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Abstract
This paper addresses the stability problem of a class of switched positive nonlinear
systems (SPNSs). Both continuous-time systems and discrete-time systems are
studied. By applying the minimum dwell-time (MDT) approach, we design
time-dependent switching rules under which the continuous-time SPNSs is
asymptotically stable. For the corresponding discrete-time case, a sufficient condition
is given for exponential stability of SPNSs. In addition, the MDT switching signals are
designed via analyzing the weighted l∞ norm for the considered systems. Finally, a
numerical example is provided to illustrate the effectiveness of our result.
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1 Introduction
The qualitative theory of dynamic systems such as oscillation criterion and stability prop-
erty has been widely studied and many results have been reported [1–8]. As a special class
of dynamic systems, positive systems are those systems whose states always take nonneg-
ative values as long as the initial conditions are nonnegative. Examples of this type are
frequently encountered in real word, such as populations levels in biology [9], industrial
process involving chemical reactors [10]. In recent years, more and more researchers have
focussed on the theory of positive systems because of their importance in applications
[11–15]. In the literature on positive systems, the stability property takes an important
position and it has been comprehensively studied from different fields [16–19].

As is well known, positive LTI systems have many special and interesting properties. For
example, it was proved in [20] the stability of positive LTI systems is delay-independent,
which implies that time delays have no effect on the stability of the systems. In [21], some
simple criteria for exponential stability of positive LTI systems were presented. Up to now,
positive linear-time invariant (LTI) systems are well understood [20–22]. As many physical
systems are nonlinear, it is natural to extend the stability theory of positive linear systems
to nonlinear systems. Recently, some excellent work has been done on positive nonlin-
ear systems called cooperative homogeneous systems. For example, [23] showed that the
global asymptotic stability (GAS) of the time-delay cooperative homogeneous systems can
be concluded from the GAS of the corresponding delay-free systems.
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On the other hand, switched systems, which are a class of hybrid systems, have received
much attention in the past decades. Many researchers have highlighted and investigated
the switched system theory [24–26]. As a special class of positive systems, switched pos-
itive systems that inherit the feature of both switched systems and positive systems have
also received ever-increasing research interest [27–32]. The stability of switched positive
linear systems (SPLSs) has been extensively discussed by the approach of common or mul-
tiple linear co-positive Lyapunov functions such as [19, 28, 29, 32]. However, the popular
approaches for analyzing SPLSs cannot be applied for the SPNSs. The stability theory for
SPNSs is considerably less well-developed, so there is a need to exploit valid methods to
study it.

Note that the author of [27] only studied the switched positive systems with the degree
of homogeneity one. However, when the degree is not constrained to be one, the systems
turn to be more complicated, such as the decay rate may depend on initial conditions at
each switched instant. In this case, it is worth studying whether it is possible to design suit-
able switching signals to keep the system stable. In addition, the results in [33] only dealt
with asymptotical stability of positive systems. As is known to us, switched systems may
be unstable even if we ensure that all the subsystems are stable. Therefore, it is meaningful
to combine the positive systems with switched systems. Based on the previous discussion,
in this paper, using the method which does not involve the Lyapunov–Krasovskii func-
tion, we study the SPCHSs with the degree greater than one for the first time. The main
contributions of this paper are as follows. For the continuous-time SPCHSs, we present a
sufficient condition for asymptotic stability of SPCHSs of degree α > 1 by using the MDT
approach. Then, a sufficient condition is also obtained for exponential stability of discrete-
time case with the degree α ≥ 1 under MDT switching. In addition, a new class of the MDT
switching signals are designed via analyzing the weighted l∞ norm of the considered sys-
tems.

In Sect. 2, we introduce the notation and review some preliminaries and the main re-
sults of this paper are stated in Sect. 3. Section 4 provides a number example to show the
effectiveness of our results. Finally concluding remarks are given in Sect. 5.

2 Notation and preliminaries
2.1 Notation
R, N and N0 are the sets of real numbers, natural numbers and natural numbers including
zero, respectively. Rn means the n-dimensional Euclidean space. Let Rn

+ := {x ∈ R
n, xj ≥

0, 1 ≤ j ≤ n}. Given two vectors x, y ∈ R
n, we write: x ≥ y, if xj ≥ yj, for 1 ≤ j ≤ n; x > y, if

x ≥ y and x �= y; x � y, if xj > yj, 1 ≤ j ≤ n. xj is used to denote the jth component of x.
Similarly, xpj stands for the jth coordinate of vector xp. In [14] the definition of weighted
l∞ norm is defined by a vector υ � 0, as

‖x‖υ
∞ = max

1≤j≤n

|xj|
υj

.

For matrix A ∈ R
n×n, aij denotes its entry in row i and column j. Given a real n × n

matrix A = (aij)n×n, it is Metzler if its off-diagonal entries aij (i �= j) are nonnegative. Let
C([a, b],Rn) be the space of continuous functions from [a, b] to R

n. The upper-right Dini-
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derivative of a continuous function h : R→ R is defined by

D+h(t)
∣
∣
t=t0

= lim
�→0+

sup
h(t0 + �) – h(t0)

�
.

2.2 Preliminaries
Next, we present some definitions and results which are used in this paper.

Definition 1 The vector field f : Rn →R
n is called homogeneous of degree α > 0, if

f(λx) = λαf(x), ∀x ∈R
n,λ ∈ R.

Definition 2 The vector field f : Rn → R
n which is continuous differentiable on R

n \ {0}
is said to be cooperative if the Jacobian matrix ∂f

∂x (a) is Metzler for all a ∈R
n \ {0}.

It follows from Remark 3.1 in [34] that the cooperative systems satisfy the following
property.

Proposition 1 Let f : Rn →R
n be cooperative. For any two vector x and y in R

n
+ with x ≥ y

and xj = yj, we have fj(x) ≥ fj(y).

Definition 3 A vector field g : Rn →R
n is said to be order-preserving onR

n
+, if g(x) ≥ g(y)

for any x, y ∈R
n
+ such that x ≥ y.

Definition 4 Consider a switched sequence 0 = t0 < t1 < · · · < tk < · · · . Let �tk = tk+1 – tk ,
k ∈ N0. The constant τ is called the minimum dwell time of the switching signals if τ =
infk∈N0 �tk .

We now give the definition of exponentially stable for discrete-time contexts of SPNSs.
Let ‖ · ‖ be some norm on R

n.

Definition 5 Consider a fixed class of MDT switching signals. The solution x(k) of system
(12) is exponentially stable if there exist two constants a > 0 and 0 < b < 1 such that x(k)
satisfies

∥
∥x(k)

∥
∥ ≤ abk∥∥x(0)

∥
∥, k ∈N0.

3 Main results
3.1 Continuous-time case
In this subsection, we consider the following switched nonlinear system:

ẋ(t) = fσ (t)
(

x(t)
)

, (1)

where x(t) = [x1(t), x2(t), . . . , xn(t)] is the state vector and σ (t) : [0, +∞) → M = {1, 2, . . . , m}
is a piecewise constant, right continuous function. ∀p ∈ M, f p : Rn → R

n is continuously
differentiable on R

n\{0}. In addition, throughout this section, ∀p ∈ M, f p always satisfies
Assumption 1.
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Assumption 1
(i) ∀p ∈ M, f p is cooperative on R

n
+\{0}.

(ii) ∀p ∈ M, f p is homogeneous of degree α.

Remark 1 It should be pointed that, for every p ∈ M, as f p is defined cooperative and
homogeneous, the system (1) is positive under arbitrary switching laws. This implies that
for every x(0) ∈R

n
+ the corresponding state trajectory x(t) ∈R

n
+ for all t ≥ 0.

Lemma 1 (see [33]) ∀p ∈ M, σ (t) ≡ p, consider the subsystem ẋ(t) = f p(x(t)) under As-
sumption 1 with the degree α > 1. Then the following two statements are equivalent:

(i) There exists a vector υp = [υp1,υp2, . . . ,υpn] � 0 such that

fpj(υp1,υp2, . . . ,υpn) < 0, ∀p ∈ M, j ∈ {1, 2, . . . , n}.

(ii) The system ẋ(t) = f p(x(t)) is globally polynomially stable for any nonnegative initial
condition. In particular, every solution x(t) of system (1) satisfies

∥
∥x(t)

∥
∥

υp
∞ ≤ ((∥

∥x(0)
∥
∥

υp
∞

)1–α + (α – 1)ηt
)– 1

α–1 , (2)

where η is such that 0 < η < min1≤j≤n ηj with ηj being the unique positive solution of
the equation

fpj(υp)
υpj

+ ηj = 0. (3)

Lemma 2 (see [27]) Assume that x(t) is the solution of system (1), then for any p, q ∈ M

∥
∥x(t)

∥
∥

υ

∞ ≤ ∥
∥x(t)

∥
∥

υp
∞ ≤ ∥

∥x(t)
∥
∥

υ

∞ ≤ β
∥
∥x(t)

∥
∥

υq
∞ ,

where β = max1≤j≤n
υ j
υ j

with υ j = maxp∈M υpj, υ j = minp∈M υpj, υ = [υ1,υ2, . . . ,υn] and υ =
[υ1,υ2, . . . ,υn].

In the following theorem, for p ∈ M, j ∈ {1, 2, . . . , n}, we always assume that fpj(υp1,υp2,
. . . ,υ j, . . . ,υpn) < 0. Based on Lemma 1 and 2, we next establish a sufficient condition for
asymptotic stability of system (1) and the symbols defined above continue to use. In addi-
tion, Let Q be any given closed subset of Rn

+ \ {0} and define

γ = inf
x∈Q

‖x‖υ
∞,

which is used to design the switching signals in the following.

Theorem 1 For the switched nonlinear system (1), suppose that Assumption 1 holds with
the degree α > 1. If there exists a vector υp = [υp1,υp2, . . . ,υpn] � 0 for each p ∈ M, j ∈
{1, 2, . . . , n}, such that

fpj(υp1,υp2, . . . ,υpn) < 0.
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Then the system (1) is asymptotically stable for any nonnegative initial condition x(0) ∈ Q
under MDT switching signal τ satisfying

τ ≥ (βα–1 – 1)γ 1–α

(α – 1)η
, (4)

where 0 < η < minp∈M min1≤j≤n ηpj and ηpj is the solution of the following equation:

fpj(υp)
υpj

+ ηpj = 0.

Proof Let

ξ = – max
p∈M

max
1≤j≤n

fpj(υp)
υpj

,

where υp � 0 is the vector such that fpj(υp) < 0 for each p ∈ M, j ∈ {1, 2, . . . , n}.
Thus

fpj(υp)
υpj

≤ –ξ < 0, ∀p ∈ M, j ∈ {1, 2, . . . , n}. (5)

Define

δpj =
(

1 +
ξ

2
fpj(υp)

υpj

) 1
α

. (6)

From (5) and (6), we have

0 < δpj < 1

and

(δpj)α
fpj(υp)

υpj
=

(

1 +
ξ

2
fpj(υp)

υpj

)
fpj(υp)

υpj
=

fpj(υp)
υpj

+
ξ

2
≤ –

ξ

2
< 0.

Hence, one can verify that

δα
fpj(υp)

υpj
≤ (δpj)α

fpj(υp)
υpj

≤ –
ξ

2
, ∀p ∈ M, j ∈ {1, 2, . . . , n}, (7)

where δ = maxp∈M max1≤j≤n δpj. This implies that 0 < δ < 1.
Next, consider a switched sequence 0 = t0 < t1 < t2 < · · · < tk < tk+1 < · · · .
From (4) and the definition of γ , for any x(0) ∈ Q, we have

�tk+1 = tk+1 – tk ≥ τ ≥ (βα–1 – 1)γ 1–α

(α – 1)η

≥ (βα–1 – 1)(‖x(0)‖υ∞)1–α

(α – 1)η

≥ (βα–1 – 1)(‖x(0)‖υσ (0)∞ )1–α

(α – 1)η
, ∀k ∈ N0. (8)
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In order to prove asymptotically stable of system (1), the proof now proceeds in two
steps:

1. First, we prove ‖x(t)‖υ
∞ ≤ β‖x(0)‖υ

∞ for all t ≥ 0.
2. By induction, we will show for each l ∈N0, there exists a time tl ≥ 0 such that

‖x(t)‖υ
∞ ≤ δlβ‖x(0)‖υ

∞ for all t ≥ tl .
Step 1: As for every p ∈ M, there exists a vector υp � 0 such that f p(υp) � 0, it follows

from Lemma 1 that all the subsystems are polynomially stable. Thus, for the first subsys-
tem, we can get

∥
∥x(t1)

∥
∥

υσ (0)
∞ ≤ ((∥

∥x(0)
∥
∥

υσ (0)
∞

)1–α + (α – 1)η�t1
)– 1

α–1

≤ ((∥
∥x(0)

∥
∥

υσ (0)
∞

)1–α + (α – 1)ητ
)– 1

α–1 ,

≤ 1
β

∥
∥x(0)

∥
∥

υσ (0)
∞ ,

where we have used (8) to get the third inequality.
Furthermore, according to Lemma 2, we arrived at

∥
∥x(t1)

∥
∥

υσ (t1)
∞ ≤ β

∥
∥x(t1)

∥
∥

υσ (0)
∞ ≤ ∥

∥x(0)
∥
∥

υσ (0)
∞ .

Therefore, ‖x(tk)‖υσ (tk )
∞ ≤ ‖x(0)‖υσ (0)∞ is true for k = 1. Next assume for induction that

‖x(tk)‖υσ (tk )
∞ ≤ ‖x(0)‖υσ (0)∞ for a given k, we will show that it holds for k + 1, i.e.,

‖x(tk+1)‖υσ (tk+1)
∞ ≤ ‖x(0)‖υσ (0)∞ .

As the (k + 1)th subsystem is also polynomially stable, we have

∥
∥x(tk+1)

∥
∥

υσ (tk )
∞ ≤ ((∥

∥x(tk)
∥
∥

υσ (tk )
∞

)1–α + (α – 1)η�tk+1
)– 1

α–1

≤ ((∥
∥x(0)

∥
∥

υσ (0)
∞

)1–α + (α – 1)η�tk+1
)– 1

α–1

≤ ((∥
∥x(0)

∥
∥

υσ (0)
∞

)1–α + (α – 1)ητ
)– 1

α–1

≤ 1
β

∥
∥x(0)

∥
∥

υσ (0)
∞ .

This together with Lemma 2, we obtain

∥
∥x(tk+1)

∥
∥

υσ (tk+1)
∞ ≤ β

∥
∥x(tk+1)

∥
∥

υσ (tk )
∞ ≤ ∥

∥x(0)
∥
∥

υσ (0)
∞ .

By induction, we prove that, for any k ∈ N0, ‖x(tk)‖υσ (tk )
∞ ≤ ‖x(0)‖υσ (0)∞ . Then, for any t ∈

(0, +∞), assume t ∈ [tk , tk+1). It immediately follows from Lemma 1 that

∥
∥x(t)

∥
∥

υσ (t)
∞ ≤ ((∥

∥x(tk)
∥
∥

υσ (tk )
∞

)1–α + (α – 1)η(t – tk)
)– 1

α–1

≤ ∥
∥x(tk)

∥
∥

υσ (tk )
∞

≤ ∥
∥x(0)

∥
∥

υσ (0)
∞ .

Hence applying Lemma 2, we can get

∥
∥x(t)

∥
∥

υ

∞ ≤ β
∥
∥x(t)

∥
∥

υσ (t)
∞ ≤ β

∥
∥x(0)

∥
∥

υσ (0)
∞ ≤ β

∥
∥x(0)

∥
∥

υ

∞.
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Step 2: According to the previous Step 1, the induction by hypothesis is true for l = 0.
Now, assume that, for a given l > 0, there exists a time tl such that

∥
∥x(t)

∥
∥

υ

∞ ≤ δlβ
∥
∥x(0)

∥
∥

υ

∞, ∀t ≥ tl.

We will show that it is true for l + 1. First, we prove there exists a time tl+1 ≥ tl such that

∥
∥x(t)

∥
∥

υ

∞ ≤ δl+1β
∥
∥x(0)

∥
∥

υ

∞, t = tl+1.

Suppose this is not true. Then

δl+1β
∥
∥x(0)

∥
∥

υ

∞ <
∥
∥x(t)

∥
∥

υ

∞ ≤ δlβ
∥
∥x(0)

∥
∥

υ

∞, ∀t ≥ tl. (9)

Denote W (x(t)) = ‖x(t)‖υ
∞ and let j be an index such that

W
(

x(t)
)

=
∥
∥x(t)

∥
∥

υ

∞ =
xj(t)
υ j

.

Then, the upper-right Dini-derivative of W (x(t)) along the trajectories of system (1) is
given by

D+W
(

x(t)
)

=
ẋj(t)
υ j

=
fσ (t)j(x(t))

υ j
. (10)

From the definition of ‖x(t)‖υ
∞, we see that

x1(t)
υ1

≤ W
(

x(t)
)

,
x2(t)
υ2

≤ W
(

x(t)
)

, . . . ,
xj(t)
υ j

= W
(

x(t)
)

, . . . ,
xn(t)
υn

≤ W
(

x(t)
)

,

which, together with the cooperativity and homogeneity of fσ (t), implies that

fσ (t)j
(

x(t)
) ≤ W α

(

x(t)
)

fσ (t)j(υ). (11)

Let θ1 = minp∈M min1≤j≤n
fpj(υp1,υp2,...,υ j ,...,υpn)

fpj(υp)
υpj
υ j

, then we have θ1 > 0. Substituting (11) into
(10) yields

D+W
(

x(t)
) ≤ fσ (t)j(υ)

υ j
W α

(

x(t)
)

≤ W α
(

x(t)
) fσ (t)j(υσ (t)1,υσ (t)2, . . . ,υ j, . . . ,υσ (t)n)

υ j

≤ (

δl+1β
∥
∥x(0)

∥
∥

υ

∞
)α fσ (t)j(υσ (t)1,υσ (t)2, . . . ,υ j, . . . ,υσ (t)n)

υ j

=
(

δlβ
∥
∥x(0)

∥
∥

υ

∞
)α

δα
fσ (t)j(υσ (t))

υσ (t)j

fσ (t)j(υσ (t)1,υσ (t)2, . . . ,υ j, . . . ,υσ (t)n)
fσ (t)j(υσ (t))

υσ (t)j

υ j

≤ –
(

δlβ
∥
∥x(0)

∥
∥

υ

∞
)α

θ1
ξ

2
, t ≥ tl,
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where the third and the fourth inequality is from (9) and (7), respectively. Let θ =
(δlβ‖x(0)‖υ

∞)αθ1
ξ

2 , we then have D+W (x(t)) ≤ –θ , which means

W
(

x(t)
) ≤ W

(

x(tl)
)

– θ (t – tl).

Thus, from (9) we obtain

W
(

x(t)
) ≤ δlβ

∥
∥x(0)

∥
∥

υσ (0)
∞ – θ (t – tl), t ≥ tl.

Furthermore, one can verify that for t ≥ tl + δlβ‖x(0)‖υ∞(1–δ)
θ

W
(

x(t)
) ≤ δl+1β

∥
∥x(0)

∥
∥

υ

∞,

which contradicts (9). So there exists a time tl+1 such that ‖x(t)‖υ
∞ ≤ δl+1β‖x(0)‖υ

∞.
On the other hand, since W (x(t)) is continuous on R, we claim that

W
(

x(t)
) ≤ δl+1β

∥
∥x(0)

∥
∥

υ

∞, ∀t ∈ [tl+1, +∞).

By contradiction, suppose this is not true, then there must exist a time t∗ ≥ tl+1 such that
W (x(t∗)) = δl+1β‖x(0)‖υ

∞ and D+W (x(t∗)) ≥ 0. As fσ (t) is cooperative and homogeneous,
we can prove D+W (x(t∗)) < 0. The proof is similar to the previous arguments and is thus
omitted. Then we arrive at a contradiction, which implies that

∥
∥x(t)

∥
∥

υ

∞ ≤ δl+1β
∥
∥x(0)

∥
∥

υ

∞, t ∈ [tl+1, +∞).

Therefore, according to Steps 1 and 2, we conclude that for each l ∈N0 there exists a time
tl such that

∥
∥x(t)

∥
∥

υ

∞ ≤ δlβ
∥
∥x(0)

∥
∥

υ

∞, t ≥ tl.

Since δ < 1, δlβ‖x(0)‖υ
∞ → 0 as l → +∞. Thus, for any given set Q, the system (1) is asymp-

totically stable under MDT switching. �

3.2 Discrete-time case
Next, we consider the discrete-time case analogue of (1)

x(k + 1) = fσ (k)
(

x(k)
)

. (12)

Here x(k) ∈R
n is the state variable. σk : N0 → M = {1, 2, . . . , m} is the switching signal. ∀k ∈

N0, σk = p, f p : Rn → R
n is continuous onR

n\{0}, which satisfies the following assumption.

Assumption 2 ∀p ∈ M, f p is homogeneous of degree α and order-preserving on R
n
+.

Remark 2 For every p ∈ M, as f p is order-preserving, one can verify that the system (12) is
positive for any nonnegative condition under arbitrarily switching laws. That is, if x(0) ≥ 0
then x(k) ∈R

n
+ for all k ∈N0.
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Based on Lemma 2, we present and prove the main result of this section. In addition,
Let R = {x ∈R

n
+|‖x(0)‖υ

∞ ≤ 1}, which is used in Theorem 2.

Theorem 2 Consider the system (12) with α ≥ 1. Suppose that Assumption 2 holds. If for
every p ∈ M, there exists a vector υp � 0 such that

f p(υp) � υp. (13)

Then the switched nonlinear system (12) is exponentially stable for any initial condition
x(0) ∈ R under the MDT switching signal τ satisfying

τ > –
lnβ

lnω
.

In particular, every solution x(k) of system (12) satisfies

∥
∥x(k)

∥
∥

υ

∞ ≤ βek( lnβ
τ +lnω)∥∥x(0)

∥
∥

υ

∞,

where ω = maxp∈M max1≤j≤n ωpj with ωpj being the solution to the equation

fpj(υp)
υpj

– ωpj = 0.

Proof It follows from (13) that

fpj(υp)
υpj

= ωpj ≤ ω < 1, ∀p ∈ M, j ∈ {1, 2, . . . , n}.

Consider a switched sequence 0 = k0 < k1 < · · · < kn < · · · , which is a sub-sequence of N0.
It immediately follows that

σ (k) = σ (kl), ∀k ∈ [kl, kl+1).

Using Lemma 2 for any x(0) ∈ R, we have

∥
∥x(0)

∥
∥

υp
∞ ≤ ∥

∥x(0)
∥
∥

υ

∞ ≤ 1, ∀p ∈ M. (14)

In the following, we fix a nonnegative solution x(k) of system (12). Then the proof now
proceeds in two steps.

1: First, we show that, for an arbitrary interval [kl, kl+1), the following conditions hold:

∥
∥x(kl)

∥
∥

υσ (kl )
∞ ≤ ∥

∥x(k0)
∥
∥

υσ (k0)
∞ ≤ 1, (15)

∥
∥x(k)

∥
∥

υσ (kl )
∞ ≤ ∥

∥x(kl)
∥
∥

υσ (kl )
∞ ωk–kl , ∀k ∈ [kl, kl+1). (16)

2: Then we prove the solution of system (12) is exponentially stable. That is, there exist
two constants a > 0 and 0 < b < 1 such that

∥
∥x(k)

∥
∥

υσ (k)
∞ ≤ abk∥∥x(0)

∥
∥

υ

∞.
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Step 1: Consider the first interval [k0, k1) on which σ (k) = σ (k0). Next we prove that for
any k ∈ [k0, k1)

∥
∥x(k)

∥
∥

υσ (k0)
∞ ≤ ∥

∥x(0)
∥
∥

υσ (k0)
∞ ωk–k0 . (17)

Obviously, it holds true for k = k0. Assume for induction that (17) holds for all k up to
some k ∈ [k0, k1). Thus

∥
∥x(k)

∥
∥

υσ (k0)
∞ ≤ ∥

∥x(0)
∥
∥

υσ (k0)
∞ ωk–k0 . (18)

This means for each j ∈ {1, 2, . . . , n}

xj(k) ≤ ∥
∥x(0)

∥
∥

υσ (k0)
∞ ω(k–k0)υσ (k0)j.

On the other hand, as fσ (k0) is order-preserving and homogeneous of degree α on R
n
+, then,

for any j ∈ {1, 2, . . . , n}, we have

xj(k + 1) = fσ (k0)j
(

x(k)
)

≤ fσ (k0)j
(∥
∥x(0)

∥
∥

υσ (k0)
∞ ωk–k0υσ (k0)

)

=
(∥
∥x(0)

∥
∥

υσ (k0)
∞

)α(

ωk–k0
)αfσ (k0)j(υσ (k0))

≤ (∥
∥x(0)

∥
∥

υσ (k0)
∞

)(

ωk–k0
)

fσ (k0)j(υσ (k0)),

where the last inequality is from (14) and 0 < ω < 1. Furthermore, we can get

xj(k + 1)
υσ (k0)j

≤ (∥
∥x(0)

∥
∥

υσ (k0)
∞

)(

ωk–k0
) fσ (k0)j(υσ (k0))

υσ (k0)j

≤ ∥
∥x(0)

∥
∥

υσ (k0)
∞ ω((k+1)–k0),

which implies that (17) is true for k = k + 1. Thus, by induction, we conclude that (17)
holds for all k ∈ [k0, k1). It immediately follows that

∥
∥x(k1)

∥
∥

υσ (k0)
∞ ≤ ∥

∥x(0)
∥
∥

υσ (k0)
∞ ωk1–k0 ≤ 1

β

∥
∥x(0)

∥
∥

υσ (k0)
∞ ,

where the second inequality is from the inequality

k1 – k0 ≥ τ > –
lnβ

lnω
.

Then using Lemma 2, one can verify that

∥
∥x(k1)

∥
∥

υσ (k1)
∞ ≤ β

∥
∥x(k1)

∥
∥

υσ (k0)
∞ ≤ ∥

∥x(0)
∥
∥

υσ (k0)
∞ ≤ 1. (19)

From (17) and (19), we claim that (15) and (16) hold for the first interval [k0, k1). By induc-
tion, we assume that (15) and (16) are true for the lth interval. Then we can use similar
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arguments to the proofs of (17) and (19) to show that (15) and (16) also hold for the (l +1)th
interval.

By now, we show that (15) and (16) hold for arbitrarily interval of any fixed switching
sequence.

Step 2: ∀k ∈N0, suppose that k ∈ [kl, kl+1). Then we have

∥
∥x(k)

∥
∥

υ

∞ ≤ ∥
∥x(k)

∥
∥

υσ (kl )
∞ ≤ ∥

∥x(kl)
∥
∥

υσ (kl )
∞ ωk–kl

≤ β
∥
∥x(kl)

∥
∥

υσ (kl–1)
∞ ωk–kl

≤ β
∥
∥x(kl–1)

∥
∥

υσ (kl–1)
∞ ωk–kl–1

≤ · · ·

≤ β
k–k0

τ

∥
∥x(0)

∥
∥

υσ (k0)
∞ ωk–k0

= ek( lnβ
τ +lnω)∥∥x(0)

∥
∥

υσ (k0)
∞

≤ βek( lnβ
τ +lnω)∥∥x(0)

∥
∥

υ

∞.

Let

a = β , b = e( lnβ
τ +lnω),

which can easily be verified that a > 0 and 0 < b < 1 from the fact that τ > – lnβ

lnω
.

Therefore, system (12) is exponentially stable for the initial condition x(0) ∈ R. �

4 Numerical simulation
Consider the switched nonlinear system consisting of two subsystems given by

�1 : ẋ(t) = f 1
(

x(t)
)

,

�2 : ẋ(t) = f 2
(

x(t)
)

,

where

f 1
(

x(t)
)

=

[

–2x2
1(t) + x2

2(t)
x2

1(t) – 2x2
2(t)

]

, f 2
(

x(t)
)

=

[

–2x2
1(t) + x1(t)x2(t)

x1(t)x2(t) – 2x2
2(t)

]

.

It is easy to verify that f 1, f 2 satisfy the conditions of Theorem 1. Let Q = {x ∈ R
n
+|xi ≥

0.5, i = 1, 2}. It follows from Theorem 1 that the corresponding switched nonlinear system
is asymptotically stable under MDT switching τ ≥ 1.67, where υ = [2, 3], υ = [2, 2], β = 3

2 ,
η = 1.2 and γ = 0.25. From Fig. 1, we see that x(t) converges to origin. This agrees with the
implication of Theorem 1.

5 Conclusion
In this paper, we study the stability of SPCHSs. For the continuous-time SPCHSs, we
present a sufficient condition for asymptotic stability of SPCHSs with the degree α > 1
by using the MDT approach. Then, for the discrete-time case, a sufficient condition is
also obtained for exponential stability of SPNSs with α ≥ 1 under MDT switching.
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Figure 1 The simulation results of the actual decay rate with the initial condition x(0) = [1.2, 0.6]T and the
MDT τ = 2
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