
Luo Advances in Difference Equations  (2018) 2018:87 
https://doi.org/10.1186/s13662-018-1520-3

R E S E A R C H Open Access

Existence of positive solutions of a third
order nonlinear differential equation
with positive and negative terms
Demou Luo*

*Correspondence:
scutldm@163.com
School of Applied Mathematics,
Guangdong University of
Technology, Guangzhou, P.R. China

Abstract
In this article we investigate the existence of positive solutions for a third order
nonlinear differential equation with positive and negative terms. The main tool
employed here is Kiguradze’s lemma of classification of positive solutions. The
asymptotic properties of solutions are also discussed. Two examples are also given to
illustrate our result.

MSC: Primary 34A34; 34K13; secondary 34K30; 34L30

Keywords: Positive solutions; Asymptotic properties; Delay argument; Positive and
negative term

1 Introduction
In 1993, Kiguradze and Chanturia [1] introduced the theory of asymptotic properties of
solutions of nonautonomous ordinary differential equations as a method of continuum
calculi. Since Kiguradze’s groundbreaking work, there has been a significant growth in
the theory of nonautonomous differential equations with deviating argument covering a
variety of different problems; see [2–14] and the references therein.

Let T be a time scale such that t0 ∈ T. In this article, we are interested in the analysis of
qualitative theory of positive solutions of third order nonlinear differential equations. Mo-
tivated by the papers [1, 15] and the references therein, we consider the following dynamic
equation:

(
b(t)

(
a(t)x′(t)

)′)′ + p(t)f
(
x
(
τ (t)

))
– q(t)g

(
x
(
σ (t)

))
= 0, t0 ≤ t. (1.1)

Throughout this paper we assume that
(H1) a(t), b(t), p(t), q(t), τ (t),σ (t) ∈ C([t0,∞)) are positive;
(H2) f (u), h(u) ∈ C(R), uf (u) > 0, uh(u) > 0 for u �= 0, g is bounded, f is nondecreasing;
(H3) –f (–uv) ≥ f (uv) ≥ f (u)f (v) for uv > 0, and f (u) ≤ u;
(H4) τ (t) ≤ t, limt→∞ τ (t) = ∞, limt→∞ σ (t) = ∞.
We consider the canonical case of (1.1), that is,
(H5)

∫ ∞
t0

1
a(s) ds =

∫ ∞
t0

1
b(s) ds = ∞.

By a solution of Eq. (1.1), we can easily understand a function x(t) with derivatives
a(t)x′(t), b(t)(a(t)x′(t))′ continuous on [Tx,∞), Tx ≥ t0, which satisfies Eq. (1.1) on [Tx,∞).
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We consider only those solutions x(t) of (1.1) which satisfy sup{|x(t)| : t ≥ T} > 0 for all
T ≥ Tx.

The research of the higher order ordinary differential equations (ODE) (see [1–7]) es-
sentially takes advantage of some recapitulation of Kiguradze’s lemma [1, 2]. In the lemma,
from the fixed sign of the highest derivative, we can infer the form of possible nonoscilla-
tory solutions. We cannot fix the sign of the fourth order quasi-derivative for an ultimately
positive solution because the positive and negative terms are included in (1.1). So the au-
thors primarily investigate the properties of (1.1) in the partial case when either p(t) ≡ 0
or q(t) ≡ 0.

In what follows we shall assume that
(H6)

∫ ∞
t0

1
a(t)

∫ ∞
t

1
b(s)

∫ ∞
s q(u) du ds dt < ∞.

The organization of this paper is as follows. In Section 2, we introduce some definitions
and lemmas and declare some preliminary material needed in later sections. We will state
some facts about the differential equations with deviating argument as well as Kiguradze’s
lemma of classification of positive solutions. For details on Kiguradze’s theorem, we re-
fer the reader to [1]. In Section 3, we establish our main results for positive solutions by
applying Kiguradze’s classification of positive solutions theorem. In Section 4, we present
the asymptotic properties of solutions. In Section 5, we give two examples to illustrate our
results. The results presented in this paper extend the main results in [15].

2 Preliminaries
A time scale is an arbitrary nonempty closed subset of real numbers. The research of dy-
namic equations on time scales is an incredibly new area, and the number of studies on this
subject is rapidly growing. The theory of dynamic equations unifies the theories of differ-
ential equations and difference equations. We suppose that the reader is familiar with the
basic concepts concerning the calculus on time scales for dynamic equations. Otherwise
one can find most of the material needed to read this paper in Kiguradze and Chanturia’s
books [1].

Definition 2.1 ([1]) A solution of (1.1) is termed oscillatory if it has arbitrarily large zeros
on [Tx,∞), otherwise it is termed nonoscillatory. Eq. (1.1) is said to be oscillatory if all its
solutions are oscillatory.

Definition 2.2 ([1]) The differential equation

x(n)(t) = p(t)x(t) (2.1)

has property A if every solution of (2.1) for n even is oscillatory and for n odd either is
oscillatory or satisfies the condition |x(i)(t)| → 0 as t → +∞ (i = 1, 2, . . . , n – 1).

Assume that (1.1) possesses an eventually positive solution x(t) on [Tx,∞), Tx ≥ t0. We
introduce the auxiliary function z(t) associated with x(t) by

z(t) = x(t) +
∫ ∞

t

1
a(v)

∫ ∞

v

1
b(s)

∫ ∞

s
q(u)g

(
x
(
σ (u)

))
du ds dv. (2.2)

It follows from (H6) and the boundedness of h(u) that the definition of function z(t) is
correct and z(t) exists for all t ≥ Tx. It is useful to notice that z(t) > x(t) > 0, z′(t) < x′(t),
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and

(
b(t)

(
a(t)z′(t)

)′)′ = –p(t)f
(
x
(
τ (t)

))
< 0. (2.3)

Theorem 2.3 Assume that all the solutions of

z′′(t) + p(t)z(t) = 0 (2.4)

are nonoscillatory. Then every positive solution z(t) of (1.1) satisfies either

z(t) ∈N0 ⇐⇒ a(t)z′(t) < 0, b(t)
(
a(t)z′(t)

)′ > 0,
(
b(t)

(
a(t)z′(t)

)′)′ < 0,

or

z(t) ∈N2 ⇐⇒ a(t)z′(t) > 0, b(t)
(
a(t)z′(t)

)′ > 0,
(
b(t)

(
a(t)z′(t)

)′)′ < 0.

Corollary 2.4 ([1]) Assume that

lim inf
t→∞ t2p(t) <

2
3
√

3
, (2.5)

then the set N of all positive solutions of (1.1) has the following decomposition:

N = N0 ∪N2.

In this article, to ensure qualitative theory of the studied equation, some easily verifiable
conditions must be established. To predigest our notation, we denote that

B(t) =
∫ t

t1

1
b(s)

ds

and

A(t) =
∫ t

t1

1
a(s)

∫ s

t1

1
b(u)

du ds.

Definition 2.5 ([1]) A solution x(t) of (1.1) defined on an interval [t1, +∞) ⊂ [t0, +∞) is
said to be a Kneser solution if

(–1)ix(i)(t)x(t) ≥ 0

for t0 ≤ t1 (i = 0, 1, . . . , n – 1).

3 Existence of positive solutions
In this section we shall investigate the existence of positive solutions for Eq. (1.1). The
main result is in the following theorem.
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Theorem 3.1 Let, for all t1 large enough,

∫ ∞

t1

p(s)f
(
A

(
τ (s)

))
ds = ∞. (3.1)

Assume that

lim sup
t→∞

{
1

B(τ (t))

∫ τ (t)

t1

p(s)f
(
A

(
τ (s)

))
B(s) ds

+
∫ t

τ (t)
p(s)f

(
A

(
τ (s)

))
ds + f

(
B
(
τ (t)

))∫ ∞

t
p(s)f

(
A(τ (s))
B(τ (s))

)
ds

}

> lim sup
u→0

u
f (u)

. (3.2)

Then the positive solution class N2 = ∅.

Proof Assume on the contrary that (1.1) possesses an eventually positive solution z(t) ∈
N3. Using the fact that b(t)(a(t)z′(t))′ is decreasing, we have

a(t)z′(t) ≥
∫ t

t1

b(s)
(
a(s)z′(s)

)′ 1
b(s)

ds ≥ b(t)
(
a(t)z′(t)

)′
∫ t

t1

1
b(s)

ds

= b(t)
(
a(t)z′(t)

)′B(t). (3.3)

In view of (3.3), we can see that ( a(t)z′(t)
B(t) )′ ≤ 0; consequently, a(t)z′(t)

B(t) is decreasing. Then

x(t) ≥
∫ t

t1

x′(s) ds ≥
∫ t

t1

z′(s) ds =
∫ t

t1

a(s)z′(s)
B(s)

B(s)
a(s)

ds

≥ a(t)z′(t)
B(t)

∫ t

t1

B(s)
a(s)

ds =
a(t)z′(t)

B(t)
A(t).

Setting the last estimate into (2.3), we see that y(t) = a(t)z′(t) is a positive solution of the
differential inequality

(
b(t)y′(t)

)′ + p(t)f
(

A(τ (t))
B(τ (t))

y
(
τ (t)

)
)

≤ 0. (3.4)

What is more, y(t)
B(t) is decreasing and b(t)y′(t) > 0.

On the other hand, an integration of (3.4) from t to ∞ and then from t1 to t yields

y(t) ≥
∫ t

t1

1
b(u)

∫ ∞

u
p(s)f

(
A(τ (s))
B(τ (s))

y
(
τ (s)

)
)

ds du

=
∫ t

t1

1
b(u)

∫ t

u
p(s)f

(
A(τ (s))
B(τ (s))

y
(
τ (s)

)
)

ds du

+
∫ t

t1

1
b(u)

∫ ∞

t
p(s)f

(
A(τ (s))
B(τ (s))

y
(
τ (s)

)
)

ds du
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=
∫ t

t1

p(s)f
(

A(τ (s))
B(τ (s))

y
(
τ (s)

)
)

B(s) ds

+ B(t)
∫ ∞

t
p(s)f

(
A(τ (s))
B(τ (s))

y
(
τ (s)

))
ds.

Having replaced t by τ (t) in the last inequality, we obtain

y
(
τ (t)

) ≥
∫ τ (t)

t1

p(s)f
(

A(τ (s))
B(τ (s))

y
(
τ (s)

))
B(s) ds

+ B
(
τ (t)

)∫ t

τ (t)
p(s)f

(
A(τ (s))
B(τ (s))

y
(
τ (s)

)
)

ds

+ B
(
τ (t)

)∫ ∞

t
p(s)f

(
A(τ (s))
B(τ (s))

y
(
τ (s)

))
ds.

Employing (H3) and the fact that y(t) is increasing and y(t)
B(t) is decreasing, we have

y
(
τ (t)

) ≥ f
(

y(τ (t))
B(τ (t))

)∫ τ (t)

t1

p(s)f
(
A

(
τ (s)

))
B(s) ds

+ B
(
τ (t)

)
f
(

y(τ (t))
B(τ (t))

)∫ t

τ (t)
p(s)f

(
A

(
τ (s)

))
ds

+ B
(
τ (t)

)
f
(
y
(
τ (t)

))∫ ∞

t
p(s)f

(
A(τ (s))
B(τ (s))

)
ds. (3.5)

Therefore, setting u = y(τ (t))
B(τ (t)) , we get

u
f (u)

≥ 1
B(τ (t))

∫ τ (t)

t1

p(s)f
(
A

(
τ (s)

))
B(s) ds +

∫ t

τ (t)
p(s)f

(
A

(
τ (s)

))
ds

+ f
(
B
(
τ (t)

))∫ ∞

t
p(s)f

(
A(τ (s))
B(τ (s))

)
ds. (3.6)

Condition (3.1) guarantees that y(t)
B(t) → 0 as t → ∞. Indeed, if we admit y(t)

B(t) → � > 0, then
y(t)
B(t) ≥ � and setting the last inequality into (3.4), we obtain

(
b(t)y′(t)

)′ + p(t)f (�)f
(
A

(
τ (t)

)) ≤ (
b(t)y′(t)

)′ + p(t)f
(
�A

(
τ (t)

)) ≤ 0.

An integration from t1 to ∞ yields

b(t1)y′(t1) ≥ f (�)
∫ ∞

t1

p(s)f
(
A

(
τ (s)

))
ds,

which contradicts condition (3.1). Now, we can take lim sup on both sides of (3.6), one gets
a contradiction to (3.2). �

Obviously, we have the following easily verifiable criterion for some special cases of (1.1).

Corollary 3.2 Let, for all t1 large enough,
∫ ∞

t1

p(s)A
(
τ (s)

)
ds = ∞. (3.7)
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lim sup
t→∞

{
1

B(τ (t))

∫ τ (t)

t1

p(s)A
(
τ (s)

)
B(s) ds +

∫ t

τ (t)
p(s)A

(
τ (s)

)
ds

+ B
(
τ (t)

)∫ ∞

t
p(s)

A(τ (s))
B(τ (s))

ds
}

≥ 1. (3.8)

Then the positive solution class N2 of third order trinomial differential equation

(
b(t)

(
a(t)x′(t)

)′)′ + p(t)x
(
τ (t)

)
– q(t)g

(
x
(
σ (t)

))
= 0 (3.9)

is empty.

Theorem 3.3 Let, for all t1 large enough,

∫ ∞

t1

1
b(u)

∫ ∞

u
p(s)f

(
A(τ (s))
B(τ (s))

)
ds du = ∞. (3.10)

Assume that

lim sup
t→∞

{
f
(

1
B(τ (t))

)∫ τ (t)

t1

p(s)f
(
A

(
τ (s)

))
B(s) ds

+ B
(
τ (t)

)
f
(

1
B(τ (t))

)∫ t

τ (t)
p(s)f

(
A

(
τ (s)

))
ds

+ B
(
τ (t)

)∫ ∞

t
p(s)f

(
A(τ (s))
B(τ (s))

)
ds

}

> lim sup
u→∞

u
f (u)

. (3.11)

Then the positive solution class N2 of (1.1) is empty.

Proof Assume that x(t) is a positive solution of (1.1). Proceeding exactly as in the proof of
Theorem 3.1, we verify that the associated function z(t) belongs to the situation of z(t) ∈
N2.

If z(t) ∈ N2, then y(t) = a(t)z′(t) satisfies (3.5). We claim that condition (3.10) implies
that y(t) → ∞ as t → ∞. Really, if not, then y(t) → L as t → ∞. An integration of (3.4)
from t to ∞ yields

b(t)y′(t) ≥
∫ ∞

t
p(s)f

(
A(τ (s))
B(τ (s))

y
(
τ (s)

))
ds.

Integrating once more, we get

y(t) ≥
∫ ∞

t1

1
b(u)

∫ ∞

u
p(s)f

(
A(τ (s))
B(τ (s))

y
(
τ (s)

))
ds du

≥ f
(
y
(
τ (t1)

))∫ ∞

t1

1
b(u)

∫ ∞

u
p(s)f

(
A(τ (s))
B(τ (s))

)
ds du.

This is in contradiction to (3.10), and we conclude that y(t) → ∞ as t → ∞.
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Thus, we can set that u = y(τ (t)), and we obtain

u
f (u)

≥ f
(

1
B(τ (t))

)∫ τ (t)

t1

p(s)f
(
A

(
τ (s)

))
B(s) ds

+ B
(
τ (t)

)
f
(

1
B(τ (t))

)∫ t

τ (t)
p(s)f

(
A

(
τ (s)

))
ds

+ B
(
τ (t)

)∫ ∞

t
p(s)f

(
A(τ (s))
B(τ (s))

)
ds. (3.12)

Now, we can take lim sup on both sides of (3.12), one gets a contradiction to (3.11). The
proof is complete now. �

Theorem 3.4 Let, for all t1 large enough,

∫ ∞

t1

1
a(v)

∫ ∞

v

1
b(s)

∫ ∞

s
p(u) du ds dv = ∞. (3.13)

Then the positive solution class N0 = ∅.

Proof Assume on the contrary that (1.1) possesses an eventually positive solution z(t) ∈
N0. Let us denote that Z′(t) = z(t) and Z(t) > 0. Due to z(t) > 0 and z′(t) < 0, then
∫ t

t1
z(s) ds ≥ tz(t) – t1z(t) and Z(t1) – t1z(t) ≥ 0, we obtain

Z(t) = Z(t1) +
∫ t

t1

z(s) ds ≥ tz(t) + Z(t1) – t1z(t) ≥ tz(t).

Using the fact that uf (u) > 0 and f is nondecreasing, we have f (x(τ (t))) ≥ ε > 0. An inte-
gration of (2.3) from t to ∞ yields

b(t)
(
a(t)z′(t)

)′ ≥
∫ ∞

t
p(s)f

(
x
(
τ (s)

))
ds ≥ ε

∫ ∞

t
p(s) ds.

Integrating from t to ∞ and consequently from t1 to ∞, we obtain

z(t1) ≥ ε

∫ ∞

t1

1
a(v)

∫ ∞

v

1
b(s)

∫ ∞

s
p(u) du ds dv.

We get a contradiction to (3.13), and the proof is complete. �

Theorem 3.5 Let (2.5) hold. Assume that all the conditions of Theorems 3.1 and 3.4 hold.
Then Eq. (1.1) has no positive solutions.

Theorem 3.6 Let (2.5) hold. Assume that all the conditions of Theorems 3.3 and 3.4 hold.
Then Eq. (1.1) has no positive solutions.

Theorem 3.7 Let (2.5) hold. Assume that all the conditions of Corollary 3.2 and Theo-
rem 3.4 hold. Then Eq. (3.9) has no positive solutions.
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4 Asymptotic properties
In this section some asymptotic properties of positive solutions of (1.1) are treated. Firstly,
we need to transform (1.1). Let us denote that

D0(t) =
p(t)f (x(τ (t))) – q(t)g(x(σ (t)))

a(t)b(t)
,

D1(t) =
a′(t)b′(t) + a′′(t)b(t)

a(t)b(t)
,

D2(t) =
a(t)b′(t) + 2a′(t)b(t)

a(t)b(t)
,

and

F
(
t, x(t), x′′(t), x′′′(t)

)
= –

(
D2(t)x′′(t) + D1(t)x′(t) + D0(t)

)
.

Obviously, Eq. (1.1) will be transformed as follows:

x′′′(t) + D2(t)x′′(t) + D1(t)x′(t) + D0(t) = 0. (4.1)

Below we establish the existence criteria for Kneser solutions of (4.1) and study the asymp-
totics of these solutions.

Theorem 4.1 Let

F (t, 0, 0, 0) =
q(t)g(0) – p(t)f (0)

a(t)b(t)
= 0 (4.2)

for t ≥ t1, m ∈ {0, 1}, r ∈ (0, +∞) and

(–1)m+3F (t, x1, x2, x3) ≥ 0 (4.3)

for t ≥ t1, 0 ≤ (–1)m+i–1xi ≤ rt1–i, i = 1, 2, 3. Then Eq. (4.1) has a continuum of Kneser solu-
tions satisfying the conditions

(–1)m+ix(i)(t) ≥ 0 (4.4)

for t ≥ t1, i = 0, 1, 2.

Proof Set

F∗(t) = max
{∣∣F (t, x1, x2, x3)

∣∣ : 0 ≤ (–1)m+i–1xi ≤ rt1–i}, i = 1, 2, 3,

and choose δ ∈ (0, 1
t1+1 ) so small that

2(t1 + 1)2
∫ t1+δ

t1

F∗(τ ) dτ ≤ τ . (4.5)
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To prove the theorem, it suffices to show that if r0 = ( δ
t1+δ

)2 r
12 , then for any c0 ∈ [0, r0]

Eq. (4.1) together with the condition

x(t1) = (–1)mc0. (4.6)

Consider the functions

χi(t, x) =

⎧
⎪⎨

⎪⎩

0, (–1)m+i–1x < 0,
x, 0 ≤ (–1)m+i–1x ≤ rt1–i,
rt1–i, (–1)m+i–1x > rt1–i

and F̃ (t, x1, x2, x3) = F (t,χ1(t, x1),χ2(t, x2),χ3(t, x3)). Obviously,

F̃ (t, x1, x2, x3) = F (t, x1, x2, x3) (4.7)

for t ≥ t1, 0 ≤ (–1)m+i–1xi ≤ rt1–i, i = 1, 2, 3. And

∣∣F̃ (t, x1, x2, x3)
∣∣ ≤F∗(t) (4.8)

for t ≥ t1, (x1, x2, x3) ∈R
3.

On the other hand, (4.2) and (4.3) yield

F̃ (t, x1, x2, x3) = 0 (4.9)

for t ≥ t1, (–1)m+i–1xi ≤ 0, i = 1, 2, 3. And

(–1)m+3F̃ (t, x1, x2, x3) ≥ 0 (4.10)

for t ≥ t1, (–1)m+i–1xi ≥ 0, i = 1, 2, 3.
By Lemma 10.1 of [1], for any positive integer k, the differential equation

x′′′(t) = F̃
(
t, x(t), x′(t), x′′(t)

)

has a solution xk(t) satisfying the boundary conditions

xk(t1) = (–1)mc0, xi–1
k (t1 + k) = 0, i = 1, 2. (4.11)

Assuming that (–1)m+2x′′
k (t1 + k) < 0, from (4.9) we obtain

xk(t) =
1
2

x′′
k (t1 + k)(t – t1 – k)2

for t1 ≤ t ≤ t1 + k, (–1)mxk(t1) < 0.
But this is impossible because (–1)mxk(t1) = c0 ≥ 0. So

(–1)m+2x′′
k (t1 + k) ≥ 0. (4.12)
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According to (4.10), (4.11), and (4.12),

(–1)m+ix(i)
k (t) ≥ 0 (4.13)

for t1 ≤ t ≤ t1 + k, i = 0, 1, 2, 3,

2∑

i=0

x(i)
k (t)
i!

(t – t1)i ≤ ∣∣x(t1)
∣∣ ≤ r0 (4.14)

for t1 ≤ t ≤ t1 + k, and

∣∣x(i)
k (t1 + δ)

∣∣ ≤ i!r0δ
–i, i = 0, 1, 2. (4.15)

Applying (4.5), (4.7), and (4.15), we get

∣
∣x(i)

k (t)
∣
∣ ≤

2∑

j=i

|x(j)
k (t1 + δ)|
(j – i)!

(t1 + δ – t)j–i

+
1

(2 – i)!

∫ t1+δ

t
(τ – t)4–iF∗(τ ) dτ

≤ 3!r0δ
–i +

∫ t1+δ

t1

F∗(τ ) dτ

≤
[

3!r0

(
t1 + δ

δ

)i

+
(t1 + δ)i

2(t1 + 1)2 · r
]

t–i

≤ rt–i (4.16)

for t1 ≤ t ≤ t1 + δ, i = 0, 1, 2. On the other hand, (4.14) implies

∣∣x(i)
k (t)

∣∣ ≤ rt–i

for t1 + δ ≤ t ≤ t1 + k, i = 0, 1, 2. Therefore,

∣∣x(i)
k (t)

∣∣ ≤ rt–i (4.17)

for t1 ≤ t ≤ t1 + k, i = 0, 1, 2.
It follows from (4.7), (4.13), and (4.17), that for any positive integer k the function xk(t) is

a solution of Eq. (4.1) on the interval [t1, t1 + k]. By Lemma 10.2 of [1], {xk(t)}+∞
k=1 contains

a subsequence {xkl (t)}+∞
l=1 such that {xkl (t)(i)}+∞

l=1 , i = 0, 1, 2, converge uniformly on every
finite subinterval of [t1, +∞), and x(t) = liml→+∞{xkl (t)} for t ≥ t1 is a solution of Eq. (4.1).
In view of (4.11) and (4.13), x(t) satisfies conditions (4.4) and (4.6).

The proof of Theorem 4.1 is complete. �

5 Examples
Example 5.1 Consider the third order trinomial differential equation

(
t

1
3
(
t

1
2 x′(t)

)′)′ +
p

t
13
6

x(λt) –
q
t3 arctan

(
x
(
σ (t)

))
= 0 (5.1)
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with p > 0, q > 0, λ ∈ (0, 1). Now f (x) = x is nondecreasing and h(x) = arctan(x) is bounded.
We can easily calculate that

∫ ∞

t1

p(s)f
(
A

(
τ (s)

))
ds

=
∫ ∞

t1

p(s)A
(
τ (s)

)
ds

=
∫ ∞

t1

p

s
13
6

∫ λs

t1

1
v 1

2

∫ v

t1

1
u 1

3
du dv ds

= ∞.

Then conditions (3.1) and (3.7) hold true. Due to
∫ ∞

t1

1
a(v)

∫ ∞

v

1
b(s)

∫ ∞

s
p(u) du ds dv

=
∫ ∞

t1

1
v 1

2

∫ ∞

v

1
s 1

3

∫ ∞

s

p

u
13
6

du ds dv

= ∞,

condition (3.13) holds true. Therefore, the positive solution class N0 = ∅. Simple compu-
tation shows that

A(t) ∼ 9
7

t
7
6 , B(t) ∼ 3

2
t

2
3

and (3.2), (3.10) take the form

pλ
7
6

(
9
7

ln

(
1
λ

)
+

27
7

)
> 1

and
∫ ∞

t1

1
b(u)

∫ ∞

u
p(s)f

(
A(τ (s))
B(τ (s))

)
ds du

=
∫ ∞

t1

1
u 1

3

∫ ∞

u

p

s
13
6

( 9
7 s

7
6

3
2 s 2

3

)
ds du

=
6p
7

∫ ∞

t1

1
u 1

3

∫ ∞

u

1

s 5
3

ds du

= ∞.

Therefore, the positive solution class N2 = ∅. We can conclude that Eq. (5.1) has no posi-
tive solutions.

Our results are also applicable for the case when τ (t) ≡ t.

Example 5.2 Consider the third order differential equation

(
t

1
3
(
t

1
2 x′(t)

)′)′ +
p

t
13
6

x(t) –
q
t3 arctan

(
x
(
σ (t)

))
= 0 (5.2)
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with p > 0, q > 0. We can easily calculate that

∫ ∞

t1

p(s)f
(
A

(
τ (s)

))
ds

=
∫ ∞

t1

p(s)A
(
τ (s)

)
ds

=
∫ ∞

t1

p

s
13
6

∫ s

t1

1
v 1

2

∫ v

t1

1
u 1

3
du dv ds

= ∞.

The following steps are the same as in Example 5.1, thus we omit them.

Acknowledgements
This work was supported in part by the National Natural Science Foundation of China under Grant No. 61673121, in part
by the Natural Science Foundation of Guangdong Province under Grant No. 2014A030313507, and in part by the Projects
of Science and Technology of Guangzhou under Grant No. 201508010008. The authors are grateful to the referee for
careful reading of the paper and for his or her useful comments which helped them to improve the paper.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All the authors contributed equally and significantly in writing this paper. All the authors read and approved the final
manuscript.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 28 November 2017 Accepted: 7 February 2018

References
1. Kiguradze, I.T., Chanturia, T.A.: Asymptotic Properties of Solutions of Nonautonomous Ordinary Differential Equations.

Kluwer Academic, Dordrecht (1993)
2. Kiguradze, I.T.: On the oscillatory character of solutions of the equation dmu

dtm + a(t)|u|n signu = 0. Mat. Sb. 65, 172–187
(1964) (in Russian)

3. Agarwal, R.P., Grace, S.R., O’Regan, D.: Oscillation Theory for Difference and Functional Differential Equations. Kluwer
Academic, Dordrecht (2000)

4. Kitamura, Y.: Characterization of oscillation of fourth order functional differential equations with deviating arguments.
Ann. Mat. Pura Appl. 124(1), 345–365 (1980)

5. Li, T., Baculíková, B., Džurina, J., Zhang, C.: Oscillation of fourth-order neutral differential equations with p-Laplacian
like operators. Bound. Value Probl. 2014, Article ID 56 (2014)

6. Ruyun, M., Haiyan, W.: On the existence of positive solutions of fourth-order ordinary differential equations. Appl.
Anal. 59(1–4), 225–231 (1995)

7. Ladde, G.S., Lakshmikantham, V., Zhang, B.G.: Oscillation Theory of Differential Equations with Deviating Arguments.
Marcel Dekker, New York (1987)

8. Elsgolts, L.E., Norkin, S.B.: Introduction to the Theory and Application of Differential Equations with Deviating
Arguments. Elsevier, Amsterdam (1973)

9. Bartušek, M., Došlá, Z.: Asymptotic problems for fourth-order nonlinear differential equations. Bound. Value Probl.
2013, Article ID 89 (2013)

10. Hou, C., Cheng, S.S.: Asymptotic dichotomy in a class of fourth-order nonlinear delay differential equations with
damping. Abstr. Appl. Anal. 2009, Article ID 484158 (2009)

11. Agarwal, R., Grace, S.R., Manojlovic, J.V.: Oscillation criteria for certain fourth order nonlinear functional differential
equations. Math. Comput. Model. 44(1), 163–187 (2006)

12. Liang, H.: Asymptotic behavior of solutions to higher order nonlinear delay differential equations. Electron. J. Differ.
Equ. 2014, Article ID 186 (2014)

13. Swanson, C.H.A.: Comparison and Oscillation Theory of Linear Differential Equations. Elsevier, Amsterdam (1968)
14. Elias, U.: Oscillation Theory of Two-Term Differential Equations. Mathematics and Its Applications, vol. 396. Springer,

Dordrecht (2013)
15. Džurina, J., Baculíková, B.: Property A of differential equations with positive and negative term. Electron. J. Qual.

Theory Differ. Equ. 2017, Article ID 27 (2017)


	Existence of positive solutions of a third order nonlinear differential equation with positive and negative terms
	Abstract
	MSC
	Keywords

	Introduction
	Preliminaries
	Existence of positive solutions
	Asymptotic properties
	Examples
	Acknowledgements
	Competing interests
	Authors' contributions
	Publisher's Note
	References


