{2r1,λMC1}, and x ∈ P with ‖x‖ = r3, then

‖Sλx‖ ≤ λ

∫ e

1
G(e, s)a(s)f

(
x(s)

) ds
s

≤ λM
∫ e

1
G(e, s)a(s)

ds
s

= λMC1 ≤ r3 = ‖x‖.

Hence,

‖Sλx‖ ≤ ‖x‖, for x ∈ Pr3 =
{

x ∈ P : ‖x‖ ≤ r3
}

.

Case 2. Suppose f is unbounded. Then there exists some r4 > max{2r1, R1} such that

f (x) ≤ f (r4), for 0 < x ≤ r4.

Let x ∈ P with ‖x‖ = r4. Then, by (15) and (17), we have

‖Sλx‖ ≤ λ

∫ e

1
G(e, s)a(s)f

(
x(s)

) ds
s

≤ λ

∫ e

1
G(e, s)a(s)(F∞ + ε)‖x‖ ds

s
= λC1(F∞ + ε)‖x‖ ≤ ‖x‖.

Thus,

‖Sλx‖ ≤ ‖x‖, for x ∈ Pr4 =
{

x ∈ P : ‖x‖ ≤ r4
}

.

In both Cases 1 and 2, if we set �2 = {x ∈ P : ‖x‖ < r2 = max{r3, r4}}, then

‖Sλx‖ ≤ ‖x‖, for x ∈ P ∩ ∂�2. (18)

It follows from (16), (18) and Lemma 2.3 that Sλ has a fixed point x ∈ P ∩ (�2 \ �1) with
r1 ≤ ‖x‖ ≤ r2. It is clear that x is a positive solution of boundary value problem (1). The
proof is complete. �

Theorem 3.3 If there exist l ∈ (1, e) and r2 > r1 > 0 such that g(l) > r1/r2 and f satisfy

min
g(l)r1≤x≤r1

f (x) ≥ r1

λg(l)C1
, max

0≤x≤r2
f (x) ≤ r2

λC1
.

Then boundary value problem (1) has a positive solution u with r1 ≤ ‖x‖ ≤ r2.
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Proof Choose �1 = {x ∈ E : ‖x‖ < r1}; then, for x ∈ P ∩ ∂�1, we have

‖Sλx‖ ≥ (Sλx)(l) = λ

∫ e

1
G(e, s)a(s)f

(
x(s)

) ds
s

≥ λ

∫ e

1
g(l)G(e, s)a(s)f

(
x(s)

) ds
s

≥ λg(l)C1
r1

λg(l)C1
= r1 = ‖x‖.

On the other hand, choose �2 = {x ∈ E : ‖x‖ < r2}; then for x ∈ P ∩ ∂�2, we have

‖Sλx‖ ≤ λ

∫ e

1
G(e, s)a(s)f

(
x(s)

) ds
s

≤ λ

∫ e

1
G(e, s)a(s) max

0≤x≤r2
f
(
x(s)

) ds
s

≤ λC1
r2

λC1
= r2 = ‖x‖.

From Lemma 2.3, boundary value problem (1) has a positive solution x with r1 ≤ ‖x‖ ≤ r2.
The proof of Theorem 3.3 is completed. �

For the remainder of this section, we will need the following assumption.

Assumption 1 (minx∈[g(l)r,r] f (x))/r > 0, where l ∈ (1, e).

For convenience, we denote

λ1 = sup
r>0

r
C1 maxx∈[0,r] f (x)

, λ2 = inf
r>0

r
C1 minx∈[g(l)r,r] f (x)

. (19)

In view of the continuity of f (x) and Assumption 1, we have 0 < λ1 ≤ +∞ and 0 ≤ λ2 <
+∞.

Theorem 3.4 Suppose Assumption 1 holds. If f0 = f∞ = +∞, then boundary value problem
(1) has at least two positive solutions for each λ ∈ (0,λ1).

Proof Define ϕ(r) = r/C1 maxx∈[0,r] f (x)). By the continuity of f (x) and f0 = f∞ = +∞, we
see that ϕ(r) : (0, +∞) → (0, +∞) is continuous and limr→0 ϕ(r) = limr→+∞ ϕ(r) = 0. From
(19), there exists r0 ∈ (0, +∞) such that ϕ(r0) = supr>0 ϕ(r) = λ1. then, for λ ∈ (0,λ1), there
exist constants c1, c2 (0 < c1 < r0 < c2 < +∞) with ϕ(c1) = ϕ(c2) = λ. Thus, we have

f (x) ≤ c1

λC1
, for x ∈ [0, c1], (20)

and

f (x) ≤ c2

λC1
, for x ∈ [0, c2]. (21)

On the other hand, applying the conditions f0 = f∞ = +∞, there exist constants d1, d2

(0 < d1 < c1 < r0 < c2 < d2 < +∞) with f (x)/x ≥ 1/(g2(l)λC1), for x ∈ (0, d1) ∪ (g(l)d2, +∞).
Then we get

min
g(l)d1≤x≤d1

f (x) ≤ d1

λg(l)C1
(22)
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and

min
g(l)d2≤x≤d2

f (x) ≤ d2

λg(l)C1
. (23)

By (20) and (22), (21) and (23), combining with Theorem 3.3 and Lemma 2.3, we can com-
plete the proof. �

Corollary 3.1 Suppose Assumption 1 holds. If f0 = +∞ or f∞ = +∞, then boundary value
problem (1) has at least one positive solution for each λ ∈ (0,λ1).

Theorem 3.5 Suppose Assumption 1 holds. If f0 = f∞ = 0, then boundary value problem
(1) has at least two positive solutions for each λ ∈ (λ2, +∞).

Proof Define ψ(r) = r/(C1 minx∈[g(l)r,r] f (x)). By the continuity of f (x) and f0 = f∞ = 0, we can
easily see that ψ(r) : (0, +∞) → (0, +∞) is continuous and limr→0 ψ(r) = limr→+∞ ψ(r) =
+∞. From (19), there exists r0 ∈ (0, +∞) such that ψ(r0) = supr>0 ψ(r) = λ2, then, for
λ ∈ (0,λ1), there exist constants d1, d2 (0 < d1 < r0 < d2 < +∞) with ψ(d1) = ψ(d2) = λ.
Therefore,

f (x) ≤ d1

λg(l)C1
, for x ∈ [

g(l)d1, d1
]
, (24)

and

f (x) ≤ d2

λg(l)C1
, for x ∈ [

g(l)d2, d2
]
. (25)

On the other hand, applying the conditions f0 = 0, there exist constants c1 (0 < c1 < d1)
with f (x)/x ≤ 1/(λC1), for x ∈ (0, c1). Then

max
0≤x≤c1

f (x) ≤ c1

λC1
. (26)

In view of f∞ = 0, there exists a constant c2 ∈ (d2, +∞) such that f (x)/x ≤ 1/(λC1), for
x ∈ (c2, +∞). Let M = max0≤x≤c2 f (x), c2 ≥ λC1M. It is easily seen that

max
0≤x≤c2

f (x) ≤ c2

λC1
. (27)

From (24) and (26), (25) and (27), combining with Theorem 3.3 and Lemma 2.3, we can
complete the proof. �

Corollary 3.2 Suppose Assumption 1 holds. If f0 = 0 or f∞ = 0, then boundary value prob-
lem (1) has at least one positive solution for each λ ∈ (λ2, +∞).

By the above theorems, we can obtain the following results.

Corollary 3.3 Suppose Assumption 1 holds. If f0 = +∞, f∞ = d or f∞ = +∞, f0 = d, then
boundary value problem (1) has at least one positive solution for each λ ∈ (0, (dC1)–1).
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Corollary 3.4 Suppose Assumption 1 holds. If f0 = 0, f∞ = d or f∞ = 0, f0 = d, then bound-
ary value problem (1) has at least one positive solution for each λ ∈ ((g(l)dC2)–1, +∞).

Theorem 3.6 Suppose Assumption 1 holds. If F0 < +∞ and F∞ < +∞, then there exists a
λ0 > 0 such that, for all 0 < λ < λ0, boundary value problem (1) has no positive solution.

Proof Since F0 < +∞ and F∞ < +∞, there exist positive numbers m1, m2, r1 and r2 such
that r1 < r2 and

f (x) ≤ m1x, for x ∈ [0, r1]; f (x) ≤ m2x, for x ∈ [r2, +∞).

Let m = max{m1, m2, maxx∈[r1,r2]{f (x)/x}}. Then we have

f (x) ≤ mx, for x ∈ [0, +∞).

Assume x(t) is a positive solution of boundary value problem (1). We will show that this
leads to a contradiction for 0 < λ < λ0 := (mC1)–1. Since Sλx(t) = x(t) for t ∈ [1, e],

‖x‖ = ‖Sλx‖ ≤ λ

∫ e

1
G(e, s)a(s)f

(
x(s)

) ds
s

≤ mλ‖x‖
∫ e

1
G(e, s)a(s)

ds
s

< ‖x‖,

which is a contradiction. Therefore, boundary value problem (1) has no positive solution.
The proof is complete. �

Theorem 3.7 Suppose Assumption 1 holds. If f0 > 0 and f∞ > 0, then there exists a λ0 > 0
such that, for all λ > λ0, boundary value problem (1) has no positive solution.

Proof Since f0 > 0 and f∞ > 0, there exist positive numbers n1, n2, r1 and r2 such that r1 < r2

and

f (u) ≥ n1x, for x ∈ [0, r1]; f (x) ≥ n2x, for x ∈ [r2, +∞).

Let n = min{n1, n2, minx∈[r1,r2]{f (x)/x}}. Then we have

f (x) ≥ nx, for x ∈ [0, +∞).

Assume x(t) is a positive solution of boundary value problem (1). We will show that this
leads to a contradiction for λ > λ0 := (g(l)nC2)–1. Since Sλx(t) = x(t) for t ∈ [1, e],

‖x‖ = ‖Sλx‖ ≥ λ

∫ e

1
g(l)G(e, s)a(s)f

(
x(s)

) ds
s

> ‖x‖,

which is a contradiction. Therefore, boundary value problem (1) has no positive solution.
The proof of Theorem 3.7 is completed. �

4 Some examples
In this section, we will present some examples to illustrate the main results.
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Example 4.1 Consider the Hadamard fractional boundary value problem

(
D2.5x

)
(t) + λ ln txθ (t) = 0, x(0) = (δx)(0) = (δx)(1) = 0, 1 < t < e, θ > 1. (28)

Since α = 2.5 and a(t) = ln t, we have

C1 =
∫ e

1
G(e, s)a(s)

ds
s

≤ 1
�(2.5)

∫ e

1
ln s(1 – ln s)0.5 ds

s
≈ 0.2006,

C2 =
∫ e

1
g(s)G(e, s)a(s)

ds
s

≥ 1
�(2.5)

∫ e

1
(ln s)2.5((1 – ln s)0.5 – (1 – ln s)1.5) ds

s
≈ 0.1146.

Let f (x) = xθ , θ > 1. Then from [35], we have F0 = 0 and f∞ = +∞. Choose l = e0.5. Then
g(e0.5) = 0.51.5 ≈ 0.3536. So g(l)C2f∞ > F0C1 holds. Thus, by Theorem 3.1, the boundary
value problem (28) has a positive solution for each λ ∈ (0, +∞).

Example 4.2 Consider the Hadamard fractional boundary value problem

(
D2.5x

)
(t) + λ ln txϑ (t) = 0, x(0) = (δx)(0) = (δx)(1) = 0, 1 < t < e, 0 < ϑ < 1. (29)

Since α = 2.5 and a(t) = ln t, we have C1 ≤ 0.2006 and C2 ≥ 0.1146. Let f (x) = xϑ , 0 <
ϑ < 1. Then from [35], we have F∞ = 0 and f0 = +∞. Choose l = e0.5. Then g(e0.5) = 0.51.5 ≈
0.3536. So g(l)C2f0 > F∞C1 holds. Thus, by Theorem 3.2, the boundary value problem (29)
has a positive solution for each λ ∈ (0, +∞).

Example 4.3 Consider the Hadamard fractional boundary value problem

(
D2.5x

)
(t) + λ ln t

(200x2(t) + x(t))(2 + sin x(t))
x(t) + 1

= 0,

x(0) = (δx)(0) = (δx)(1) = 0, 1 < t < e. (30)

Since α = 2.5 and a(t) = ln t, we have C1 ≤ 0.2006 and C2 ≥ 0.1146. Let f (x) = (200x2 +
x)(2 + sin x)/(x + 1). Then from [35], we have F0 = f0 = 2, F∞ = 600, f∞ = 200, and 2x < f (x) <
600x.

(i) Choose l = e0.5. Then g(e0.5) = 0.51.5 ≈ 0.3536. So g(l)C2f∞ > F0C1 holds. Thus, by
Theorem 3.1, the boundary value problem (30) has a positive solution for each
λ ∈ (0.1234, 2.4925).

(ii) By Theorem 3.6, the boundary value problem (30) has no positive solution for all
λ ∈ (0, 0.0083).

(iii) By Theorem 3.7, the boundary value problem (30) has no positive solution for all
λ ∈ (12.3388, +∞).

5 Conclusions
By means of the properties of the Green function and the Guo–Krasnosel’skii fixed-point
theorem on cones, we have investigated the existence and nonexistence of positive solu-
tions for a class of boundary value problems of nonlinear Hadamard fractional differential
equations with a parameter. Three examples are given to show the effectiveness of the ob-
tained results. Furthermore, by using similarly the method in this paper, we can also obtain
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the existence and nonexistence of positive solutions for nonlinear Hadamard fractional
boundary value problems as follows: (Dαx)(t) + λa(t)f (x(t)) = 0, x(1) = x(e) = (δx)(1) = 0,
α ∈ (2, 3], t ∈ [1, e].
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