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Abstract
Reproducing kernel Hilbert space method (RKHSM) is an analytical technique, which
can overcome the difficulty at the singular point of non-homogeneous, linear
singular initial value problems; especially when the singularity appears on the
right-hand side of this type of equations, so it can solve powerfully linear singular
initial value problems. Therefore, using advantages of this method, in this paper the
high-order nonlinear singular Emden–Fowler type equations are investigated by
RKHSM. Then we present five numerical examples to show that the proposed scheme
is accurate and reliable.
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1 Introduction
Many scientific applications in the literature of mathematical physics and fluid mechanics
can be distinctively described by the Emden–Fowler equation

⎧
⎨

⎩

u′′(x) + β

x u′(x) = H(x, u(x)),

u(0) = u0, u′(0) = 0,
(1)

where H(x, u(x)) = f (x)g(u); f (x) and g(u) are given functions of x and u, respectively, and
β is a shape factor. Equation (1) is a singular initial value problem relating to second-
order ordinary differential equations which have been used to model several phenomena
in mathematical physics and astrophysics such as thermal explosions, stellar structure,
the thermal behavior of a spherical cloud of gas, isothermal gas spheres, and thermionic
currents [1–3].

For f (x) = 1, g(u) = um, Eq. (1) becomes the standard Lane–Emden equation of the first
order and index m, and for f (x) = 1, g(u) = exp(u) becomes the second order.

The Emden–Fowler equation was studied by Fowler [4] to describe a variety of phenom-
ena in fluid mechanics and relativistic mechanics among others. The singular behavior
that occurs at x = 0 is the main difficulty of Eq. (1).

During the last few decades, many analytic and numeric methods were developed to
study and to obtain approximate solutions for different types of Lane–Emden equations
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and Emden–Fowler equation. The Adomian decomposition method (ADM) was pre-
sented by Wazwaz [5–7]; the variational iteration method (VIM) was investigated in [8–
10]. The authors of [11] solved singular IVPs of Lane–Emden type by the homotopy per-
turbation method (HPM). Parand et al. investigated nonlinear differential equations of
Lane–Emden type by the rational Legendre pseudospectral approach [12].

Based on ideas in [8] and [5], Eq. (1) is derived from the following equation:

⎧
⎨

⎩

x–β d
dx (xβ d

dx )u = H(x, u(x)),

u(0) = u0, u′(0) = 0,
(2)

where β is called the shape factor.
To derive the Emden–Fowler type equations of third and forth order, we use the sense

of Eq. (2) and set

⎧
⎨

⎩

x–β dp

dxp (xβ dq

dxq )u = H(x, u(x)),

u(0) = u0, u′(0) = 0.
(3)

To determine third-order equations, it is clear that we should select

p + q = 3, p, q ≥ 1,

which leads to the following two choices:

p = 2, q = 1 and p = 1, q = 2.

Substituting (p = 2, q = 1) in Eq. (3) gives

⎧
⎨

⎩

u′′′(x) + 2β

x u′′(x) + β(β–1)
x2 u′(x) = H(x, u(x)),

u(0) = u0, u′(0) = u′′(0) = 0.
(4)

Notice that the singular point x = 0 appears twice as x and x2 with shape factors 2β and
β(β – 1), respectively.

In the other case, we substitute (p = 1, q = 2) in Eq. (3) to obtain

⎧
⎨

⎩

u′′′(x) + β

x u′′(x) = H(x, u(x)),

u(0) = u0, u′(0) = u′′(0) = 0.
(5)

The singular point x = 0 appears once with shape factor β .
Similarly, to derive Emden–Fowler type equations of forth-order in Eq. (3), to specify

forth-order equation, we should select

p + q = 4, p, q ≥ 1,

which leads to the following three choices:

p = 3, q = 1, p = 2, q = 2, and p = 1, q = 3.
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Substituting options in Eq. (3) gives Eqs. (6)–(8) as follows:

⎧
⎨

⎩

u(4)(x) + 3β

x u′′′(x) + 3β(β–1)
x2 u′′(x) + β(β–1)(β–2)

x3 u′(x) = H(x, u(x)),

u(0) = u0, u′(0) = u′′(0) = u′′′(0) = 0,
(6)

where the singular point x = 0 appears thrice as x, x2, and x3 with shape factors 3β , 3β(β –
1), and β(β – 1)(β – 2), respectively.

⎧
⎨

⎩

u(4)(x) + 2β

x u′′′(x) + β(β–1)
x2 u′′(x) = H(x, u(x)),

u(0) = u0, u′(0) = u′′(0) = u′′′(0) = 0,
(7)

unlike the first kind, the singular point x = 0 appears twice as x and x2 with shape factors
3β and β(β – 1), respectively.

⎧
⎨

⎩

u(4)(x) + β

x u′′′(x) = H(x, u(x)),

u(0) = u0, u′(0) = u′′(0) = u′′′(0) = 0.
(8)

The singular point x = 0 appears once with shape factor β .
Naturally, solving high-order models with usual methods is difficult, so providing appro-

priate methods to solve these types of equations is useful. The theory of reproducing ker-
nels [13] was used for the first time at the beginning of the twentieth century by Zaremba
in his work on boundary value problems for harmonic and biharmonic functions.

This theory has been successfully applied to integral equations [14, 15], partial differ-
ential equations [16], boundary value problems [17–22], fractional differential equations
[23], and so on [24–29].

In this paper, we generalize the idea of the RKHSM to provide a numerical solution for
Eqs. (4)–(8). The main idea is to construct the reproducing kernel space satisfying the
conditions for determining solution of the new type of Emden–Fowler equations stated
in the third and forth order. The analytical solution is represented in the form of series
through the function value at the right-hand side of the equation. To demonstrate the
effectiveness of the RKHSM algorithm, several numerical experiments of Eqs. (4)–(8) are
presented.

The outline of the paper is as follows: several reproducing kernel spaces are described
in the next section. In Section 3, linear operators, a complete normal orthogonal system,
and some essential results are introduced. Also, a method for the existence of solutions for
Eqs. (4)–(8) based on a reproducing kernel space is described. Various numerical examples
are presented in Section 4. Section 5 ends this work with a brief conclusion.

2 Several reproducing kernel spaces
In this section, several reproducing kernels needed are constructed in order to solve
Eqs. (4)–(8) using the reproducing kernel spaces method.

1. The reproducing kernel space W 4,0
2 [0, 1] for Eqs. (4)–(5)
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Space W 4,0
2 [0, 1] is defined by:

W 4,0
2 ≡ W 4,0

2 [0, 1]

=
{

u(x)|u, u′, u′′, u′′′ is an absolutely continuous real-valued function on [0, 1],

u(4) ∈ L2[0, 1], u(0) = u′(0) = u′′(0) = 0
}

,

and endowed with inner product

〈u, v〉W 4,0
2

= u(3)(0)v(3)(0) +
∫ 1

0
u(4)(x)v(4)(x) dx, ∀u, v ∈ W 4,0

2 . (9)

Theorem 1 The space W 4,0
2 is a complete reproducing kernel space with reproducing kernel

Ry(x) =

⎧
⎨

⎩

– x3(x4–7x3y+21x2y2–140y3–35xy3)
5040 , x ≤ y,

– y3(21x2y2–7xy3+y4–35x3(4+y))
5040 , y < x.

(10)

That is, for every x ∈ [0, 1] and u ∈ W 4,0
2 , 〈u(x), Ry(x)〉W 4,0

2
= u(y) holds.

Proof The proof of the completeness and reproducing property of W 4,0
2 is similar to the

proof of Theorem 1.3.2 in [29].
Now, let us find out the expression of the reproducing kernel function Ry(x) in W 4,0

2 .
Through several integrations by parts for (9), we have

〈
u(x), Ry(x)

〉

W 4,0
2

=
2∑

i=0

(–1)2–iu(i)(0)
∂7–iRy(0)

∂x7–i + u(3)(0)
[

∂3Ry(0)
∂x3 –

∂4Ry(0)
∂x4

]

+
3∑

i=0

(–1)3–iu(i)(1)
∂7–iRy(1)

∂x7–i +
∫ 1

0
u(x)

∂8Ry(x)
∂x8 dx. (11)

Since Ry(x) ∈ W 4,0
2 , it follows that

∂ iRy(0)
∂xi = 0, i = 0, 1, 2. (12)

Also, since u(x) ∈ W 4,0
2 , one obtains

u(i)(0) = 0, i = 0, 1, 2. (13)

Thus, if

∂3Ry(0)
∂x3 –

∂4Ry(0)
∂x4 = 0 (14)

and

∂7–iRy(1)
∂x7–i = 0, i = 0, 1, 2, 3, (15)
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then

〈
u(x), Ry(x)

〉

W 4,0
2

=
∫ 1

0
u(x)

∂8Ry(x)
∂x8 dx. (16)

Now, for each x ∈ [0, 1], if Ry(x) also satisfies

∂8Ry(x)
∂x8 = δ(x – y), (17)

where δ is the dirac-delta function, then 〈u(x), Ry(x)〉W 4,0
2

= u(y). Obviously, Ry(x) is the
reproducing kernel function of the space W 4,0

2 .
The characteristic equation of Eq. (17) is given by λ8 = 0, and λ = 0 has eight repeated

roots. Let the representation of Ry(x) be

Ry(x) =

⎧
⎨

⎩

∑8
i=1 ci(y)xi–1, x ≤ y,

∑8
i=1 di(y)xi–1, y < x.

(18)

Integrating Eq. (17) from y – ε to y + ε with respect to x and Ry(x) satisfies

∂ iRy(x)
∂xi

∣
∣
∣
∣
x=y+0

=
∂ iRy(x)

∂xi

∣
∣
∣
∣
x=y–0

, i = 0, 1, . . . , 6. (19)

Using the jump discontinuity of ∂7Ry(x)
∂x7 at x = y and taking ε → 0 give

∂7Ry(x)
∂x7

∣
∣
∣
∣
x=y+0

–
∂7Ry(x)

∂x7

∣
∣
∣
∣
x=y–0

= 1. (20)

Hence, the coefficients ci(y) and di(y) of (18) for i = 1, 2, . . . , 8 can be determined by solving
Eqs. (12), (14), (15), (19), and (20).

This completes the proof. �

2. The reproducing kernel space W 5,0
2 [0, 1] for (6)–(8)

Space W 5,0
2 [0, 1] is defined as follows:

W 5,0
2 ≡ W 5,0

2 [0, 1]

=
{

u(x)|u, u′, u′′, u′′′, u(4) is an absolutely continuous real-valued function on

[0, 1], u(5) ∈ L2[0, 1], u(0) = u′(0) = u′′(0) = u′′′(0) = 0
}

endowed with inner product

〈u, v〉W 5,0
2

= u(4)(0)v(4)(0) +
∫ 1

0
u(5)(x)v(5)(x) dx, ∀u, v ∈ W 5,0

2 . (21)

Theorem 2 The space W 5,0
2 is a complete reproducing kernel space with reproducing kernel

Ry(x) =

⎧
⎨

⎩

x4(x5–9x4y+36x3y2–84x2y3+630y4+126xy4)
362,880 , x ≤ y,

y4(–84x3y2+36x2y3–9xy4+y5+126x4(5+y))
362,880 , y < x.

(22)
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That is, for every x ∈ [0, 1] and u ∈ W 5,0
2 , 〈u(x), Ry(x)〉W 5,0

2
= u(y) holds.

Proof The proof of this theorem is similar to that of Theorem 1. Therefore the proof is
omitted. �

3. The reproducing kernel space W 1
2 [0, 1]

Space W 1
2 [0, 1] is defined as follows:

W 1
2 ≡ W 1

2 [0, 1]

=
{

u(x)|u is an absolutely continuous real-valued function on [0, 1],

u′ ∈ L2[0, 1]
}

.

The inner product in W 1
2 is given by

〈u, v〉W 1
2

= u(0)v(0) +
∫ 1

0
u′(x)v′(x) dx, (23)

and the norm ‖u‖W 1
2

is denoted by

‖u‖W 1
2

=
√

〈u, u〉W 1
2

, (24)

where u, v ∈ W 1
2 .

In [29], the authors proved that W 1
2 is a complete reproducing kernel space and its re-

producing kernel is

Ry(x) =

⎧
⎨

⎩

1 + x, x ≤ y,

1 + y, y < x.
(25)

Theorem 3 ([29]) Let Ry(x) be the reproducing kernel of the space W m,0
2 . Then

∂ i+jRy(x)
∂xi∂yj ∈ W m,0

2 , i + j = m – 1, m ≥ 1.

3 Solving Eqs. (4)–(8) in reproducing kernel spaces
Equations (4)–(8) cannot be solved directly using the reproducing kernel method, since it
is impossible to obtain a reproducing kernel satisfying the initial conditions of Eqs. (4)–(8).
So, we need homogenize the conditions of Eqs. (4)–(8).

In Eqs. (4)–(8), put

u(x) = u(x) + u0. (26)

Hence Eqs. (4)–(8) can be converted into the following equivalent forms:

⎧
⎨

⎩

LT
1 u(x) = H(x, u(x) + u0),

u(0) = u′(0) = u′′(0) = 0,
(27)
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where LT
1 : W 4,0

2 → W 1
2 and LT

1 u(x) = u′′′(x) + 2β

x u′′(x) + β(β–1)
x2 u′(x),

⎧
⎨

⎩

LT
2 u(x) = H(x, u(x) + u0),

u(0) = u′(0) = u′′(0) = 0,
(28)

where LT
2 : W 4,0

2 → W 1
2 and LT

2 u(x) = u′′′(x) + β

x u′′(x),

⎧
⎨

⎩

LF
1 u(x) = H(x, u(x) + u0),

u(0) = u′(0) = u′′(0) = u′′′(0) = 0,
(29)

where LF
1 : W 5,0

2 → W 1
2 and LF

1 u(x) = u(4)(x) + 3β

x u′′′(x) + 3β(β–1)
x2 u′′(x) + β(β–1)(β–2)

x3 u′(x),

⎧
⎨

⎩

LF
2 u(x) = H(x, u(x) + u0),

u(0) = u′(0) = u′′(0) = u′′′(0) = 0,
(30)

where LF
2 : W 5,0

2 → W 1
2 and LF

2 u(x) = u(4)(x) + 2β

x u′′′(x) + β(β–1)
x2 u′′(x), and

⎧
⎨

⎩

LF
3 u(x) = H(x, u(x) + u0),

u(0) = u′(0) = u′′(0) = u′′′(0) = 0,
(31)

where LF
3 : W 5,0

2 → W 1
2 and LF

3 u(x) = u(4)(x) + β

x u′′′(x), respectively.
In Eqs. (27)–(31), since u(x) is sufficiently smooth, we see that LT

1 , LT
2 , LF

1 , LF
2 , and LF

3 are
bounded linear operators.

Theorem 4 The linear operators LT
1 , LT

2 , LF
1 , LF

2 , and LF
3 defined by Eqs. (27)–(31) are

bounded linear operators.

Proof We only need to prove ‖LT
1 u‖2

W 1
2

≤ M‖LT
1 u‖2

W 4,0
2

, where M > 0 is a positive constant.
By Eqs. (23)–(24), we get

∥
∥LT

1 u
∥
∥2

W 1
2

=
〈
LT

1 u, LT
1 u

〉2
W 1

2
=

[
LT

1 u(0)
]2 +

∫ 1

0

[
u′(x)

]2 dx.

By Theorem 1, it is found

u(y) =
〈
Ry(·), u(·)〉W 4,0

2
,

and

LT
1 u(y) =

〈
LT

1 Ry(·), u(·)〉W 4,0
2

,

so

∣
∣LT

1 u(y)
∣
∣ ≤ ‖u‖W 4,0

2

∥
∥LT

1 Ry(·)∥∥W 4,0
2

= M1‖u‖W 4,0
2

,
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where M1 is a positive constant. Since

(
LT

1 u
)′(y) =

〈(
LT

1 Ry
)′(·), u(·)〉W 4,0

2
,

then

∣
∣
(
LT

1 u
)′(y)

∣
∣ ≤ ‖u‖W 4,0

2

∥
∥
(
LT

1 Ry
)′(·)∥∥W 4,0

2
= M2‖u‖W 4,0

2
,

where M2 is a positive constant. So, we obtain

[(
LT

1 u
)′(y)

]2 ≤ M2
2‖u‖2

W 4,0
2

and

∫ 1

0

[(
LT

1 u
)′(x)

]2 dx ≤ M2
2‖u‖2

W 4,0
2

,

that is,

∥
∥LT

1 u
∥
∥2

W 1
2

≤ 〈
LT

1 u, LT
1 u

〉2
W 1

2
=

[
LT

1 u(0)
]2 +

∫ 1

0

[(
LT

1 u
)′(x)

]2 dx

≤ (
M2

1 + M2
2
)‖u‖2

W 4,0
2

= M‖u‖2
W 4,0

2
,

where M = M2
1 + M2

2 is a positive constant.
This completes the proof. �

The other linear operators are proved similarly. In order to solve Eqs. (27)–(31), define

ψi(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

LT
1 Ry(x)|y=(xi) for (27),

LT
2 Ry(x)|y=(xi) for (28),

LF
1 Ry(x)|y=(xi) for (29),

LF
2 Ry(x)|y=(xi) for (30),

LF
3 Ry(x)|y=(xi) for (31),

(32)

where {xi}∞i=1 is dense in the interval [0, 1]. Hence, one gets

ψi(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂3Rx(xi)
∂x3 + 2β

x
∂2Rx(xi)

∂x2 + β(β–1)
x2

∂Rx(xi)
∂x for (27),

∂3Rx(xi)
∂x3 + β

x
∂2Rx(xi)

∂x2 for (28),
∂4Rx(xi)

∂x4 + 3β

x
∂3Rx(xi)

∂x3 + 3β(β–1)
x2

∂2Rx(xi)
∂x2 + β(β–1)(β–2)

x3
∂Rx(xi)

∂x for (29),
∂4Rx(xi)

∂x4 + 2β

x
∂3Rx(xi)

∂x3 + β(β–1)
x2

∂2Rx(xi)
∂x2 for (30),

∂4Rx(xi)
∂x4 + β

x
∂3Rx(xi)

∂x3 for (31).

(33)

Lemma Let {xi}∞i=1 be dense on [0, 1], then
1. ψi(x) ∈ W 4,0

2 for (27)–(28).
2. ψi(x) ∈ W 5,0

2 for (29)–(31).
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3. {ψi(x)}∞i=1 is complete in W 4,0
2 for (27)–(28).

4. {ψi(x)}∞i=1 is complete in W 5,0
2 for (29)–(27).

Proof By Theorem 3, one can get the proof of parts 1 and 2 immediately.
3. For each u(x) ∈ W 4,0

2 , let 〈u(x),ψi(x)〉W 4,0
2

= 0 (i = 1, 2, . . .), which means

〈
u(x),ψi(x)

〉

W 4,0
2

=
〈
u(x),

[
LT

1 Rx(y)
]
(xi)

〉

W 4,0
2

= LT
1
〈
u(x), Rxi (y)

〉

W 4,0
2

= LT
1 u(xi) = 0. (34)

Note that {xi}∞i=1 is dense on [0, 1], and hence (LT
1 u)(x) = 0. It follows that u ≡ 0 from the

existence of (LT
1 )–1. So {ψi(x)}∞i=1 is complete in W 4,0

2 .
4. The proof of this part is similar to that of part 3. �

The orthonormal system {ψ̄i(x)}∞i=1 of W 4,0
2 or W 5,0

2 can be derived from the Gram–
Schmidt orthogonalization process of {ψi(x)}∞i=1 as follows:

ψ̄i(x) =
i∑

k=1

βikψk(x), i = 1, 2, . . . , (35)

where βik are orthogonalization coefficients given as β11 = 1/‖ψ1‖, βii = 1/Bik , and βij =

–(1/Bik)
∑i–1

k=j cikβkj for j < i which Bik =
√

‖ψi‖2 –
∑i–1

k=1 c2
ik , cik = 〈ψi, ψ̄k〉W 0,m

2
, m = 4, 5.

Theorem 5 Let {xi}∞i=1 be dense on [0, 1], then the exact solution of Eqs. (27)–(31) could be
represented by

u(x) =
∞∑

i=1

i∑

k=1

βikH
(
xk , u(xk) + u0

)
ψ̄i(x). (36)

Proof Let u(x) be a solution of (27) in W 4,0
2 . From {ψ̄}∞i=1 is an orthonormal system, u(x)

could be expressed as a Fourier series:

u(x) =
∞∑

i=1

〈
u(x), ψ̄i(x)

〉

W 4,0
2

ψ̄i(x) =
∞∑

i=1

i∑

k=1

βik
〈
u(x),ψk(x)

〉

W 4,0
2

ψ̄i(x)

=
∞∑

i=1

i∑

k=1

βik
[
LT

1 u(y)
]
(xk)ψ̄i(x) =

∞∑

i=1

i∑

k=1

βikLT
1 u(xk)ψ̄i(x)

=
∞∑

i=1

i∑

k=1

βikH
(
xk , u(xk) + u0

)
ψ̄i(x).

Now the approximate solution un(x) can be obtained by the n-term intercept of the
analytical solution u(x), that is,

un(x) =
n∑

i=1

i∑

k=1

βikH
(
xk , u(xk) + u0

)
ψ̄i(x). (37)
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Note that the exact solutions of Eqs. (28)–(31) are similar to Eq. (27), and we do not deal
with them, and the proof of the theorem is complete. �

Remark If Eqs. (27)–(31) are linear, that is, H(x, u(x) + u0) = H(x), then the solution of
equations can be obtained directly from Eq. (36).

If Eqs. (27)–(31) are nonlinear, the approximate solutions can be obtained using the
following method. According to (36), we construct the following iteration formula:

⎧
⎨

⎩

u0(x) = 0,

un+1(x) =
∑∞

i=1
∑i

k=1 βikH(xk , un–1(xk) + u0)ψ̄i(x), n = 0, 1, . . . .
(38)

For the proof of convergence of the iterative formula (Eqs. (38)), see [22].

Remark In the iteration process of Eq. (38), we can guarantee that the approximation un(x)
satisfies the initial conditions of Eqs. (27)–(31).

Now, the approximate solution uN
n (x) can be obtained by taking finitely many terms in

the series representation of un(x) and

uN
n (x) =

N∑

i=1

i∑

k=1

βikH
(
xk , un–1(xk) + u0

)
ψ̄i(x), n = 0, 1, . . . . (39)

In the following algorithm, we summarize how the method works.

Algorithm
1. Set m = 4 or m = 5 in W m,0

2 .
2. Choose N collocation points in the domain set [0, 1].
3. For i = 1, 2, . . . , N , set

ψi(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂3Rx(xi)
∂x3 + 2β

x
∂2Rx(xi)

∂x2 + β(β–1)
x2

∂Rx(xi)
∂x for (27),

∂3Rx(xi)
∂x3 + β

x
∂2Rx(xi)

∂x2 for (28),
∂4Rx(xi)

∂x4 + 3β

x
∂3Rx(xi)

∂x3 + 3β(β–1)
x2

∂2Rx(xi)
∂x2 + β(β–1)(β–2)

x3
∂Rx(xi)

∂x for (29),
∂4Rx(xi)

∂x4 + 2β

x
∂3Rx(xi)

∂x3 + β(β–1)
x2

∂2Rx(xi)
∂x2 for (30),

∂4Rx(xi)
∂x4 + β

x
∂3Rx(xi)

∂x3 for (31).

4. Set ψ̄i(x) =
∑i

k=1 βikψk(x), i = 1, 2, . . . , N .
5. Choose an initial function u0(x).
6. Set n = 1.
7. Set Bn =

∑n
k=1 βnkH(xk , un–1(xk) + u0).

8. Set uN
n (x) =

∑n
i=1 Biψ̄i(x).

9. If n < N , then set n = n + 1 and go to step 7, else stop.

4 Numerical experiments
In this section, we present and discuss the numerical results by employing the reproducing
kernel space for two examples of third order and three examples of forth order Emden–
Fowler type equations in spaces W 4,0

2 and W 5,0
2 , respectively. For each example, we demon-

strate a figure of convergence. Results demonstrate that the present method is remarkably
effective.
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Example 1 ([8]) For f (x) = 6(10 + 2x3 + x6), g(u) = exp(–3u), and β = 3, Eq. (4) is as follows:

⎧
⎨

⎩

u′′′(x) + 6
x u′′(x) + 6

x2 u′(x) = 6(10 + 2x3 + x6) exp(–3u),

u(0) = 0, u′(0) = 0, u′′(0) = 0,
(40)

which has the exact solution u(x) = ln[x3 + 1].
We use the proposed scheme, choose initial approximation u0(x) = 0, and take N =

30, 45; n = 7; and xi = i
N , where i = 1 : N . The numerical results are shown in Fig. 1, and

a comparison of the errors in the form of maximum absolute error between the method
developed in this paper and that of Wazwaz [8] is shown in Table 1.

Figure 1 Figures of absolute errors |u(x) – u307 |, |u(x) – u457 | for Example 1

Table 1 Maximum absolute error for Example 1 (n = 7)

N Method in [8] RKHSM (Present method)

30 1.01845e–4 2.85673e–6
45 7.61384e–5 1.292245e–6
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Example 2 For f (x) = – 9
8 (x6 + 8), g(u) = u–5, and β = 2, Eq. (5) is as follows:

⎧
⎨

⎩

u′′′(x) + 2
x u′′(x) = – 9

8 (x6 + 8)(u)–5,

u(0) = 1, u′(0) = 0, u′′(0) = 0.
(41)

The exact solution is given in [8] as u(x) =
√

x3 + 1. If we apply Eq. (26) to Eq. (41), then
the following equation is obtained:

⎧
⎨

⎩

u′′′(x) + 2
x u′′(x) = – 9

8 (x6 + 8)(u + 1)–5,

u(0) = u′(0) = u′′(0) = 0.
(42)

u(x) =
√

x3 + 1 – 1 is the true solution of Eq. (42).
We use the proposed method, choose initial approximation u0(x) = 0, and take N =

20, 35; n = 5; and xi = i
N , where i = 1 : N .

The numerical results are shown in Fig. 2, and a comparison of the errors in the form of
maximum absolute error between the method developed in this paper and that of Wazwaz
[8] is shown in Table 2.

Figure 2 Figures of absolute errors |u(x) – u205 |, |u(x) – u355 | for Example 2
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Table 2 Maximum absolute error for Example 2 (n = 5)

N Method in [8] RKHSM (Present method)

20 3.62541e–5 7.78394e–6
35 8.42085e–6 4.39638e–6

Example 3 ([5]) For f (x) = 60(7 – 18x4 + 3x8), g(u) = u9, and β = 4, Eq. (6) is as follows:

⎧
⎨

⎩

u(4)(x) + 12
x u′′′(x) + 36

x2 u′′(x) + 24
x3 u′(x) = 60(7 – 18x4 + 3x8)(u)9,

u(0) = 1, u′(0) = 0, u′′(0) = 0, u′′′(0) = 0,
(43)

which has the exact solution u(x) = 1√
x4+1

. By Eq. (26), Eq. (43) can be converted into the
following equivalent form:

⎧
⎨

⎩

u(4)(x) + 12
x u′′′(x) + 36

x2 u′′(x) + 24
x3 u′(x) = 60(7 – 18x4 + 3x8)(u + 1)9,

u(0) = u′(0) = u′′(0) = u′′′(0) = 0,
(44)

which has the exact solution u(x) = 1√
x4+1

– 1.

We use the proposed scheme, choose initial approximation u0(x) = 0, and take N =
35, 45; n = 7; and xi = i

N , where i = 1 : N .
The numerical results are shown in Fig. 3, and a comparison of the errors in the form of

maximum absolute error between the method developed in this paper and that of Wazwaz
[8] is shown in Table 3.

Example 4 [5] For f (x) = 1, g(u) = um, and β = 4, Eq. (7) is as follows:

⎧
⎨

⎩

u(4)(x) + 8
x u′′′(x) + 12

x2 u′′(x) = –(u)m,

u(0) = 1, u′(0) = 0, u′′(0) = 0, u′′′(0) = 0,
(45)

which has the exact solution u(x) = 1 – x4

360 . By Eq. (26), Eq. (45) can be converted into the
following equivalent form:

⎧
⎨

⎩

u(4)(x) + 8
x u′′′(x) + 12

x2 u′′(x) = –(u + 1)m,

u(0) = u′(0) = u′′(0) = u′′′(0) = 0,
(46)

which has the exact solution u(x) = – x4

360 for m = 0. We use the proposed scheme, choose
initial approximation u0(x) = 0, and take N = 10, 15; n = 5; and xi = i

N , where i = 1 : N .
The numerical results are shown in Fig. 4, and a comparison of the errors in the form of
maximum absolute error between the method developed in this paper and that of Wazwaz
[5] is shown in Table 4.

Example 5 [5] We finally consider the following nonlinear Emden–Fowler type equation:

⎧
⎨

⎩

u(4)(x) + 3
x u′′′(x) = –96(1 – 10x4 + 5x8) exp(–4u),

u(0) = 0, u′(0) = 0, u′′(0) = 0, u′′′(0) = 0.
(47)
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Figure 3 Figures of absolute errors |u(x) – u357 |, |u(x) – u457 | for Example 3

Table 3 Maximum absolute error for Example 3 (n = 7)

N Method in [5] RKHSM (Present method)

35 1.08348e–4 2.18867e–6
45 5.21075e–5 1.23016e–6

The exact solution is u(x) = ln(x4 + 1). We use the proposed method, choose initial approx-
imation u0(x) = 0, and take N = 30, 45; n = 5; and xi = i

N , where i = 1 : N . The numerical
results are shown in Fig. 5, and a comparison of the errors in the form of maximum abso-
lute error between the method developed in this paper and that of Wazwaz [5] is shown
in Table 5.

5 Conclusion
In this study, we have presented a numerical scheme based on reproducing kernel space for
solving high-order nonlinear singular initial value Emden–Fowler equations. The proper-
ties of the reproducing kernel space require no more integral computation for some func-
tions, instead of computing some values of a function at some nodes. This simplification
of integral computation not only improves the computational speed, but also improves the
computational accuracy. It was observed that the errors in the form of maximum absolute
error are better than the other developed methods [4, 8].



Dezhbord et al. Advances in Difference Equations  (2018) 2018:161 Page 15 of 17

Figure 4 Figures of absolute errors |u(x) – u105 |, |u(x) – u155 | for Example 4

Table 4 Maximum absolute error for Example 4 (n = 5)

N Method in [5] RKHSM (Present method)

10 3.52781e–5 8.01684e–10
15 9.36431e–6 1.88527e–10

In addition, it is seen from the figures that for N large enough, the errors decrease. The
numerical results show that the present method is an accurate and reliable technique for
the high-order linear singular differential-difference equations. One of the considerable
advantages of the method is that the approximate solutions are found very easily by using
the computer code written in Mathematica 8.0 software package.
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Figure 5 Figures of absolute errors |u(x) – u305 |, |u(x) – u455 | for Example 5

Table 5 Maximum absolute error for Example 5 (n = 5)

N Method in [5] RKHSM (Present method)

30 6.50371e–4 4.38537e–6
45 7.56423e–5 1.98579e–6
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