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Abstract
This paper considers projective synchronization of fractional-order delayed neural
networks. Sufficient conditions for projective synchronization of master–slave systems
are achieved by constructing a Lyapunov function, employing a fractional inequality
and the comparison principle of linear fractional equation with delay. The
corresponding numerical simulations demonstrate the feasibility of the theoretical
result.
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1 Introduction
Neural networks have attracted great attention due to their wide applications, including
the signal processing, parallel computation, optimization, and artificial intelligence. The
dynamical behaviors of neural networks have been widely studied, particularly synchro-
nization, which is one of the most important topics and therefore has been given much
attention [1–6]. However, the majority of existing results considered modeling integer-
order neural networks.

It is well known that fractional calculus is the generalization of integer-order calculus
to arbitrary order. Compared to classical integer-order models, fractional-order calculus
offers an excellent instrument for the description of memory and hereditary properties
of dynamical processes. The existence of infinite memory can help fractional-order mod-
els better describe the system’s dynamical behaviors as illustrated in [7–23]. Taking these
factors into consideration, fractional calculus was introduced to neural networks forming
fractional-order neural networks, and some interesting results on synchronization were
demonstrated [24–29]. Among all kinds of synchronization, projective synchronization,
in which the master and slave systems are synchronized up to a scaling factor, is an im-
portant concept in both theoretical and practical manners. Recently, some results with re-
spect to projective synchronization of fractional-order neural networks were considered
[30–32]. In [30], projective synchronization for fractional neural networks was studied.
Through the employment of a fractional-order differential inequality, the projective syn-
chronization of fractional-order memristor-based neural networks was shown in [31]. By
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using an LMI-based approach, the global Mittag–Leffler projective synchronization for
fractional-order neural networks was investigated in [32].

However, time delay, which is unavoidable in biological, engineering systems, and neural
networks, was not taken into account in most of the previous works. To the best of our
knowledge, projective synchronization of fractional-order neural networks was previously
investigated at the presence of time delay through the use of Laplace transform [33], and no
special Lyapunov functions were derived for synchronization analysis. In this paper, new
methods are introduced to investigate the projective synchronization of fractional-order
delayed neural networks. The study includes constructing a Lyapunov function, applying a
fractional inequality and the comparison principle of linear fractional equation with delay,
and obtaining new sufficient conditions.

The rest of this article is organized as follows. In Sect. 2, some definitions and lemmas
are introduced, and the model description is given. In Sect. 3, the projective synchro-
nization schemes are presented, and sufficient conditions for projective synchronization
are obtained. Numerical simulations are presented in Sect. 4. Conclusions are drawn in
Sect. 5.

2 Preliminaries and model description
It has to be noted that Riemann–Liouville fractional derivative and Caputo fractional
derivative are the most commonly used among all the definitions of fractional-order in-
tegrals and derivatives. Due to the advantages of the Caputo fractional derivative, it is
adopted in this work.

Definition 1 ([7]) The fractional integral with non-integer order α > 0 of a function x(t)
is defined by

Iαx(t) =
1

�(α)

∫ t

t0

(t – τ )α–1x(τ ) dτ ,

where t ≥ t0, �(·) is the gamma function, �(s) =
∫ ∞

0 ts–1e–t dt.

Definition 2 ([7]) The Caputo derivative of fractional order α of a function x(t) is defined
by

Dαx(t) =
1

�(n – α)

∫ t

t0

(t – τ )n–α–1x(n)(τ ) dτ ,

where t ≥ t0, n – 1 < α < n ∈ Z+.

In this paper, we consider a class of fractional-order neural networks with time delay as
a master system, which is described by

Dαxi(t) = –cixi(t) +
n∑

j=1

aijfj
(
xj(t)

)
+

n∑
j=1

bijgj
(
xj(t – τ )

)
+ Ii,

i ∈ N = {1, 2, . . . , n}, (1)
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or equivalently, by

Dαx(t) = –Cx(t) + Af
(
x(t)

)
+ Bg

(
x(t – τ )

)
+ I, (2)

where 0 < α < 1, n is the number of units in a neural network, x(t) = (x1(t), . . . , xn(t))T ∈
Rn denotes the state variable of the neural network, C = diag(c1, c2, . . . , cn) is the self-
regulating parameters of the neurons, where ci ∈ R+. I = (I1, I2, . . . , In)T represents the
external input, A = (aij)n×n and B = (bij)n×n are the connective weight matrices with-
out and with delay, respectively. Functions f (x(t)) = (f1(x1(t)), . . . , fn(xn(t)))T , g(x(t)) =
(g1(x1(t)), . . . , gn(xn(t)))T are the neuron activation functions.

The slave system is given by

Dαyi(t) = –ciyi(t) +
n∑

j=1

aijfj
(
yj(t)

)
+

n∑
j=1

bijgj
(
yj(t – τ )

)
+ ui(t) + Ii,

i ∈ N = {1, 2, . . . , n}, (3)

or equivalently, by

Dαy(t) = –Cy(t) + Af
(
y(t)

)
+ Bg

(
y(t – τ )

)
+ U(t) + I, (4)

where y(t) = (y1(t), . . . , yn(t))T ∈ Rn is the state vector of system’s response, U(t) =
(u1(t), . . . , un(t))T is a suitable controller.

For generalities, the following definition, assumption, and lemmas are presented.

Definition 3 If there exists a nonzero constant β such that, for any two solutions x(t) and
y(t) of systems (1) and (3) with different initial values, one can get limt→∞ ‖y(t)–βx(t)‖ = 0,
then the master system (1) and the slave system (3) can achieve globally asymptotically
projective synchronization, where ‖ · ‖ denotes the Euclidean norm of a vector.

Assumption 1 The neuron activation functions fj(x), gj(x) satisfy the following Lipschitz
condition with Lipschitz constants lj > 0, hj > 0:

∣∣fj(u) – fj(v)
∣∣ ≤ lj|u – v|, ∣∣gj(u) – gj(v)

∣∣ ≤ hj|u – v|

for all u, v ∈ R, denote L = diag(l1, l2, . . . , ln), H = diag(h1, h2, . . . , hn), lmax = max{l1, l2, . . . , ln},
hmax = max{h1, h2, . . . , hn}.

Lemma 1 ([32]) Suppose that x(t) = (x1(t), . . . , xn(t))T ∈ Rn is a differentiable vector-valued
function and P ∈ Rn×n is a symmetric positive matrix. Then, for any time instant t ≥ 0, we
have

Dα
[
xT (t)Px(t)

] ≤ (
xT (t)P

)
Dαx(t) +

(
DαxT (t)

)
Px(t), (5)

where 0 < α < 1.
When P = E is an identity matrix, then 1

2 Dα[xT (t)x(t)] ≤ xT (t)Dαx(t).
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Lemma 2 ([34]) Suppose that V (t) ∈ R1 is a continuous differentiable and nonnegative
function, which satisfies

⎧⎨
⎩

DαV (t) ≤ –aV (t) + bV (t – τ ), 0 < α < 1

V (t) = ϕ(t) ≥ 0, t ∈ [–τ , 0],
(6)

where t ∈ [0, +∞). If a > b > 0 for all ϕ(t) ≥ 0, τ > 0, then limt→+∞ V (t) = 0.

Lemma 3 ([34]) Suppose that x(t) = (x1(t), x2(t), . . . , xn(t))T ∈ Rn and y(t) = (y1(t), y2(t), . . . ,
yn(t))T ∈ Rn are vectors, for all Q = (qij)n×n, the following inequality holds:

yT Qx ≤ kmaxyT y + k̄maxxT x, (7)

where kmax = 1
2‖Q‖∞ = 1

2 maxn
i=1(

∑n
j=1 |qij|), k̄max = 1

2‖Q‖1 = 1
2 maxn

j=1(
∑n

i=1 |qij|).

3 Projective synchronization
In this section, master–slave projective synchronization of delayed fractional-order neural
networks is discussed. The aim is to design a suitable controller to achieve the projective
synchronization between the slave system and the master system.

Let ei(t) = yi(t) – βxi(t) (i = 1, 2, . . . , n) be the synchronization errors.
Select the control input function ui(t) (i = 1, 2, . . . , n) as the following form:

ui(t) = vi(t) + wi(t), (8)

vi(t) =
n∑

j=1

aij
[
βfj

(
xj(t)

)
– fj

(
βxj(t)

)]

+
n∑

j=1

bij
[
βgj

(
xj(t – τ )

)
– gj

(
βxj(t – τ )

)]

+ (β – 1)Ii, (9)

wi(t) = –di
[
yi(t) – βxi(t)

]
, (10)

where di are positive constants, β is the projective coefficient.

Remark 1 The control function ui(t) is a hybrid control, vi(t) is an open loop control, and
wi(t) is a linear control.

Then the error system is obtained:

Dαei(t) = –ciei(t) +
n∑

j=1

aij
[
fj
(
yj(t)

)
– fj

(
βxj(t)

)]

+
n∑

j=1

bij
[
gj
(
yj(t – τ )

)
– gj

(
βxj(t – τ )

)]

– di
[
yi(t) – βxi(t)

]
, (11)
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or equivalently,

Dαe(t) = –Ce(t) + A
[
f
(
y(t)

)
– f

(
βx(t)

)]
+ B

[
g
(
y(t – τ )

)
– g

(
βx(t – τ )

)]

– De(t), (12)

where e(t) = (e1(t), . . . , en(t))T , D = diag(d1, d2, . . . , dn).

Theorem 1 Under Assumption 1, if there exists a symmetric positive definite matrix P ∈
Rn×n such that

–
(
λ̂max + k1max + k̄1maxl2

max + k2max

)
λ–1

max > k̄2maxh2
maxλ

–1
min,

then the fractional-order delayed neural networks systems (1) and (3) can achieve glob-
ally asymptotically projective synchronization based on the control schemes (8), (9), (10),
where λ̂max denotes the greatest eigenvalue of –PC – PD, k1max = 1

2‖PA‖∞, k̄1max = 1
2‖PA‖1,

k2max = 1
2‖PB‖∞, k̄2max = 1

2‖PB‖1, λmin and λmax denote the minimum and the maximum
eigenvalue of P, respectively.

Proof Construct a Lyapunov function:

V (t) =
1
2

eT (t)Pe(t). (13)

Taking the time fractional-order derivative of V (t), according to Lemma 1, (13) can be
rewritten as

DαV (t) = Dα

[
1
2

eT (t)Pe(t)
]

≤ eT (t)PDαe(t)

= eT (t)P
{

–Ce(t) + A
[
f
(
y(t)

)
– f

(
βx(t)

)]

+ B
[
g
(
y(t – τ )

)
– g

(
βx(t – τ )

)]
– De(t)

}

= eT (t)(–PC – PD)e(t) + eT (t)PA
[
f
(
y(t)

)
– f

(
βx(t)

)]

+ eT (t)PB
[
g
(
y(t – τ )

)
– g

(
βx(t – τ )

)]
. (14)

From Lemma 3, we have

eT (t)PA
[
f
(
y(t)

)
– f

(
βx(t)

)] ≤ k1maxeT (t)e(t) + k̄1max

[
f
(
y(t)

)
– f

(
βx(t)

)]T

· [f
(
y(t)

)
– f

(
βx(t)

)]

≤ k1maxeT (t)e(t) + k̄1maxeT (t)L2e(t)

≤ (
k1max + k̄1maxl2

max

)
eT (t)e(t). (15)
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eT (t)PB
[
g
(
y(t – τ )

)
– g

(
βx(t – τ )

)] ≤ k2maxeT e(t) + k̄2max

[
g
(
y(t – τ )

)

– f
(
βx(t – τ )

)]T · [g
(
y(t – τ )

)

– g
(
βx(t – τ )

)]

≤ k2maxeT e(t)

+ k̄2maxeT (t – τ )H2e(t – τ )

≤ k2maxeT e(t)

+ k̄2maxh2
maxeT (t – τ )e(t – τ ). (16)

Submitting (15) and (16) into (14) yields

DαV (t) ≤ eT (t)(–PC – PD)e(t) +
(
k1max + k̄1maxl2

max + k2max

)
eT (t)e(t)

+ k̄2maxh2
maxeT (t – τ )e(t – τ ). (17)

Then

DαV (t) ≤ λ̂maxeT (t)e(t) +
(
k1max + k̄1maxl2

max + k2max

)
eT (t)e(t)

+ k̄2maxh2
maxeT (t – τ )e(t – τ )

=
(
λ̂max + k1max + k̄1maxl2

max + k2max

)
eT (t)e(t)

+
(
k̄2maxh2

max + k̄3max

)
eT (t – τ )e(t – τ )

≤ (
λ̂max + k1max + k̄1maxl2

max + k2max

)
λ–1

maxV (t)

+
(
k̄2maxh2

max

)
λ–1

minV (t – τ ). (18)

From Lemma 2, we have that, if

–
(
λ̂max + k1max + k̄1maxl2

max + k2max

)
λ–1

max > k̄2maxh2
maxλ

–1
min,

then system (1) synchronizes system (3). �

Remark 2 If the projective coefficient β = 1, the projective synchronization is simplified
to complete synchronization, and the control input function (8) becomes

ui(t) = –di
[
yi(t) – xi(t)

]
. (19)

Remark 3 If the projective coefficient β = –1, the projective synchronization is simplified
to anti-synchronization, and the control input function (8) becomes

ui(t) = –
n∑

j=1

aij
[
fj
(
xj(t)

)
+ fj

(
–xj(t)

)]
–

n∑
j=1

bij
[
gj
(
xj(t – τ )

)

+ gj
(
–xj(t – τ )

)]
– 2Ii – di

[
yi(t) + xi(t)

]
. (20)
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In the following, we choose the control input function ui(t) in system (3):

ui(t) = vi(t) + wi(t), (21)

vi(t) =
n∑

j=1

aij
[
βfj

(
xj(t)

)
– fj

(
βxj(t)

)]

+
n∑

j=1

bij
[
βgj

(
xj(t – τ )

)
– gj

(
βxj(t – τ )

)]

+ (β – 1)Ii,

(22)

wi(t) = –
(
di(t) + d∗

i
)[

yi(t) – βxi(t)
]
, (23)

Dαdi(t) = γi
∥∥yi(t) – βxi(t)

∥∥2, (24)

where di(t) + d∗
i are feedback gains, di(t) ≥ 0, d∗

i > 0 are positive constants, γi are any pos-
itive constants, and β is the projective coefficient.

Remark 4 The control function ui(t) is a hybrid control, vi(t) is an open loop control, and
wi(t) is an adaptive feedback control.

Remark 5 Let di(0) ≥ 0, then di(t) = di(0) + Iα(γi‖yi(t) – βxi(t)‖2) ≥ di(0). So it is easy to
get di(t) ≥ 0.

Then the system’s error is given as follows:

Dαei(t) = –ciei(t) +
n∑

j=1

aij
[
fj
(
yj(t)

)
– fj

(
βxj(t)

)]

+
n∑

j=1

bij
[
gj
(
yj(t – τ )

)
– gj

(
βxj(t – τ )

)]

–
(
di(t) + d∗

i
)[

yi(t) – βxi(t)
]
, (25)

or equivalently,

Dαe(t) = –Ce(t) + A
[
f
(
y(t)

)
– f

(
βx(t)

)]
+ B

[
g
(
y(t – τ )

)

– g
(
βx(t – τ )

)]
–

(
D(t) + D∗)e(t), (26)

where D(t) = diag(d1(t), . . . , dn(t)), D∗ = diag(d∗
1, . . . , d∗

n).

Theorem 2 Under Assumption 1, if there exists a symmetric positive definite matrix P ∈
Rn×n such that

–
(
λ̌max + k1max + k̄1maxl2

max + k2max

)
λ–1

max > k̄2maxh2
maxλ

–1
min,

then the fractional-order delayed neural networks systems (1) and (3) can achieve globally
asymptotically projective synchronization based on the control schemes (21), (22), (23), (24),
where λ̌max denotes the greatest eigenvalue of –PC – PD∗, λmin and λmax denote the mini-
mum and the maximum eigenvalues of P, respectively.
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Proof Construct the auxiliary function

V (t) =
1
2

eT (t)Pe(t) +
n∑

i=1

λmin

2γi
d2

i (t). (27)

Taking the time fractional-order derivative of V (t), according to Lemma 1, (27) can be
given as follows:

DαV (t) ≤ eT (t)PDαe(t) +
n∑

i=1

λmin

γi
di(t)Dαdi(t)

= eT (t)P
{

–Ce(t) + A
[
f
(
y(t)

)
– f

(
βx(t)

)]
+ B

[
g
(
y(t – τ )

)

– g
(
βx(t – τ )

)]
–

(
D(t) + D∗)e(t)

}
+

n∑
i=1

λmin

γi
di(t)Dαdi(t)

= eT (t)
(
–PC – PD∗)e(t) + eT (t)PA

[
f
(
y(t)

)
– f

(
βx(t)

)]

+ eT (t)PB
[
g
(
y(t – τ )

)
– g

(
βx(t – τ )

)]

– eT (t)PD(t)e(t) +
n∑

i=1

λmin

γi
di(t)Dαdi(t)

≤ eT (t)
(
–PC – PD∗)e(t) + eT (t)PA

[
f
(
y(t)

)
– f

(
βx(t)

)]

+ eT (t)PB
[
g
(
y(t – τ )

)
– g

(
βx(t – τ )

)]
. (28)

The rest is the same as the proof of Theorem 1, hence omitted here. �

Remark 6 If the projective coefficient β = 1, the control input function (21) becomes

ui(t) = –
(
di(t) + d∗

i
)[

yi(t) – xi(t)
]
, (29)

where

Dαdi(t) = γi
∥∥yi(t) – xi(t)

∥∥2. (30)

Remark 7 If the projective coefficient β = –1, the control input function (21) becomes

ui(t) = –
n∑

j=1

aij
[
fj
(
xj(t)

)
+ fj

(
–xj(t)

)]
–

n∑
j=1

bij
[
gj
(
xj(t – τ )

)

+ gj
(
–xj(t – τ )

)]
– 2Ii –

(
di(t) + d∗

i
)[

yi(t) + xi(t)
]
, (31)

where

Dαdi(t) = γi
∥∥yi(t) + xi(t)

∥∥2. (32)

Remark 8 By using an LMI-based approach, Wu et al. investigated global Mittag–Leffler
projective synchronization for fractional-order neural networks [32], but without consid-
ering delay.
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Remark 9 In [33], by using the Laplace transform, the hybrid projective synchronization
of fractional-order memristor-based neural networks with time delays was discussed, but
the theoretical synchronization results are poor and the sufficient conditions are complex.
For comparison purposes, in this paper, the projective synchronization of fractional-order
delayed neural networks is studied by constructing a Lyapunov function, with the employ-
ment of a fractional inequality and the comparison principle of linear fractional equation
with delay. The results are simpler and more theoretical.

4 Numerical simulations
The following two-dimensional fractional-order delayed neural networks are considered
in this section:

Dαx(t) = –Cx(t) + Af
(
x(t)

)
+ Bg

(
x(t – τ )

)
+ I, (33)

where x(t) = (x1(t), x2(t))T , α = 0.97, I = (0, 0)T . The activation functions are given by
f (x(t)) = g(x(t)) = tanh(x(t)), τ = 1. Obviously, f (x) and g(x) satisfy Assumption 1 with
L = H = diag(1, 1) and C =

( 1 0
0 1

)
, A =

( 2.0 –0.1
–5.0 2.0

)
, B =

( –1.5 –0.1
–0.2 –1.5

)
.

Under these parameters, system (33) has a chaotic attractor, which is shown in Fig. 1.
In the control scheme (8), (9), (10), we select the symmetric positive definite matrix P =( 1 0

0 2

)
. By simple computing, we can get d1 = 18, d2 = 10. Select the projective coefficients

β = 2, initial values x1(0) = 4, x2(0) = 2, y1(0) = 3, y2(0) = 1, the projective synchronization
error is shown in Fig. 2. The synchronization trajectories are shown in Fig. 3 and Fig. 4.

Similarly, projective synchronization with projective coefficient β = –3 is given in Fig. 5–
Fig. 7.

In the control scheme (21), (22), (23), (24), we select the symmetric positive definite ma-
trix P =

( 1 0
0 1

2

)
. By simple computing, we can get d1(0) = 10, d2(0) = 24. Select the projective

coefficients β = 3, d∗
1 = 1, d∗

2 = 2, initial values x1(0) = 4, x2(0) = 1, y1(0) = 3, y2(0) = 2, the
projective synchronization error is shown in Fig. 8. The synchronization trajectories are
shown in Fig. 9 and Fig. 10. In addition, the adaptive gains di(t) (i = 1, 2) converge to some
positive constants, see Fig. 11.

Figure 1 Chaotic behavior of system (17) with initial value (2, 4)
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Figure 2 The synchronization errors ei (i = 1, 2) state with β = 2

Figure 3 The synchronization trajectories of x1, y1 with β = 2

Figure 4 The synchronization trajectories of x2, y2 with β = 2
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Figure 5 The synchronization errors ei (i = 1, 2) state with β = –3

Figure 6 The synchronization trajectories of x1, y1 with β = –3

Figure 7 The synchronization trajectories of x2, y2 with β = –3
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Figure 8 The synchronization errors ei(t) (i = 1, 2) state with β = 3

Figure 9 The synchronization trajectories of x1, y1 with β = 3

Figure 10 The synchronization trajectories of x2, y2 with β = 3
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Figure 11 Time response of di(t) (i = 1, 2) with β = 3

Figure 12 The synchronization errors ei(t) (i = 1, 2) state with β = –2

Similarly, projective synchronization with projective coefficient β = –2 is shown in
Fig. 12–Fig. 15.

Remark 10 In simulations, the projective coefficient β is a nonzero constant, which is
selected arbitrarily.

5 Conclusions
In this paper, the projective synchronization of delayed fractional-order neural networks
is investigated. In order to obtain general results, an effective controller is designed, a
fractional inequality and the comparison principle of linear fractional equation with delay
are implemented, and some sufficient conditions are given to ensure that the master–slave
systems are able to obtain projective synchronization. Numerical simulations are used to
show the effectiveness of the method proposed.
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Figure 13 The synchronization trajectories of x1, y1 with β = –2

Figure 14 The synchronization trajectories of x2, y2 with β = –2

Figure 15 Time response of di(t) (i = 1, 2) with β = –2
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