
Tan et al. Advances in Difference Equations  (2018) 2018:62 
https://doi.org/10.1186/s13662-018-1521-2

R E S E A R C H Open Access

Robust stability analysis of impulsive
complex-valued neural networks with mixed
time delays and parameter uncertainties
Yuanshun Tan1, Sanyi Tang2* and Xiaofeng Chen1

*Correspondence:
sytang@snnu.edu.cn
2School of Mathematics and
Statistics, Shaanxi Normal University,
Shaanxi, China
Full list of author information is
available at the end of the article

Abstract
The robust stability for the impulsive complex-valued neural networks with mixed
time delays is considered in this paper. Based on the homeomorphic mapping
theorem, some sufficient conditions are proposed for the existence and uniqueness
of the equilibrium point. By constructing appropriate Lyapunov–Krasovskii functions
and employing modulus inequality techniques, the global robust stability theorem is
obtained for the neural networks in complex domain. Finally, numerical simulations
confirm the stability of the system and manifest that the complex-valued neural
networks work efficiently on storing and retrieving the image patterns.
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1 Introduction
Over the past few decades, the stability of real-valued neural networks (RVNNs) have
been extensively investigated because of their widespread applications in various areas
such as associative memory, pattern recognition, parallel computation, combinatorial op-
timization and quantum communication [1–8], and a lot of existing work considers the μ-
stability, power-stability, Lagrange stability and exponent-stability of the neural networks
[9–13]. However, when designing neural networks, firstly the problem of robust stability
should be investigated due to the parameter uncertainty in the system and the perturba-
tion of parameters or system characteristics is often unavoidable. The reasons lie in two
aspects: one is that the actual values of the characteristics or parameters will deviate from
their initial values due to the inaccurate measurement, the other is that the characteristics
or parameters will drift slowly in the course of system’s operation which is influenced by
the environmental factors. These phenomena can be seen anywhere, such as image and
signal processing, combinatorial optimization problems and pattern recognition [14]. So
in recent years, the robustness of neural networks has become the most important topics
in the control domain and attracted great attention of the scholars [12, 15–19].

For many applications of neural networks, the states are often objected to instantaneous
disturbance and experienced abrupt changes at fixed time, which may be caused by switch-
ing phenomenon, frequency changes or other sudden noise and often assumed to be in
the form of impulses in the modeling process. Consequently, impulsive differential equa-
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tion provides a more natural description of such systems, the basic theorem of impulsive
differential equation can be seen in [20]. There are also numerical and fruitful results as
regards its applications; see [21–25] and the references therein. On the other hand, due to
the neural processing and signal transmissions, the time delay is often occurred, and the
existence of time delay may cause the instability and poor performance of the system [26].
For a specific neural network, delay may be caused by the measuring element or the mea-
suring process, it may also be caused by the control element and the execution element.
Strictly speaking, the time delay of the control system is common, therefore, many effort
have been made devoted to the delay dependent stability analysis of neural networks [10,
27–30].

Comparing with RVNNs, the advantage of complex-valued neural networks (CVNNs)
is that they can directly deal with the two-dimensional data, which can also be processed
by RVNNs but needs double neurons. And in the application of CVNNS, the complex
signals are proved to be more relevant [31–37], which is more natural to deal with the
complex-valued date, weights and neuron activation functions. Consequently, as a class of
complex-valued systems, CVNNs have received a growing number of studies and explored
the application of neural networks. These fruitful results promote the rapid development
of control theory. However, few articles consider the robust stability of neural networks
with time delay and impulse in the complex domain. In [15], the authors investigated the
existence, uniqueness and global robust stability of equilibrium point for complex-valued
recurrent neural networks with time delays, in which the activation functions are sepa-
rated by the real and imaginary parts, the analysis methods are skillful but cannot be used
to dealt with complex-valued neural networks directly. In [19], the author also considered
the dynamics of the same system, regretfully, the activation functions there are required
to be bounded. So, the obtained stability criteria in [15, 19] cannot be applied if the acti-
vation functions cannot be expressed by separating their real and imaginary parts or are
unbounded. In [38], the robust stability with time delays and impulse in the complex do-
main is considered, and the given stability criteria for complex-valued neural networks
are obtained using different methods. However, the main conditions for the global ro-
bust stability are restricted by two matrix inequalities, and there are only discrete delays
in the model. Therefore, in this article, the robust stability of impulsive complex-valued
neural networks with mixed time delays and parameter uncertainties is considered, the
improved sufficient conditions are given for the existence, uniqueness and robust stabil-
ity of the system in complex domain, moreover, numerical simulations manifest that the
complex-valued neural networks work efficiently on storing and retrieving the image pat-
terns.

The structure of this paper is arranged as follows. In Sect. 2, we introduce the CVNNs
model and give some preliminaries, including some notations and important lemmas. The
existence and uniqueness of the equilibrium will be proved using homeomorphic mapping
principle in Sect. 3. The main part of Sect. 4 considers the global robust stability of the neu-
ral networks by building the proper Lyapunov functions and using the modulus inequality
technique. In Sect. 5, two numerical examples are presented to show the effectiveness of
our theoretical analysis. Section 6 concludes the paper.

2 Problems formulation and preliminaries
First, we give some notations of this paper. let i denote the imaginary unit, i.e. i =

√
–1.

C
n, Rm×n and C

m×n denote, respectively, the set of n-dimensional complex vectors, m × n
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real matrices and complex matrices. The subscripts T and ∗ denote matrix transpo-
sition and matrix conjugate transposition, respectively. For complex vector z ∈ C

n, let
|z| = (|z1|, |z2|, . . . , |zn|)T be the module of the vector z, and ‖z‖ =

√∑n
i=1 |zi|2 be the norm

of the vector z. For complex matrix A = (aij)n×n ∈C
n×n, let |A| = (|aij|)n×n denote the mod-

ule of the matrix A, and ‖A‖ =
√∑n

i=1
∑n

j=1 |aij|2 denote the norm of the matrix A. I de-
notes the identity matrix with appropriate dimensions. The notation X ≥ Y (respectively,
X > Y ) means that X – Y is positive semi-definite (respectively, positive definite). In addi-
tion, λmax(P) and λmin(P) are defined as the largest and the smallest eigenvalue of positive
definite matrix P, respectively.

Motivated by [15], we will consider an impulsive complex-valued neural networks model
with time delays whose dynamical behavior is governed by the following nonlinear differ-
ential equations:

⎧
⎪⎪⎨
⎪⎪⎩

żi(t) = –dizi(t) +
∑n

j=1 aijfj(zj(t)) +
∑n

j=1 bijfj(zj(t – τj))

+
∑n

j=1 cij
∫ t

–∞ kj(t – s)fj(zj(s)) ds + Ji, t ≥ 0, t �= tk ,

�zi(tk) = Iik(zi(t–
k )), k = 1, 2, . . . , i = 1, 2, . . . , n,

(1)

where n is the number of the neurons, zi(t) ∈ C denotes the state of the neuron i at time
t, fj(t) is the complex-valued activation function, τj (j = 1, 2, . . . , n) represents the discrete
transmission delay and satisfies 0 ≤ τj ≤ ρ , di ∈ R with di > 0 is the self-feedback con-
nection weight, aij ∈ C and bij ∈ C are the connection weights, kj (j = 1, 2, . . . , n) is the
distributed delay kernel function, Ji ∈ C is the external input. Here Iik is a linear map,
�zi(tk) = zi(t+

k ) – zi(t–
k ) is the jump of zi at moments tk and 0 < t1 < t2 < · · · is a strictly

increasing sequence such that limk→∞ tk = +∞.
Now we can rewrite (1) in an equivalent matrix-vector form as follows:
⎧
⎨
⎩

ż(t) = –Dz(t) + Af (z(t)) + Bf (z(t – τ )) + C
∫ t

–∞ K(t – s)f (z(s)) ds + J ,

�z(tk) = I(z(t–
k )), k = 1, 2, . . . ,

(2)

where z(t) = (z1(t), z2(t), . . . , zn(t))T ∈ C
n, D = diag{d1, d2, . . . , dn}, A = (aij)n×n ∈ C

n×n,
B = (bij)n×n ∈ C

n×n, f (z(t)) = (f1(z1(t)), f2(z2(t)), . . . , fn(zn(t)))T , f (z(t – τ )) = (f1(z1(t –
τ1)), f2(z2(t – τ2)), . . . , fn(zn(t – τn)))T , K(t – s) = diag{k1(t – s), k2(t – s), . . . , kn(t – s)},
J = (J1, J2, . . . , Jn)T ∈ C

n, �z(tk) = (�z1(tk),�z2(tk), . . . ,�zn(tk))T , and I(z(t–
k )) = (I1k(z(t–

k )),
I2k(z(t–

k )), . . . , Ink(z(t–
k )))T .

We assume that system (1) or (2) is supplemented with the initial values given by

zi(s) = ϕi(s), s ∈ (–∞, 0], i = 1, 2, . . . , (3)

or in an equivalent vector form

z(s) = ϕ(s), s ∈ (–∞, 0], (4)

where ϕi(·) is complex-valued continuous function defined on (–∞, 0], and ϕ(s) =
(ϕ1(s),ϕ2(s), . . . ,ϕn(s))T ∈ C((–∞, 0],Cn) with the norm ‖ϕ(s)‖ = sups∈(–∞,0]

√∑n
i=1 |ϕi(t)|2.

Let us define a partial order � over C: For z1, z2 ∈ C, z1 � z2 if and only if x1 ≤ x2 and
y1 ≤ y2, where x1 = Re(z1), y1 = Im(z1), x2 = Re(z2) and y2 = Im(z2). Then define a partial
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order � over C
n×n: For A, B ∈ H

n×n, A � B if only if aij � bij, i, j = 1, 2, . . . , n, where A =
(aij)n×n and B = (bij)n×n.

The following assumptions will be needed throughout the paper:
(H1) The parameters D, A, B, C, J in CVNNs (2) are assumed to be in the following sets,

respectively:

DI =
{

D ∈R
n×n
d : 0 < Ď � D � D̂

}
,

AI =
{

A ∈ C
n×n : Ǎ � A � Â

}
,

BI =
{

B ∈ C
n×n : B̌ � B � B̂

}
,

CI =
{

C ∈C
n×n : Č � C � Ĉ

}
,

JI =
{

J ∈ C
n : J̌ � J � Ĵ

}
,

where Ď, D̂ ∈R
n×n
d , Ǎ, Â, B̌, B̂, Č, Ĉ ∈C

n×n, and J̌ , Ĵ ∈ C
n. Moreover, let Ǎ = (ǎij)n×n,

Â = (âij)n×n, B̌ = (b̌ij)n×n, B̂ = (b̂ij)n×n, Č = (čij)n×n, and Ĉ = (ĉij)n×n. Then de-
fine Ã = (ãij)n×n, B̃ = (b̃ij)n×n and C̃ = (c̃ij)n×n, where ãij = max{|ǎij|, |âij|}, b̃ij =
max{|b̌ij|, |b̂ij|}, c̃ij = max{|čij|, |ĉij|}.

(H2) For j = 1, 2, . . . , n, the neuron activation function fj is continuous and satisfies

∣∣fj(z1) – fj(z2)
∣∣≤ γj|z1 – z2|,

for any z1, z2 ∈ C, where γj is a real constant. Furthermore, define � = diag{γ1,γ2,
. . . ,γn}.

(H3) For j = 1, 2, . . . , n, the delay kernel kj is a real value non-negative continuous function
defined on [0, +∞) and satisfies,

∫ +∞

0
kj(s) ds = 1,

∫ +∞

0
sk(s) ds < +∞.

Remark 1 For assumption (H1), the matrix intervals DI , AI , BI , CI and JI represent the
allowed ranges of the parameters of the designed system due to parameter uncertainties
caused by inaccurate measurements or environmental factors. For assumption (H2), the
assumption of Lipschitz condition is very general since the common activations, such as
piece-wise linear function, logistic sigmoid function and hyperbolic tangent function, all
satisfy the Lipschitz condition. For assumption (H3), it is a standardization assumption
for delay kernel functions. If the delay kernel function k̃j satisfies

∫∞
0 k̃j(s) ds = K < +∞, kj

will satisfy assumption (H3) by letting kj = k̃j/K .

Definition 1 A function z(t) ∈ C((–∞, +∞),Cn) is a solution of system (2) satisfying the
initial value condition (4), if the following conditions are satisfied:

(i) z(t) is absolutely continuous on each interval (tk , tk+1) ⊂ (–∞, +∞), k = 1, 2, . . . ,
(ii) for any tk ∈ [0, +∞), k = 1, 2, . . . , z(t+

k ) and z(t–
k ) exist and z(t+

k ) = z(tk).

Definition 2 The neural network defined by (1) with the parameter ranges defined
by (H1) is globally asymptotically robust stable if the unique equilibrium point ž =
(ž1, ž2, . . . , žn)T of the neural system (1) is globally asymptotically stable for all D ∈ DI ,
A ∈ AI , B ∈ BI , C ∈ CI and J ∈ JI .
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Lemma 1 ([39]) For any a, b ∈C
n, if P ∈C

n×n is a positive definite Hermitian matrix, then
a∗b + b∗a ≤ a∗Pa + b∗P–1b.

The following modulus inequalities of complex numbers play a central role for the re-
sults of the paper.

Lemma 2 Suppose A ∈ Cn×n, Ǎ = (ǎij)n×n ∈ Cn×n, Â = (âij)n×n ∈ Cn×n, and Ǎ � A � Â.
Then, for any x, y ∈Cn, the following inequalities hold:

x∗A∗Ax ≤ |x|∗|A|∗|A||x| ≤ |x|∗Ã∗Ã|x|, (5)

where Ã = (ãij)n×n, ãij = max{|ǎij|, |âij|}.

Proof By Cauchy–Schwarz inequality, the modulus inequalities (5) can be obtained. The
proof is direct so we omit the details. �

Lemma 3 ([39]) A given Hermitian matrix

S =

(
S11 S12

S21 S22

)
< 0,

where S∗
11 = S11, S∗

12 = S21 and S∗
22 = S22, is equivalent to any one of the following conditions:

(i) S22 < 0 and S11 – S12S–1
22 S21 < 0,

(ii) S11 < 0 and S22 – S21S–1
11 S12 < 0.

Lemma 4 ([39]) If H(z) : Cn → C
n is a continuous map and satisfies the following condi-

tions:
(i) H(z) is injective on C

n,
(ii) lim‖z‖→∞ ‖H(z)‖ = ∞,

then H(z) is a homeomorphism of Cn onto itself.

3 Existence and uniqueness of equilibrium point
In this section, we will derive sufficient conditions for the existence and uniqueness of
equilibrium point of system (2). An equilibrium solution of (2) is a constant complex vec-
tor ž ∈C

n which satisfies

–Dž + Af (ž) + Bf (ž) + Cf (ž) + J = 0, (6)

when the impulsive jumps Ik(·) as assumed to satisfy Ik(ž) = 0, k = 1, 2, . . . .
Hence, to prove the existence and uniqueness of a solution of (6), it suffices to show that

the following map H : Cn →C
n has a unique zero point,

H(z) = –Dz + Af (z) + Bf (z) + Cf (z) + J . (7)

Obviously, the existence of a zero point for H can be investigated via the homeomorphic
mapping principle.
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Theorem 1 For the CVNNs defined by (2), assume that the network parameters and the
activation function satisfy conditions (H1), (H2) and (H3). Then the neural network (2)
has a unique equilibrium point for every input vector J = (J1, J2, . . . , Jn)T ∈ C

n, if there exist
two real positive diagonal matrices U and V such that the linear matrix inequality (LMI)
holds:

(
–ĎU – UĎ + �V� U(Ã + B̃ + C̃)

(Ã∗ + B̃∗ + C̃∗)U –V

)
< 0, (8)

where Ã = (ãij)n×n, B̃ = (b̃ij)n×n, C̃ = (c̃ij)n×n, ãij = max{|ǎij|, |âij|}, b̃ij = max{|b̌ij|, |b̂ij|} and
c̃ij = max{|čij|, |ĉij|}.

Proof To prove the existence and uniqueness of system (2), it suffices to show H(z) is
a homeomorphism of Cn onto itself by using the homeomorphic mapping theorem on
complex domain.

First, we prove that H(z) is an injective map on C
n. Suppose that there exist z, z̃ ∈ C

n

with z �= z̃, such that H(z) = H(z̃). Then we can write

H(z) – H(z̃) = –D(z – z̃) + (A + B + C)
(
f (z) – f (z̃)

)
= 0. (9)

Multiplying both sides of (9) by (z – z̃)∗U , we can obtain

0 = –(z – z̃)∗UD(z – z̃) + (z – z̃)∗U(A + B + C)
(
f (z) – f (z̃)

)
. (10)

Then, taking the conjugate transpose of (10) leads to

0 = –(z – z̃)∗DU∗(z – z̃) +
(
f (z) – f (z̃)

)∗(A∗ + B∗ + C∗)U∗(z – z̃). (11)

Summing (10) and (11), applying Lemmas 1 and 2, we have

0 = –(z – z̃)∗(UD + DU)(z – z̃)

+ (z – z̃)∗U(A + B + C)
(
f (z) – f (z̃)

)

+
(
f (z) – f (z̃)

)∗(A∗ + B∗ + C∗)U(z – z̃)

≤ –(z – z̃)∗(UD + DU)(z – z̃)

+ (z – z̃)∗U(A + B + C)V –1(A∗ + B∗ + C∗)U(z – z̃)

+
(
f (z) – f (z̃)

)∗V
(
f (z) – f (z̃)

)

≤ |z – z̃|∗[–ĎU – UĎ + U(Ã + B̃ + C̃)V –1(Ã∗ + B̃∗ + C̃∗)U]|z – z̃|
+
(
f (z) – f (z̃)

)∗V
(
f (z) – f (z̃)

)
. (12)

Since V is a positive diagonal matrix, from assumption (H2), we can get

(
f (z) – f (z̃)

)∗V
(
f (z) – f (z̃)

)≤ (z – z̃)∗�V�(z – z̃)

= |z – z̃|∗�V�|z – z̃|. (13)
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It follows from (12) and (13) that

0 ≤ |z – z̃|∗ϒ |z – z̃|, (14)

where ϒ = –ĎU – UĎ + �V� + U(Ã + B̃ + C̃)V –1(Ã∗ + B̃∗ + C̃∗)U . From Lemma 3 and the
LMI (8), we can see that ϒ < 0. Then z – z̃ = 0 from (14). Therefore, H(z) is an injective
map on Cn.

Second, we prove ‖H(z)‖ → ∞ as ‖z‖ → ∞. Let H̃(z) = H(z) –H(0). By Lemma 1 and 2,
we have

z∗UH̃(z) + H̃(z)∗Uz

= –z∗(UD + DU)z + z∗U(A + B + C)
(
f (z) – f (0)

)

+
(
f (z) – f (0)

)∗(A∗ + B∗ + C∗)Uz

≤ –z∗(UD + DU)z

+ z∗U(A + B + C)V –1(A∗ + B∗ + C∗)Uz

+
(
f (z) – f (0)

)∗V
(
f (z) – f (0)

)

≤ |z|∗[–ĎU – UĎ + U(Ã + B̃ + C̃)V –1(Ã∗ + B̃∗ + C̃∗)U]|z| + |z|∗�V�|z|
≤ |z|∗ϒ |z| ≤ –λmin(–ϒ)‖z‖2.

An application of the Cauchy–Schwartz inequality yields

λmin(–ϒ)‖z‖2 ≤ 2
∥∥z∗∥∥‖U‖∥∥H̃(z)

∥∥.

When z �= 0, we have

∥∥H̃(z)
∥∥≥ λmin(–ϒ)‖z‖

2‖U‖ .

Therefore, ‖H̃(z)‖ → ∞ as ‖z‖ → ∞, which implies ‖H(z)‖ → ∞ as ‖z‖ → ∞. From
Lemma 4, we know thatH(z) is a homeomorphism ofCn. Thus, the system (2) has a unique
equilibrium point. The proof is completed. �

4 Global robust stability results
In the preceding section, we have shown the existence and uniqueness of the equilibrium
point for system (2). In this section, to investigate the global robust stability of the unique
equilibrium point, we should give the following assumption for the impulsive operators:

(H4) For i = 1, 2, . . . , n and k = 1, 2, . . . , the impulse operator Iik(·) satisfies

Iik
(
zi
(
t–
k
))

= –δik
(
zi
(
t–
k
)

– ži
)
,

where δik ∈ [0, 2] is a real constant, and ži is the ith component of the equilibrium
point ž = (ž1, ž2, . . . , žn)T .
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Remark 2 For (H4), the assumption can guarantee that the impulse is zero at the equilib-
rium point, i.e., Iik(ž) = 0, which is one of the necessary conditions such that the equilib-
rium point is asymptotically robust stable.

Theorem 2 Suppose the conditions (H1), (H2) and (H3) are satisfied. There exist four real
positive diagonal matrices P, Q, R and S such that the following LMI holds:

� =

⎛
⎜⎜⎜⎝

�11 PÃ PB̃ PC̃
� –S 0 0
� � –Q 0
� � � –R

⎞
⎟⎟⎟⎠ < 0, (15)

where �11 = –ĎP – PĎ + �(S + Q + R)�, Ã = (ãij)n×n, B̃ = (b̃ij)n×n, C̃ = (c̃ij)n×n, ãij =
max{|ǎij|, |âij|}, b̃ij = max{|b̌ij|, |b̂ij|} and c̃ij = max{|čij|, |ĉij|}. Then (2) has a unique equi-
librium point ž. Furthermore, if the condition (H4) is satisfied, the equilibrium point ž is
globally asymptotically robust stable.

Proof The theorem will be proved in two steps.
Step 1: We will show system (2) has a unique equilibrium point under LMI (15) by the

matrix congruence method. Let

�1 =

⎛
⎜⎜⎜⎝

�11 P(Ã + B̃ + C̃) PB̃ PC̃
� –S – Q – R –Q –R
� � –Q 0
� � � –R

⎞
⎟⎟⎟⎠ ,

�2 =

(
�11 P(Ã + B̃ + C̃)
� –S – Q – R

)
, T =

⎛
⎜⎜⎜⎝

I 0 0 0
0 I 0 0
0 I I 0
0 I 0 I

⎞
⎟⎟⎟⎠ ,

where I is an identity matrix of order n. It should be noted that T is invertible and

�1 = T∗�T .

Thus �1 and � are congruent, which means that �1 is negative definite since � is negative
definite. It should be also noted that �2 is a principal submatrix of �1. Therefore �2 is
negative definite, i.e.,

�2 < 0. (16)

Based on (16), we can see that there exist U = P > 0 and V = S + Q + R > 0 such that LMI
(8) holds. Consequently, system (2) has a unique equilibrium point ž by Theorem 1.

Step 2: We will show the equilibrium point ž is globally robust stable by Lyapunov’s
direct method. For convenience, we shift the equilibrium to origin by letting z̃(t) = z(t) – ž,
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and then the system (2) can be transformed into

⎧
⎨
⎩

˙̃z(t) = –Dz̃(t) + Ag(z̃(t)) + Bg(z̃(t – τ )) + C
∫ t

–∞ K(t – s)g(z̃(s)) ds,

�z̃(t) = Ĩ(z̃(t–
k )), k = 1, 2, . . . ,

(17)

where g(z̃(t)) = f (z(t)) – f (ž) and Ĩ(z̃(t–
k )) = –δik z̃i(t–

k ). Meanwhile the initial condition (4)
can be transformed into

z̃(s) = ϕ̃(s), s ∈ (–∞, 0], (18)

where ϕ̃(s) = ϕ(s) – ž ∈ C((–∞, 0],Cn).
Let P = diag{p1, p2, . . . , pn}, Q = diag{q1, q2, . . . , qn} and R = diag{r1, r2, . . . , rn}. Consider

the following Lyapunov–Krasovskii functional candidate:

V
(
z̃(t)
)

= V1
(
z̃(t)
)

+ V2
(
z̃(t)
)

+ V3
(
z̃(t)
)
, (19)

where

V1
(
z̃(t)
)

=
n∑

j=1

pjz̃∗
j (t)z̃j(t), (20)

V2
(
z̃(t)
)

=
n∑

j=1

qj

∫ t

t–τj

g∗
j
(
z̃j(t)
)
gj
(
z̃j(t)
)

dt, (21)

V3
(
z̃(t)
)

=
n∑

j=1

rj

∫ ∞

0
kj(s)
∫ t

t–s
g∗

j
(
z̃j(t)
)
gj
(
z̃j(t)
)

dt ds. (22)

When t �= tk , k = 1, 2, . . . , calculating the upper right derivative of V along the solution
of (17), applying Lemmas 1 and 2, we get

D+V1
(
z̃(t)
)

= ˙̃z∗(t)Pz̃(t) + z̃∗(t)P ˙̃z(t)

= –z̃∗(t)DPz̃(t) – z̃∗(t)PDz̃(t) + g∗(z̃(t)
)
A∗Pz̃(t)

+ z̃∗(t)PAg
(
z̃(t)
)

+ g∗(z̃(t – τ )
)
B∗Pz̃(t)

+ z̃∗(t)PBg
(
z̃(t – τ )

)
+
[∫ t

–∞
K(t – s)g

(
z̃(s)
)

ds
]∗

C∗Pz̃(t)

+ z̃∗(t)PC
[∫ t

–∞
K(t – s)g

(
z̃(s)
)

ds
]

≤ –z̃∗(t)(DP + PD)z̃(t) + g∗(z̃(t)
)
Sg
(
z̃(t)
)

+ z̃∗(t)PAS–1A∗Pz̃(t)

+ g∗(z̃(t – τ )
)
Qg
(
z̃(t – τ )

)
+ z̃∗(t)PBQ–1B∗Pz̃(t)

+
[∫ t

–∞
K(t – s)g

(
z̃(s)
)

ds
]∗

R
[∫ t

–∞
K(t – s)g

(
z̃(s)
)

ds
]

+ z̃∗(t)PCR–1C∗Pz̃(t)

≤ ∣∣z̃(t)
∣∣∗(–DP – PD + �S� + PAS–1A∗P + PBQ–1B∗P
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+ PCR–1C∗P
)∣∣z̃(t)

∣∣ + g∗(z̃(t – τ )
)
Qg
(
z̃(t – τ )

)

+
[∫ t

–∞
K(t – s)g

(
z̃(s)
)

ds
]∗

R
[∫ t

–∞
K(t – s)g

(
z̃(s)
)

ds
]

≤ ∣∣z̃(t)
∣∣∗(–ĎP – PĎ + �S� + PÃS–1Ã∗P + PB̃Q–1B̃∗P

+ PC̃R–1C̃∗P
)∣∣z̃(t)

∣∣ + g∗(z̃(t – τ )
)
Qg
(
z̃(t – τ )

)

+
[∫ t

–∞
K(t – s)g

(
z̃(s)
)

ds
]∗

R
[∫ t

–∞
K(t – s)g

(
z̃(s)
)

ds
]

, (23)

D+V2
(
z̃(t)
)

= g∗(z̃(t)
)
Qg
(
z̃(t)
)

– g∗(z̃(t – τ )
)
Qg
(
z̃(t – τ )

)

≤ ∣∣z̃(t)
∣∣∗�Q�

∣∣z̃(t)
∣∣ – g∗(z̃(t – τ )

)
Qg
(
z̃(t – τ )

)
, (24)

D+V3
(
z̃(t)
)

=
n∑

j=1

rj

∫ +∞

0
kj(s)g∗

j
(
z̃(t)
)
gj
(
z̃(t)
)

ds

–
n∑

j=1

rj

∫ +∞

0
kj(s)g∗

j
(
z̃(t – s)

)
gj
(
z̃(t – s)

)
ds

= g∗(z̃(t)
)
Rg
(
z̃(t)
)

–
n∑

j=1

rj

∫ +∞

0
kj(s) ds

∫ +∞

0
kj(s)g∗

j
(
z̃(t – s)

)
gj
(
z̃(t – s)

)
ds

≤ ∣∣z̃(t)
∣∣∗�R�

∣∣z̃(t)
∣∣

–
n∑

j=1

rj

∫ +∞

0
kj(s)g∗

j
(
z̃(t – s)

)
ds
∫ +∞

0
kj(s)gj

(
z̃(t – s)

)
ds

=
∣∣z̃(t)
∣∣∗�R�

∣∣z̃(t)
∣∣

–
[∫ +∞

0
k(s)g

(
z̃(t – s)

)
ds
]∗

R
[∫ +∞

0
k(s)g

(
z̃(t – s)

)
ds
]

. (25)

It follows from (23), (24) and (25) that

D+V
(
z̃(t)
)≤ ∣∣z̃(t)

∣∣∗∣∣z̃(t)
∣∣,

where

 = –ĎP – PĎ + �S� + �Q� + �R� + PÃS–1Ã∗P + PB̃Q–1B̃∗P + PC̃R–1C̃∗P.

By LMI (15) and Lemma 3, we can deduce that  ≤ 0. Then

D+V
(
z̃(t)
)≤ 0, t �= tk . (26)

When t = tk , k = 1, 2, . . . , it should be noted that V2(tk) = V2(t–
k ) and V3(tk) = V3(t–

k ). Then
we can compute

V
(
z̃(tk)
)

– V
(
z̃
(
t–
k
))

=
n∑

j=1

pjz̃∗
j (tk)z̃j(tk) –

n∑
j=1

pjz̃∗
j
(
t–
k
)
z̃j
(
t–
k
)
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=
n∑

j=1

(1 – δjk)2pjz̃∗
j
(
t–
k
)
z̃j
(
t–
k
)

–
n∑

j=1

pjz̃∗
j
(
t–
k
)
z̃j
(
t–
k
)

≤ 0. (27)

It follows from (26) and (27) that V (t) is non-increasing for t ≥ 0. According to assump-
tion (H3), we can let

∫ +∞
0 sk(s) ds = β , where β is a non-negative real constant. Then, by

definition of V (t), we can infer

V
(
z̃(t)
)≤ V

(
z̃(0)
)

= V1
(
z̃(0)
)

+ V2
(
z̃(0)
)

+ V3
(
z̃(0)
)

=
n∑

j=1

pjz̃∗
j (0)z̃j(0) +

n∑
j=1

qj

∫ 0

–τj

g∗
j
(
z̃j(t)
)
gj
(
z̃j(t)
)

dt

+
n∑

j=1

rj

∫ ∞

0
kj(s)
∫ 0

–s
g∗

j
(
z̃j(t)
)
gj
(
z̃j(t)
)

dt ds

≤
n∑

j=1

pj
∣∣ϕ̃j(0)

∣∣2 +
n∑

j=1

qjγ
2
j

∫ 0

–τj

∣∣ϕ̃j(t)
∣∣2 dt

+
n∑

j=1

rjγ
2
j

∫ ∞

0
kj(s)
∫ 0

–s

∣∣ϕ̃j(t)
∣∣2 dt ds

≤
n∑

j=1

(
pj + ρqjγ

2
j + βrjγ

2
j
)

sup
t∈(–∞,0]

n∑
j=1

∣∣ϕ̃j(t)
∣∣2

=
n∑

j=1

(
pj + ρqjγ

2
j + βrjγ

2
j
)∥∥ϕ̃(t)

∥∥2. (28)

On the other hand, by the definition of V (z̃(t)), we have

V
(
z̃(t)
)≥ V1

(
z̃(t)
)≥

n∑
j=1

pj
∥∥z̃(t)
∥∥2, t ≥ 0. (29)

From (28) and (29), we obtain

∥∥z̃(t)
∥∥≤
√√√√
∑n

j=1(pj + τqjγ
2
j + βrjγ

2
j )∑n

j=1 pj

∥∥ϕ̃(t)
∥∥,

from which it can be concluded that the origin of (17), or equivalently the equilibrium
point of system (2), is globally asymptotically robust stable by standard Lyapunov theo-
rem. �

If the impulsive operator I(·) ≡ 0 in (2), we get the following complex-valued neural
networks without impulses:

ż(t) = –Dz(t) + Af
(
z(t)
)

+ Bf
(
z(t – τ )

)
+ C
∫ t

–∞
K(t – s)f

(
z(s)
)

ds + J , (30)

where D, A, B, C, J and f (·) are defined as same as in (2). According to Theorem 2, we can
obtain the following corollary on the global robust stability conditions of (30).
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Corollary 1 Suppose the conditions (H1), (H2) and (H3) are satisfied. There exist four real
positive diagonal matrices P, Q, R and S such that the LMI (15) holds. Then system (30)
has a unique equilibrium point which is globally asymptotically robust stable.

If the impulsive operator I(·) ≡ 0 and C ≡ 0 in (2), we get the following complex-valued
neural networks with discrete time delays:

ż(t) = –Dz(t) + Af
(
z(t)
)

+ Bf
(
z(t – τ )

)
+ J , (31)

where D, A, B, J and f (·) are defined as same as in (2). According to Theorem 2, we can
obtain the following corollary on the global robust stability conditions of (31).

Corollary 2 Suppose the conditions (H1) and (H2) are satisfied. There exist three real pos-
itive diagonal matrices P, Q and S such that the following LMI holds:

� =

⎛
⎜⎝

�11 PÃ PB̃
� –S 0
� � –Q

⎞
⎟⎠ < 0, (32)

where �11 = –ĎP – PĎ + �(S + Q)�, Ã = (ãij)n×n, B̃ = (b̃ij)n×n, ãij = max{|ǎij|, |âij|} and
b̃ij = max{|b̌ij|, |b̂ij|}. Then system (31) has a unique equilibrium point which is globally
asymptotically robust stable.

If Ď = D = D̂, Ǎ = A = Â, B̌ = D = B̂, Č = C = Ĉ and J̌ = J = Ĵ in condition (H1), the asymp-
totical robust stability will reduced to the asymptotical stability by Definition 2. Therefore,
according to Corollaries 1 and 2, we can obtain the following corollaries on the global
asymptotical stability conditions of (30) and (31).

Corollary 3 Suppose the conditions (H2) and (H3) are satisfied. There exist four real pos-
itive diagonal matrices P, Q, R and S such that the following LMI holds:

� =

⎛
⎜⎜⎜⎝

�11 P|A| P|B| P|C|
� –S 0 0
� � –Q 0
� � � –R

⎞
⎟⎟⎟⎠ < 0, (33)

where �11 = –DP – PD + �(S + Q + R)�. Then system (30) has a unique equilibrium point,
which is globally asymptotically stable.

Corollary 4 Suppose the condition (H2) is satisfied. There exist three real positive diagonal
matrices P, Q and S such that the following LMI holds:

� =

⎛
⎜⎝

�11 P|A| P|B|
� –S 0
� � –Q

⎞
⎟⎠ < 0, (34)

where �11 = –DP – PD +�(S + Q)�. Then system (31) has a unique equilibrium point which
is globally asymptotically stable.
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Remark 3 In [40, 41], the criteria for stability of CVNNs are expressed in terms of
complex-valued LMIs. As pointed out in [40], the complex-valued LMIs cannot be solved
by MATLAB LMI Toolbox straightforwardly. An feasible approach is to convert complex-
valued LMIs to real-valued ones but this could double the dimension of the LMIs. In this
paper, we express the stability criteria for CVNNs directly by terms of real-valued LMIs,
which can be solved by MATLAB LMI Toolbox straightforwardly.

Remark 4 In [15], the authors investigate the problem of global robust stability of
complex-valued recurrent neural networks with time delays and uncertainties. In The-
orem 3.4 of [15], to check robust stability of complex-valued neural networks, the bound-
edness of activation function fi is required. However, in this paper, the boundedness con-
dition is removed. See in Example 1 of next section the activation function fi is unbounded.

5 Numerical examples
In this section, we will give two numerical examples to demonstrate the effectiveness and
superiority of our results.

Example 1 Assume that the network parameters of system (2) are given as follows:

Ď =

(
3 0
0 3

)
, Ǎ =

(
–3.2 – 2.4i –1.8 – 2.4i
–2.4 – 1.8i –1.6 – 1.2i

)
,

Â =

(
3.2 + 2.4i 1.8 + 2.4i
2.4 + 1.8i 1.2 + 1.6i

)
, B̌ =

(
–2.4 – 1.8i –1.6 – 1.2i
–1.8 – 2.4i –2.4 – 1.8i

)
,

B̂ =

(
2.4 + 1.8i 1.2 + 1.6i
1.8 + 2.4i 2.4 + 1.8i

)
, Č =

(
–1.08 – 1.44i –0.6 – 0.8i

–1.6 – 1.2i –1.2 – 1.6i

)
,

Ĉ =

(
1.08 + 1.44i 0.8 + 0.6i

1.2 + 1.6i 1.6 + 1.2i

)
, � =

(
0.2 0
0 0.2

)
.

Moreover, the activation functions f1(·) and f2(·) satisfy assumption (H2) with � =
( 0.2 0

0 0.2

)
,

the delay kernel functions k1(·) and k2(·) satisfy assumption (H3), and the impulsive func-
tions I1k(·) and I2k(·) satisfy assumption (H4) for k = 1, 2, . . . .

Using the matrices Ǎ, Â, B̌ and B̂, we obtain the following matrices:

Ã =

(
4 3
3 2

)
, B̃ =

(
3 2
3 3

)
, C̃ =

(
1.8 1
2 2

)
.

Then via YALMIP with solver of LMILAB in MATLAB, LMI (15) in Theorem 2 has the
following feasible solutions:

P =

(
1.0620 0

0 0.8229

)
, Q =

(
27.8474 0

0 22.5707

)
,

R =

(
17.2166 0

0 13.9893

)
, S =

(
33.1135 0

0 23.6366

)
.
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Thus, the specified network has a unique equilibrium point which is globally robust
asymptotically stable. To perform numerical simulation, let us choose D, A, B and C from
the indicated intervals above, respectively, and obtain

D =

(
3 0
0 3

)
, A =

(
3 – 2i 1 + i
–2 – i –1.5 + i

)
, B =

(
2 – 1.5i 1 + 1.5i
1.5 – 2i 2 + i

)
,

C =

(
1 + 1.2i 0.6 – 0.8i

1 – i 1.5 – 1.5i

)
, J =

(
3 – 2i
2 + 3i

)
.

(35)

Besides, we choose discrete delays, activation functions, delay kernel functions and im-
pulse functions as follows:

τ1 = τ2 = 0.5, (36)

f1(u) = f2(u) = 0.2
(
max{0, x} + max{0, y}), u = x + yi ∈C, (37)

k1(s) = k2(s) = e–s, s ∈ [0, +∞), (38)

Iik
(
zi
(
t–
k
))

= –δik
(
zi
(
t–
k
)

– ži
)
, i = 1, 2, (39)

where ž1 = 1.7813 – 0.7372i, ž2 = 0.8132 + 0.6370i, δ1k = 1 + 1
2 sin(1 + k), δ2k = 1 + 2

3 cos(2k3),
k = 1, 2, . . . , and t1 = 0.5, tk = tk–1 + 0.2k, k = 2, 3, . . . . Figure 1 and 2 depict the real and
imaginary parts of states of the considered system (2) with parameters (35)–(39), where
the initial conditions are chosen by 10 random constant vectors.

Figure 1 Real part of the state trajectories for
system (2) with parameters (35)–(39)

Figure 2 Imaginary part of the state trajectories for
system (2) with parameters (35)–(39)
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Figure 3 Image patterns in Example 2

Remark 5 In [15], the problem of global robust stability of CVNNs with discrete time
delays but without distributed time delays. So the stability criteria obtained in [15] cannot
be applied to check the robust stability of the system in Example 1.

Next we give a second numerical example on application of associative memories based
on CVNNs.

Example 2 Consider the image patterns “G” and “A” shown in Fig. 3 and design CVNNs
in the form of (31) for associatively memorizing the images.

It should be noted that, as shown in Fig. 3, “G” and “A” are composed of 52 and 50 black
block, respectively. Therefore, we need to design CVNNs (31) composed of 52 neurons,
which have a 52-dimensional equilibrium point storing the coordinates of the black blocks.
Design the parameters of CVNNs (31) as follows:

di = 9, di+1 = 10, di+2 = 7, i = 1, 4, 7, . . . , 49, and d52 = 5, (40)

aij =

⎧
⎨
⎩

0.5 + 0.4i, i = j,

0.4 – 0.5i, i �= j,
(41)

bij =

⎧
⎪⎪⎨
⎪⎪⎩

0.2 + 0.3i, i < j,

0.5 + 0.3i, i = j,

–0.1 + 0.2i, i > j,

(42)

fj(u) =
0.8

1 + e–u , u ∈C, j = 1, 2, . . . , 52. (43)

Then the activation functions satisfy the condition (H2) with � = diag{0.2, 0.2, . . . , 0.2} ∈
R

52×52. It is easy to check that LMI (34) in Corollary 4 has feasible solutions via YALMIP
with the solver of SDPT3 in MATLAB. Therefore, the designed CVNNs with parameters
(40)–(43) are globally asymptotically stable by Corollary 4.

In order to store the image pattern “G”, the equilibrium point of the designed CVNNs
should be

ž = (3 + i, 3 + 2i, . . . , 8 + 10i)T ∈C
52,

which correspond the coordinates (3, 1), (3, 2), . . . , (8, 10) of the black block in image pat-
tern “G”. According to the equilibrium point ž, we can calculate the external inputs J as
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Figure 4 Two simulations of retrieving the pattern “G” with random initial values

follows:

J = (–7.3442 + 17.2369i, –5.2027 + 29.3254i, . . . , 21.8742 + 33.4738i)T . (44)

Here we just list some of the elements of ž and J due to space limitations. Two simula-
tions with random initial values depicted in Fig. 4 show that the designed CVNNs with
parameters (40)–(44) have the ability of recalling the above pattern “G” reliably.

Next, we take use of the above neural network with the same parameters (40)–(43) to
memorize another image pattern “A”. However, the parameter J should be recomputed
since the positions of the black block in image pattern “A” are different from those in image
pattern “G”. Noting that the pattern “A” composed of 50 black blocks, we should add 2
additional block such that there are 52 blocks. Then the equilibrium point ž is designed as

ž = (2 + i, 2 + 2i, . . . , –10 – 10i, –10 – 10i)T ∈C
52,

where the first 50 elements of ž correspond the 50 coordinates of the black block in image
pattern “A”, and the last two elements are additional. According to the equilibrium point
ž, the external inputs J can be computed as follows:

J = (–6.2332 + 8.3721i, –4.0371 + 19.3896i, . . . , –62.0099 – 46.0415i)T . (45)

Two simulations with random initial values depicted in Fig. 5 show that the designed
CVNNs with parameters (40)–(43) and (45) have the ability of recalling the above pat-
tern “A” reliably.

Remark 6 In Example 2, since the neurons are complex-valued, each neuron contains the
horizontal and vertical coordinates of the black blocks in the images. Thus the designed
CVNNs require less neurons than RVNNs to store the image patterns.

6 Conclusion
In this paper, the problem of robust stability for impulsive complex-valued neural net-
works time delays has been investigated. Applying homeomorphic mapping theorem in
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Figure 5 Two simulations of retrieving the pattern “A” with random initial values

complex domain, we presented some sufficient conditions to guarantee the existence of a
unique equilibrium point for the complex-valued neural networks. In addition, by con-
structing appropriate Lyapunov–Krasovskii functionals, and employing the matrix in-
equality techniques, we obtained several conditions for checking the robust stability of
the complex-valued neural networks which are established in LMIs. Finally, two numer-
ical examples have been given to illustrate the effectiveness of the proposed theoretical
results.
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