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Abstract
In this paper, we propose a new nonlinear stochastic SIRS epidemic model with
standard incidence rate and saturated treatment function. The main purpose of this
paper is to investigate the threshold dynamics of the nonlinear stochastic SIRS
epidemic model by making use of stochastic inequality techniques. By using
Lyapunov methods and Itô’s formula, we first prove the existence and uniqueness of a
global positive solution for the corresponding limiting system. Furthermore, we
obtain sufficient conditions for the extinction and persistence in mean of the
nonlinear stochastic SIRS epidemic model by using the techniques of a series of
stochastic inequalities. Finally, we provide some numerical simulations to illustrate the
performance of our theoretical findings.
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1 Introduction
Mathematical inequalities play an important role in many fields of mathematical anal-
ysis and applications, especially for differential systems [1–5]. Recently, the inequalities
techniques have been widely used to impulsive differential systems [6–10], stochastic dif-
ferential systems [11–16] and impulsive stochastic differential systems [17–20], thus some
new and interesting results have been obtained.

In the last few decades, infectious diseases have brought a series of troubles and great
pain to millions of families. Many suitable measures are implemented to prevent the out-
break of infectious diseases. Various mathematical models are essential tools to study the
spread of infectious diseases. Epidemiological models can analyze the underlying mecha-
nisms which influence the expansion of infectious diseases. Let us assume that all individ-
uals are divided into three compartments: S(t) represents susceptible individuals who are
susceptible to the disease; I(t) represents infected individuals who are infected by the dis-
ease; and R(t) represents recovered individuals who hold temporary immunity acquired
from a disease, namely, after recovery, individuals lose immunity and move into the sus-
ceptible individuals. This is called SIRS model [21]. In most epidemic models, the bilinear
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incidence rate λS(t)I(t) is extensively used. Therefore, the dynamics of the SIRS epidemic
model can be expressed by the following system of ordinary differential equations:

⎧
⎪⎪⎨

⎪⎪⎩

dS(t)
dt = dN(t) – dS(t) – λS(t)I(t) + νR(t),

dI(t)
dt = λS(t)I(t) – (d + r)I(t),

dR(t)
dt = rI(t) – (d + ν)R(t),

(1)

where the parameters λ, d, ν and r are positive constants. Here, N(t) = S(t) + I(t) + R(t)
represents all individuals, λ is the rate of transmission per contact, d represents the dis-
eased death rate and also represents the rate of recruitment of individuals, ν represents
the rate at which recovered individuals lose immunity and return to the susceptible indi-
viduals, r is the recovery rate of the infected individuals. Many researchers have studied
several different SIRS epidemic models in the literature [21–25].

In epidemiological models, many different types of incidence rate play an important role.
In 1986, Liu et al. [26] introduced a general incidence rate

Sf (I) =
λSIp

1 + αIq (2)

into the SIRS epidemic model. Here, λIp is infection force of the disease and 1
1+αIq rep-

resents inhibition effect. The general incidence rate is more reasonable than the bilinear
incidence rate because the general incidence rate takes into account the crowding effect
and behavioral change of the infective individuals and prevents the unboundedness of the
contact rate occurring by choosing suitable parameters. We notice that when p = 1 and
α = 0 or q = 0, the general incidence rate (2) changes into the bilinear incidence rate. In
recent years, a number of researchers [27–31] have investigated the nonlinear transmis-
sion laws more than the bilinear transmission laws. In 1992, Hethcote et al. [32] studied a
standard incidence rate

Sf (I) =
λSI

S + I + R
(3)

in the continuous-time SIRS epidemic model. In this paper, the authors analyzed the sta-
bility of the disease-free equilibrium and the endemic equilibrium for the SIRS model.

To prevent the spread of the infectious disease, many researchers [33–36] began to in-
vestigate a treatment function in the epidemic models. In 2004, Wang et al. [37] introduced
a constant treatment function

T(I) =

⎧
⎨

⎩

β , I > 0,

0, I = 0

into the SIR epidemic model. The authors found that to eradicate the disease, it is unnec-
essary to take such a large treatment capacity, and proved that disease spread may depend
on a certain range of the initial parameters. In 2006, Wang [38] introduced a piecewise
linear treatment function

T(I) =

⎧
⎨

⎩

βI, 0 ≤ I ≤ I0,

m, I ≥ I0
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into the SIR model and proved that a backward bifurcation existed in this model. In 2011,
Eckalbar et al. [39] adopted a quadratic treatment function

T(I) = max
{
βI – gI2, 0

}
, β , g > 0

into the SIR epidemic model and found four equilibria at most. Recently, the saturated
treatment function has been frequently used in classical epidemic models. In 2008, Zhang
et al. [40] introduced a saturated treatment function

T(I) =
βI

1 + αI
(4)

into the SIR model, where β > 0, α ≥ 0. β is the cure rate and α represents the extent to
which the infected effect delays the treatment. In [40], authors found that the valid meth-
ods for the control of disease were providing the patients timely treatment, enhancing the
cure efficiency and decreasing the infective coefficient. According to (1), (3) and (4), in
[41], Gao et al. took into account the SIRS epidemic model with standard incidence rate
and saturated treatment function as follows:

⎧
⎪⎪⎨

⎪⎪⎩

dS(t)
dt = � – dS(t) – λS(t)I(t)

N(t) + νR(t),
dI(t)

dt = λS(t)I(t)
N(t) – (d + r)I(t) – βI(t)

1+αI(t) ,
dR(t)

dt = rI(t) – (d + ν)R(t) + βI(t)
1+αI(t) ,

where � is the recruitment rate of susceptible individuals, d represents only the diseased
death rate, N(t) ≡ S(t) + I(t) + R(t) represents the total population size, other parameters
have the same meaning as the ones above.

On the other hand, any systems are inevitably affected by various environmental noises,
such as white noise, which are important components in an ecosystem. In 2001, May [42]
showed that according to environmental fluctuation, the population birth and death rate,
transmission coefficient and other parameters exhibit random perturbations to a lesser
or greater extent. Consequently, we assume that the environmental fluctuation affects not
only the standard incidence rate but also the saturated treatment rate of the disease, so
that

λ → λ + σ1Ḃ1(t), β → β + σ2Ḃ2(t),

where B1(t) and B2(t) represent standard Brownian motions with B1(0) = 0 and B2(0) = 0,
σ 2

1 and σ 2
2 denote the intensities of white noise. In recent years, many researchers [14, 43–

52] have introduced stochastic environmental perturbations into deterministic population
models to analyze the effects of environmental noise.

Motivated by the above work, we obtain the following stochastic SIRS epidemic model
with standard incidence rate and saturated treatment function:

⎧
⎪⎪⎨

⎪⎪⎩

dS(t) = [� – dS(t) – λS(t)I(t)
N(t) + νR(t)] dt – σ1S(t)I(t)

N(t) dB1(t),

dI(t) = [ λS(t)I(t)
N(t) – (d + r)I(t) – βI(t)

1+αI(t) ] dt + σ1S(t)I(t)
N(t) dB1(t) – σ2I(t)

1+αI(t) dB2(t),

dR(t) = [rI(t) – (d + ν)R(t) + βI(t)
1+αI(t) ] dt + σ2I(t)

1+αI(t) dB2(t).

(5)
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This paper is organized as follows. In Section 2, we first introduce preliminary knowl-
edge and give some notations and lemmas. Furthermore, we prove the existence of a global
positive solution for the corresponding limiting SIRS epidemic system. Moreover, we ex-
plore sufficient conditions for the persistence in mean and extinction of the stochastic
SIRS epidemic system. In Section 3, we give a summary of the main results and a series of
numerical simulations to illustrate the theoretical results.

2 Main results
The main purpose of our study is to investigate the threshold dynamics of the stochas-
tic SIRS epidemic model which governs the extinction and permanence of the epidemic
disease by applying the techniques of a series of stochastic inequalities.

2.1 Preliminary knowledge
In the section, we give some notations and lemmas which can be used for our main the-
oretical results. To this end, throughout this paper, unless otherwise specified, we let
(�,F , {Ft}t≥0,P) stand for a complete probability space with a filtration {Ft}t≥0 satisfy-
ing the usual conditions (i.e., it is increasing and right continuous while F0 contains all
P-null sets). For convenience, for an integrable function f (t) on R+ = [0, +∞), we define
〈f (t)〉 = 1

t
∫ t

0 f (s) ds.
Generally speaking, an n-dimensional stochastic differential equation is expressed as

follows:

dX(t) = F
(
t, X(t)

)
dt + G

(
t, X(t)

)
dB(t). (6)

Here, F(t, x) represents a function defined in [0, +∞) × R
n and G(t, x) represents an n ×

m matrix, F(t, x) and G(t, x) satisfy the locally Lipschitz conditions in x. B(t) represents
an m-dimensional standard Brownian motion defined on the complete probability space.
C2,1(Rn × [0, +∞),R+) is a family of all nonnegative functions V (x, t) which are defined on
R

n × [0, +∞) such that this family of functions are continuously twice differentiable on x
and continuously once differentiable on t. In [53], Mao defined a differential operator L
for the stochastic differential equation (6):

L =
∂

∂t
+

n∑

i=1

Fi(x, t)
∂

∂xi
+

1
2

n∑

i,j=1

[
GT (x, t)G(x, t)

]

i,j
∂2

∂xi∂xj
.

Applying L to a function V (x, t) ∈ C2,1(Rn × [0, +∞),R+), we get

LV (x, t) = Vt(x, t) + Vx(x, t)F(x, t) +
1
2

trace
[
GT (x, t)Vxx(x, t)G(x, t)

]
,

where Vt(x, t) = ∂V
∂t , Vx(x, t) = ( ∂V

∂x1
, ∂V

∂x2
, . . . , ∂V

∂xn
) and Vxx(x, t) = ( ∂2V

∂xi∂xj
)n×n. By Itô’s formula,

when x(t) ∈ R
n, we have

dV (x, t) = LV (x, t) dt + Vx(x, t)G(x, t) dB(t).

Definition 2.1 ([54]) The definitions of extinction and persistence in mean are given as
follows:
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(i) The population X(t) is said to be extinct when limt→+∞ X(t) = 0;
(ii) The population X(t) is said to be persistent in mean when lim inft→+∞〈X(t)〉 > m,

where m is a positive constant.

The following inequalities can be used frequently in the sequel.

Lemma 2.1 (Burkholder–Davis–Gundy inequality [53]) Let f (t) ∈ C2(R+;Rn×m) (C2(R+;
R

n×m) be the family of processes {f (t)}t≥0 such that, for every T > 0, {f (t)}0≤t≤T ∈
C2([0, T];Rn×m), where C2([0, T];Rn×m) represents the family of Rn×m-valued Ft-adapted
processes {f (t)}0≤t≤T such that

∫ T
0 |f (t)|2 dt < ∞). For every t ≥ 0, we define

M(t) =
∫ t

0
f (θ ) dB(θ ), A(t) =

∫ t

0

∣
∣f (θ )

∣
∣2 dθ .

Thus, for any η > 0, there are two positive constants cη and Cη such that

cηE
∣
∣A(t)

∣
∣

η
2 ≤ E

(
sup

0≤θ≤t

∣
∣M(θ )

∣
∣η

)
≤ CηE

∣
∣A(t)

∣
∣

η
2 , t ≥ 0,

where cη and Cη only depend on η.

Lemma 2.2 (Chebyshev’s inequality [53]) For all c > 0, η > 0 and X ∈ Lη , the following
inequality holds:

P
{
ξ :

∣
∣X(ξ )

∣
∣ ≥ c

} ≤ E|X|η
cη

.

Lemma 2.3 (Doob’s martingale inequality [53]) Let X be a submartingale taking nonneg-
ative real values, either in discrete or continuous time. That is, for all times s and t having
s < t, we have

Xs ≤ E[Xt|Fs].

Then, for any constant c > 0,

P

[
sup

0≤t≤T
Xt ≥ c

]
≤ E[|XT |]

c
,

where P denotes the probability measure on the sample space � of the stochastic process
X : [0, T] × � → [0, +∞] and E denotes the expected value with respect to the probability
measure P.

According to the biological meanings, we know that variables S(t), I(t) and R(t) of system
(5) should be nonnegative when t ≥ 0. Before we prove that the global positive solution of
system (5) is existent and unique, we firstly investigate the following Lemma 2.4.

Lemma 2.4 For the positive solution (S(t), I(t), R(t)) of system (5) with any initial value
(S(0), I(0), R(0)) ∈R

3
+, we have

max
{

lim sup
t→+∞

S(t), lim sup
t→+∞

I(t), lim sup
t→+∞

R(t)
}

≤ �

d
.
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Proof For system (5), computing the sum of three equations yields

d(S(t) + I(t) + R(t))
dt

= � – d
(
S(t) + I(t) + R(t)

)
.

Then we obtain

lim
t→+∞

(
S(t) + I(t) + R(t)

)
=

�

d
.

It is easy to see that

lim sup
t→+∞

S(t) ≤ �

d
, lim sup

t→+∞
I(t) ≤ �

d
, lim sup

t→+∞
R(t) ≤ �

d
,

and S(t) ≥ 0, I(t) ≥ 0, R(t) ≥ 0.
This completes the proof of Lemma 2.4. �

According to Lemma 2.4, we can know that at any equilibrium E∗ = (S∗, I∗, R∗) of system
(5), N∗ ≡ S∗ + I∗ + R∗ ≡ �

d , then

� =
{
(
S(t), I(t), R(t)

)
: S(t) ≥ 0, I(t) ≥ 0, R(t) ≥ 0, S(t) + I(t) + R(t) ≡ �

d

}

is a positively invariant region for the system. Therefore, we only consider the dynamics
of system (5) in �.

The set � is a positive invariant region for system (5), thus we assume the population
size has reached limiting value; in other words, N(t) ≡ �

d ≡ S(t) + I(t) + R(t), and we obtain
R(t) ≡ �

d – S(t) – I(t). Obviously, system (5) can be reduced to the following system:

⎧
⎨

⎩

dS(t) = [� – dS(t) – λdS(t)I(t)
�

+ ν( �
d – S(t) – I(t))] dt – dσ1S(t)I(t)

�
dB1(t),

dI(t) = [ λdS(t)I(t)
�

– (d + r)I(t) – βI(t)
1+αI(t) ] dt + dσ1S(t)I(t)

�
dB1(t) – σ2I(t)

1+αI(t) dB2(t).
(7)

Therefore, system (7) is equivalent to system (5). Next, we prove the existence and
uniqueness of the global positive solution of system (7).

Lemma 2.5 For any given initial value (S(0), I(0)) ∈ R
2
+, model (7) has a unique positive

solution (S(t), I(t)) on t ≥ 0, and the solution remains in R
2
+ with probability 1, namely

(S(t), I(t)) ∈ R
2
+ for all t ≥ 0 almost surely.

Proof Since all the coefficients of system (7) satisfy the local Lipschitz condition, for any
initial value (S(0), I(0)) ∈ R

2
+, there exists a unique local solution (S(t), I(t)) on [0, τe), where

τe represents the explosion time. Then τe = +∞ demonstrates that the solution of system
(7) is global. Therefore, we let k0 ≥ 1 be a sufficiently large constant for every component of
(S(0), I(0)) all lying within the interval [ 1

k0
, k0] × [ 1

k0
, k0]. For each integer k > k0, we define

the stopping time as follows:

τk = inf

{

t ∈ [0, τe) : min
{(

S(t), I(t)
)} ≤ 1

k
or max

{(
S(t), I(t)

)} ≥ k
}

.
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Throughout this paper, we let inf∅ = ∞ (as usual ∅ denotes the empty set). It is easy to
see that τk is increasing as k → +∞. We set τ∞ = lim supk→+∞ τk , obviously τ∞ ≤ τe a.s. If
we can show that τ∞ = +∞ a.s., then we can obtain that τe = +∞. Next, we only need to
show τ∞ = +∞ a.s. Assuming this assertion is not true, there exist a constant T > 0 and
ε ∈ (0, 1) such that P{τ∞ ≤ T} > ε. Thus, there exists an integer k1 ≥ k0 such that

P{τk ≤ T} > ε for all k ≥ k1. (8)

We define a C2-function V : R2
+ →R+ by

V
(
S(t), I(t)

)
=

(
S(t) – 1 – ln S(t)

)
+

(
I(t) – 1 – ln I(t)

)
.

Applying Itô’s formula leads to

dV
(
S(t), I(t)

)
= LV

(
S(t), I(t)

)
dt +

dσ1(I(t) – S(t))
�

dB1(t) –
σ2(I(t) – 1)

1 + αI(t)
dB2(t),

where

LV
(
S(t), I(t)

)
=

(

1 –
1

S(t)

)[

� – dS(t) –
λdS(t)I(t)

�
+ ν

(
�

d
– S(t) – I(t)

)]

+
(

1 –
1

I(t)

)[
λdS(t)I(t)

�
– (d + r)I(t) –

βI(t)
1 + αI(t)

]

+
1
2

[
d2σ 2

1 I2(t)
�2 +

d2σ 2
1 S2(t)
�2 +

σ 2
2

(1 + αI(t))2

]

= � – dS(t) –
λdS(t)I(t)

�
+ ν

(
�

d
– S(t) – I(t)

)

–
�

S(t)
+ d +

λdI(t)
�

–
ν( �

d – S(t) – I(t))
S(t)

+
λdS(t)I(t)

�
– (d + r)I(t) –

βI(t)
1 + αI(t)

–
λdS(t)

�

+ d + r +
β

1 + αI(t)
+

d2σ 2
1 I2(t)

2�2 +
d2σ 2

1 S2(t)
2�2 +

σ 2
2

2(1 + αI(t))2

≤ � +
ν�

d
+ 2d + λ + r + β + σ 2

1 +
σ 2

2
2

≤ K ,

where K is a positive constant which is independent of S(t), I(t) and t.
Therefore, we can have

dV
(
S(t), I(t)

) ≤ K dt +
dσ1(I(t) – S(t))

�
dB1(t) –

σ2(I(t) – 1)
1 + αI(t)

dB2(t). (9)

Integrating (9) from 0 to T ∧ τk = min{T , τk} and taking expectation on both sides yield

EV
(
S(T ∧ τk), I(T ∧ τk)

) ≤ V
(
S(0), I(0)

)
+ KE(T ∧ τk),

then

EV
(
S(T ∧ τk), I(T ∧ τk)

) ≤ V
(
S(0), I(0)

)
+ KT . (10)
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Set �k = {τk ≤ T}, from inequality (8), we can know that P(�k) ≥ ε. And for all ω ∈ �k ,
there exists at least one of S(τk ,ω), I(τk ,ω) which equals either k or 1

k . Thus, we get
V (S(τk ,ω), I(τk ,ω)) is no less than either

k – 1 – ln k or
1
k

– 1 – ln
1
k

=
1
k

– 1 + ln k.

As a result, we can have

V
(
S(T ∧ τk), I(T ∧ τk)

) ≥ (k – 1 – ln k) ∧
(

1
k

– 1 + ln k
)

. (11)

Combining equations (10) and (11), we can have

V
(
S(0), I(0)

)
+ KT ≥ E

[
1�k(ω)V

(
S(T ∧ τk), I(T ∧ τk)

)]

≥ ε(k – 1 – ln k) ∧
(

1
k

– 1 + ln k
)

,

where 1�k denotes the indicator function of �k . When k → +∞, we obtain

+∞ > V
(
S(0), I(0)

)
+ KT = +∞,

which is a contradiction. Thus, we obtain that τ∞ = +∞ a.s.
This completes the proof of Lemma 2.5. �

Lemma 2.6 Let (S(t), I(t)) be a solution of system (7) with any initial value (S(0), I(0)) ∈R
2
+,

then

lim
t→+∞

1
t

∫ t

0

dσ1S(θ )
�

dB1(θ ) = 0, lim
t→+∞

1
t

∫ t

0

σ2

1 + αI(θ )
dB2(θ ) = 0,

lim
t→+∞

1
t

∫ t

0

σ2I(θ )
1 + αI(θ )

dB2(θ ) = 0, lim
t→+∞

1
t

∫ t

0

σ2

α
dB1(θ ) = 0.

Proof We let M1(t) =
∫ t

0
dσ1S(θ )

�
dB1(θ ) and η > 2. Making use of Lemma 2.1 for the

Burkholder–Davis–Gundy inequality and the results of Lemma 2.4, we can get

E
[

sup
0≤θ≤t

∣
∣M1(θ )

∣
∣η

]
≤ CηE

[∫ t

0

d2σ 2
1 S2(θ )
�2 dθ

] η
2 ≤ t

η
2 CηE

[

sup
0≤θ≤t

dησ
η
1 Sη(θ )
�η

]

≤ t
η
2 Cησ

η
1 .

Here, we set ε be an arbitrary positive constant. Thus, applying Lemma 2.2 for Chebyshev’s
inequality yields

P

{
ξ : sup

kδ≤t≤(k+1)δ

∣
∣M1(t)

∣
∣η > (kδ)1+ε+ η

2
}

≤ E(|M1((k + 1)δ)|η)
(kδ)1+ε+ η

2
≤ σ

η
1 Cη[(1 + k)δ]

η
2

(kδ)1+ε+ η
2

≤ 2
η
2 σ

η
1 Cη

(kδ)1+ε
.
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Using Lemma 2.3 for Doob’s martingale inequality and the Borel-Cantelli lemma in [53],
for almost every ξ ∈ �, we always get that

sup
kδ≤t≤(k+1)δ

∣
∣M1(t)

∣
∣η ≤ (kδ)1+ε+ η

2 (12)

satisfies for all except finitely some k. Thus, there is a positive number k0(ξ ), for almost
every ξ ∈ �, inequality (12) holds when k ≥ k0(ξ ). Therefore, when both k ≥ k0(ξ ) and
kδ ≤ t ≤ (k + 1)δ hold, for almost all ξ ∈ �, we get

ln |M1(t)|η
ln t

≤ (1 + ε + η

2 ) ln(kδ)
ln(kδ)

= 1 + ε +
η

2
.

Thus, it is easy to see that

lim sup
t→+∞

ln |M1(t)|
ln t

≤ 1 + ε + η

2
η

.

Let ε → 0, we can have that

lim sup
t→+∞

ln |M1(t)|
ln t

≤ 1
2

+
1
η

a.s.

So, for an arbitrary small positive constant ζ (ζ < 1
2 – 1

η
), there is a constant T(ξ ) and a set

�ζ such that P(�ζ ) ≥ 1 – ζ . Furthermore, for t ≥ T(ξ ), ξ ∈ �ζ , we have

ln
∣
∣M1(t)

∣
∣ ≤

(
1
2

+
1
η

+ ζ

)

ln t.

As a result, we get

lim sup
t→+∞

M1(t)
t

≤ lim sup
t→+∞

t
1
2 + 1

η +ζ

t
= 0 a.s.

On the other hand, we know

lim sup
t→+∞

|M1(t)|
t

≥ 0 a.s.

To sum up

lim
t→+∞

|M1(t)|
t

= 0 a.s.

That is to say,

lim
t→+∞

M1(t)
t

= lim
t→+∞

1
t

∫ t

0

dσ1S(θ )
�

dB1(θ ) = 0 a.s.

Making use of the same argument, we let M2(t) =
∫ t

0
σ2

1+αI(θ ) dB2(θ ), then we can get

lim sup
t→+∞

〈M2, M2〉t

t
≤ lim sup

t→+∞
1
t

∫ t

0
σ 2

2 dθ = σ 2
2 < +∞ a.s.
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Using the strong law of large numbers, we can obtain

lim
t→+∞

M2(t)
t

= 0 a.s.,

i.e.,

lim
t→+∞

M2(t)
t

= lim
t→+∞

1
t

∫ t

0

σ2

1 + αI(θ )
dB2(θ ) = 0 a.s.

Let M3(t) =
∫ t

0
σ2I(θ )

1+αI(θ ) dB2(θ ), then we can get

lim sup
t→+∞

〈M3, M3〉t

t
≤ lim sup

t→+∞
1
t

∫ t

0

σ 2
2

α2 dθ =
σ 2

2
α2 < +∞ a.s.

Using the strong law of large numbers, we can obtain

lim
t→+∞

M3(t)
t

= 0 a.s.,

i.e.,

lim
t→+∞

M3(t)
t

= lim
t→+∞

1
t

∫ t

0

σ2I(θ )
1 + αI(θ )

dB2(θ ) = 0 a.s.

Let M4(t) =
∫ t

0
σ2
α

dB2(θ ), then we can get

lim sup
t→+∞

〈M4, M4〉t

t
= lim sup

t→+∞
1
t

∫ t

0

σ 2
2

α2 dθ =
σ 2

2
α2 < +∞ a.s.

Using the strong law of large numbers, we can obtain

lim
t→+∞

M4(t)
t

= 0 a.s.,

i.e.,

lim
t→+∞

M4(t)
t

= lim
t→+∞

1
t

∫ t

0

σ2

α
dB2(θ ) = 0 a.s.

The proof of Lemma 2.6 is complete. �

2.2 Extinction
When we study an epidemic model, extinction and persistence in mean are two important
properties. In this subsection, we explore the conditions which lead to the extinction of
epidemic system (7) under stochastic disturbances.

Next, we explore the conditions for the extinction of the epidemic disease of stochastic
system (7).

Theorem 2.1 Let (S(t), I(t)) be the solution of system (7) with any initial value (S(0), I(0)) ∈
R

2
+. When one of the following conditions holds:
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(i) R1 = λ2

2(d+r)σ 2
1

+ β2

2(d+r)σ 2
2

< 1,

(ii) λ ≥ σ 2
1 and R2 = 2(λ–d–r)(d+α�)2

σ 2
1 (d+α�)2+d2σ 2

2
– 2dβ(d+α�)

σ 2
1 (d+α�)2+d2σ 2

2
< 1,

(iii) λ < σ 2
1 and R3 = λ2(d+α�)

2σ 2
1 [dβ+(d+r)(d+α�)] – d2σ 2

2
2[dβ(d+α�)+(d+r)(d+α�)2] < 1,

(iv) λ ≥ σ 2
1 and R4 = 2λ

σ 2
1 +2(d+r) + β2

σ 2
2 [σ 2

1 +2(d+r)] < 1,
then

lim
t→+∞ S(t) =

�

d
, lim

t→+∞ I(t) = 0.

Proof Making use of Itô’s formula to the second equation of the stochastic differential
system (7), we get

d ln I(t) =
1

I(t)

[(
λdS(t)I(t)

�
– (d + r)I(t) –

βI(t)
1 + αI(t)

)

dt +
dσ1S(t)I(t)

�
dB1(t)

–
σ2I(t)

1 + αI(t)
dB2(t)

]

+
1
2

(

–
1

I2(t)

)[
d2σ 2

1 S2(t)I2(t)
�2 +

σ 2
2 I2(t)

(1 + αI(t))2

]

dt

=
(

λdS(t)
�

– (d + r) –
β

1 + αI(t)
–

d2σ 2
1 S2(t)

2�2 –
σ 2

2
2(1 + αI(t))2

)

dt

+
dσ1S(t)

�
dB1(t) –

σ2

1 + αI(t)
dB2(t)

=
[

–
d2σ 2

1
2�2

(

S2(t) –
2λ�

dσ 2
1

S(t)
)

–
σ 2

2
2

(
1

(1 + αI(t))2 +
2β

σ 2
2 (1 + αI(t))

)

– (d + r)
]

dt

+
dσ1S(t)

�
dB1(t) –

σ2

1 + αI(t)
dB2(t)

=
[

–
d2σ 2

1
2�2

(

S(t) –
λ�

dσ 2
1

)2

–
σ 2

2
2

(
1

1 + αI(t)
+

β

σ 2
2

)2

+
λ2

2σ 2
1

+
β2

2σ 2
2

– (d + r)
]

dt

+
dσ1S(t)

�
dB1(t) –

σ2

1 + αI(t)
dB2(t). (13)

Case (i): When R1 = λ2

2(d+r)σ 2
1

+ β2

2(d+r)σ 2
2

< 1 holds, integrating both sides of inequality (13)
from 0 to t gives

ln I(t) = –
d2σ 2

1
2�2

∫ t

0

(

S(θ ) –
λ�

dσ 2
1

)2

dθ –
σ 2

2
2

∫ t

0

(
1

1 + αI(θ )
+

β

σ 2
2

)2

dθ

–
(

d + r –
λ2

2σ 2
1

–
β2

2σ 2
2

)

t + M1(t) – M2(t) + ln I(0)

≤ –
(

d + r –
λ2

2σ 2
1

–
β2

2σ 2
2

)

t + M1(t) – M2(t) + ln I(0), (14)

where M1(t) =
∫ t

0
dσ1S(θ )

�
dB1(θ ) and M2(t) =

∫ t
0

σ2
1+αI(θ ) dB2(θ ).

Dividing both sides of inequality (14) by t yields

ln I(t)
t

≤ –
(

d + r –
λ2

2σ 2
1

–
β2

2σ 2
2

)

+
M1(t)

t
–

M2(t)
t

+
ln I(0)

t
. (15)
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The functions M1(t) and M2(t) are known as the local continuous martingale with M1(0) =
0 and M2(0) = 0. Applying Lemma 2.6, we can know

lim
t→+∞

M1(t)
t

= 0, lim
t→+∞

M2(t)
t

= 0 a.s.

Making use of the condition R1 = λ2

2(d+r)σ 2
1

+ β2

2(d+r)σ 2
2

< 1 and taking the limit superior of
both sides of inequality (15), we can get

lim sup
t→+∞

ln I(t)
t

≤ –
(

d + r –
λ2

2σ 2
1

–
β2

2σ 2
2

)

= (d + r)(R1 – 1) < 0,

which implies limt→+∞ I(t) = 0.
Case (ii): When both λ ≥ σ 2

1 and R2 = 2(λ–d–r)(d+α�)2

σ 2
1 (d+α�)2+d2σ 2

2
– 2dβ(d+α�)

σ 2
1 (d+α�)2+d2σ 2

2
< 1 hold, according

to inequality (13), we can get

d ln I(t) ≤
[

–
d2σ 2

1
2�2

(

S(t) –
λ�

dσ 2
1

)2

+
λ2

2σ 2
1

–
d2σ 2

2
2(d + α�)2 –

dβ

d + α�
– (d + r)

]

dt

+
dσ1S(t)

�
dB1(t) –

σ2

1 + αI(t)
dB2(t). (16)

Since λ ≥ σ 2
1 , the variable S(t) in inequality (16) takes its maximum value on the interval

[0, �
d ] at �

d , thus we have

d ln I(t) ≤
[

–
σ 2

1
2

+ λ –
d2σ 2

2
2(d + α�)2 –

dβ

d + α�
– (d + r)

]

dt

+
dσ1S(t)

�
dB1(t) –

σ2

1 + αI(t)
dB2(t). (17)

Integrating both sides of inequality (17) from 0 to t and dividing both sides by t, we obtain

ln I(t)
t

≤
[

–
σ 2

1
2

+ λ –
d2σ 2

2
2(d + α�)2 –

dβ

d + α�
– (d + r)

]

+
M1(t)

t
–

M2(t)
t

+
ln I(0)

t
. (18)

Using the condition R2 = 2(λ–d–r)(d+α�)2

σ 2
1 (d+α�)2+d2σ 2

2
– 2dβ(d+α�)

σ 2
1 (d+α�)2+d2σ 2

2
< 1, by Lemma 2.6 and taking the

limit superior of both sides of inequality (18), one has

lim sup
t→+∞

ln I(t)
t

≤ –
[(

σ 2
1

2
+

d2σ 2
2

2(d + α�)2

)

–
(

λ –
dβ

d + α�
– d – r

)]

=
1
2

(

σ 2
1 +

d2σ 2
2

(d + α�)2

)

(R2 – 1) < 0,

which implies limt→+∞ I(t) = 0.
Case (iii): When both λ < σ 2

1 and R3 = λ2(d+α�)
2σ 2

1 [dβ+(d+r)(d+α�)] – d2σ 2
2

2[dβ(d+α�)+(d+r)(d+α�)2] < 1 hold,
since λ < σ 2

1 , the variable S(t) in inequality (16) takes its maximum value on the interval
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[0, �
d ] at λ�

dσ 2
1

, so we have

d ln I(t) ≤
[

λ2

2σ 2
1

–
d2σ 2

2
2(d + α�)2 –

dβ

d + α�
– (d + r)

]

dt

+
dσ1S(t)

�
dB1(t) –

σ2

1 + αI(t)
dB2(t). (19)

Integrating both sides of inequality (19) from 0 to t and dividing both sides by t, we can
obtain

ln I(t)
t

≤
[

λ2

2σ 2
1

–
d2σ 2

2
2(d + α�)2 –

dβ

d + α�
– (d + r)

]

+
M1(t)

t
–

M2(t)
t

+
ln I(0)

t
. (20)

Applying the condition R3 = λ2(d+α�)
2σ 2

1 [dβ+(d+r)(d+α�)] – d2σ 2
2

2[dβ(d+α�)+(d+r)(d+α�)2] < 1, by Lemma 2.6
and taking the limit superior of both sides of inequality (20), we get

lim sup
t→+∞

ln I(t)
t

≤
[

λ2

2σ 2
1

–
d2σ 2

2
2(d + α�)2 –

dβ

d + α�
– (d + r)

]

=
(

dβ

d + α�
+ d + r

)

(R3 – 1) < 0,

which implies limt→+∞ I(t) = 0.
Case (iv): When both λ ≥ σ 2

1 and R4 = 2λ

σ 2
1 +2(d+r) + β2

σ 2
2 [σ 2

1 +2(d+r)] < 1 hold, since λ ≥ σ 2
1 , the

variable S(t) in inequality (13) takes its maximum value on the interval [0, �
d ] at �

d , thus
one has

d ln I(t) ≤
[

–
d2σ 2

1
2�2

(
�

d
–

λ�

dσ 2
1

)2

–
σ 2

2
2

(
1

1 + αI(t)
+

β

σ 2
2

)2

+
λ2

2σ 2
1

+
β2

2σ 2
2

– (d + r)
]

dt

+
dσ1S(t)

�
dB1(t) –

σ2

1 + αI(t)
dB2(t)

=
[

–
σ 2

1
2

(

1 +
λ2

σ 4
1

–
2λ

σ 2
1

)

–
σ 2

2
2

(
1

1 + αI(t)
+

β

σ 2
2

)2

+
λ2

2σ 2
1

+
β2

2σ 2
2

– (d + r)
]

dt

+
dσ1S(t)

�
dB1(t) –

σ2

1 + αI(t)
dB2(t)

=
[

–
σ 2

1
2

+ λ –
σ 2

2
2

(
1

1 + αI(t)
+

β

σ 2
2

)2

+
β2

2σ 2
2

– (d + r)
]

dt

+
dσ1S(t)

�
dB1(t) –

σ2

1 + αI(t)
dB2(t)

≤
(

–
σ 2

1
2

+ λ +
β2

2σ 2
2

– (d + r)
)

dt +
dσ1S(t)

�
dB1(t) –

σ2

1 + αI(t)
dB2(t). (21)

Integrating both sides of inequality (21) from 0 to t and dividing both sides by t yield

ln I(t)
t

≤
(

–
σ 2

1
2

+ λ +
β2

2σ 2
2

– (d + r)
)

+
M1(t)

t
–

M2(t)
t

+
ln I(0)

t
. (22)
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Applying the condition R4 = 2λ

σ 2
1 +2(d+r) + β2

σ 2
2 [σ 2

1 +2(d+r)] < 1, by Lemma 2.6 and taking the limit
superior of both sides of inequality (22), we get

lim sup
t→+∞

ln I(t)
t

≤
(

–
σ 2

1
2

+ λ +
β2

2σ 2
2

– (d + r)
)

=
(

d + r +
σ 2

1
2

)

(R4 – 1) < 0,

which implies limt→+∞ I(t) = 0.
Since limt→+∞ I(t) = 0, we have assumed the population size has reached limiting value.

Further we consider the limit system of stochastic differential system (7)

dS(t) =
[

� – dS(t) + ν

(
�

d
– S(t)

)]

dt.

It is easy to see that limt→+∞ S(t) = �
d . This completes the proof of Theorem 2.1. �

2.3 Persistence in mean
The conditions of the extinction for system (7) have been obtained. In this subsection, we
investigate the conditions which lead to the persistence in mean of epidemic system (7)
under the stochastic disturbances, which implies the infectious disease is prevalent.

Theorem 2.2 Let (S(t), I(t)) be the solution of system (7) with any initial value (S(0), I(0)) ∈
R

2
+. When both the conditions dλ

α�
≥ d + ν and

R̃ =
α�(d + ν)[2λ – 2d – 2r – (σ 2

1 + σ 2
2 )]

2dβλ
> 1

hold, then the epidemic disease I(t) is persistent in mean; in other words,

0 <
β

α(ν + d + r)
(̃R – 1) ≤ lim inf

t→+∞
〈
I(t)

〉 ≤ lim sup
t→+∞

〈
I(t)

〉 ≤ �

d
.

Proof For system (7), computing the sum of two equations yields

d
(
S(t) + I(t)

)
=

[

� – dS(t) +
ν�

d
– νS(t) – νI(t) – (d + r)I(t) –

βI(t)
1 + αI(t)

]

dt

–
σ2I(t)

1 + αI(t)
dB2(t)

≥
[

� +
ν�

d
– (d + ν)S(t) – (ν + d + r)I(t) –

β

α

]

dt

–
σ2I(t)

1 + αI(t)
dB2(t). (23)

Integrating both sides of inequality (23) from 0 to t and dividing both sides by t, we obtain

1
t
[
S(t) – S(0) + I(t) – I(0)

] ≥
(

� +
ν�

d
–

β

α

)

– (d + ν)
〈
S(t)

〉
– (ν + d + r)

〈
I(t)

〉

–
M3(t)

t
, (24)

where M3(t) =
∫ t

0
σ2I(θ )

1+αI(θ ) dB2(θ ).
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Taking the limit of both sides of inequality (24) and by Lemma 2.6, we can get

0 ≥
(

� +
ν�

d
–

β

α

)

– (d + ν) lim
t→+∞

〈
S(t)

〉
– (ν + d + r) lim

t→+∞
〈
I(t)

〉
,

i.e.,

lim
t→+∞

〈
S(t)

〉 ≥
(

�

d
–

β

α(d + ν)

)

–
ν + d + r

d + ν
lim

t→+∞
〈
I(t)

〉
. (25)

Next, we define a C2-function V : R2
+ →R+ by

V
(
S(t), I(t)

)
=

1
α

ln I(t) + I(t) + S(t).

Applying Itô’s formula results in

dV
(
S(t), I(t)

)
= LV

(
S(t), I(t)

)
dt +

dσ1S(t)
α�

dB1(t) –
σ2

α
dB2(t), (26)

where

LV
(
S(t), I(t)

)
=

[

� – dS(t) –
dλS(t)I(t)

�
+ ν

(
�

d
– S(t) – I(t)

)]

+
1 + αI(t)

α

[
dλS(t)

�
– (d + r) –

β

1 + αI(t)

]

–
d2σ 2

1 S2(t)
2α�2 –

σ 2
2

2α(1 + αI(t))2

=
(

� +
ν�

d
–

d + r + β

α

)

+
(

dλ

α�
– d – ν

)

S(t)

– (ν + d + r)I(t) –
d2σ 2

1 S2(t)
2α�2 –

σ 2
2

2α(1 + αI(t))2

≥
(

� +
ν�

d
–

d + r + β

α

)

+
(

dλ

α�
– d – ν

)

S(t)

– (ν + d + r)I(t) –
σ 2

1
2α

–
σ 2

2
2α

=
(

� +
ν�

d
–

d + r + β

α
–

σ 2
1 + σ 2

2
2α

)

+
(

dλ

α�
– d – ν

)

S(t)

– (ν + d + r)I(t).

Integrating both sides of inequality (26) from 0 to t and dividing both sides by t, we get

1
t

(
1
α

ln I(t) + I(t) + S(t)
)

≥
(

� +
ν�

d
–

d + r + β

α
–

σ 2
1 + σ 2

2
2α

)

+
(

dλ

α�
– d – ν

)
〈
S(t)

〉

– (ν + d + r)
〈
I(t)

〉
+

M1(t)
αt

–
M4(t)

t

+
1
t

(
1
α

ln I(0) + I(0) + S(0)
)

,
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i.e.,

(ν + d + r)
〈
I(t)

〉 ≥
(

� +
ν�

d
–

d + r + β

α
–

σ 2
1 + σ 2

2
2α

)

+
(

dλ

α�
– d – ν

)
〈
S(t)

〉
+

M1(t)
αt

–
M4(t)

t
–

ln I(t) – ln I(0)
αt

–
I(t) – I(0)

t
–

S(t) – S(0)
t

≥

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(� + ν�
d – d+r+β

α
– σ 2

1 +σ 2
2

2α
) + ( dλ

α�
– d – ν)〈S(t)〉 + M1(t)

αt

– M4(t)
t + ln I(0)

αt – I(t)–I(0)
t – S(t)–S(0)

t , 0 < I(t) < 1;

(� + ν�
d – d+r+β

α
– σ 2

1 +σ 2
2

2α
) + ( dλ

α�
– d – ν)〈S(t)〉 + M1(t)

αt

– M4(t)
t – ln I(t)–ln I(0)

αt – I(t)–I(0)
t – S(t)–S(0)

t , 1 ≤ I(t),

(27)

where M1(t) =
∫ t

0
dσ1S(θ )

�
dB1(θ ) and M4(t) =

∫ t
0

σ2
α

dB2(θ ).
Taking the limit of both sides of inequality (27), by Lemma 2.6, we have

(ν + d + r) lim
t→+∞

〈
I(t)

〉 ≥
(

� +
ν�

d
–

d + r + β

α
–

σ 2
1 + σ 2

2
2α

)

+
(

dλ

α�
– d – ν

)

lim
t→+∞

〈
S(t)

〉
. (28)

From inequality (25) and inequality (28), and assuming that the condition dλ
α�

≥ d+ν holds,
then we can obtain

(ν + d + r) lim
t→+∞

〈
I(t)

〉

≥
(

� +
ν�

d
–

d + r + β

α
–

σ 2
1 + σ 2

2
2α

)

+
(

dλ

α�
– d – ν

)[(
�

d
–

β

α(d + ν)

)

–
ν + d + r

d + ν
lim

t→+∞
〈
I(t)

〉
]

= � +
ν�

d
–

d + r + β

α
–

σ 2
1 + σ 2

2
2α

+
λ

α
–

λdβ

α2�(d + ν)
–

(d + ν)�
d

+
β

α

–
[

λd(ν + d + r)
α�(d + ν)

– (ν + d + r)
]

lim
t→+∞

〈
I(t)

〉
,

i.e.,

lim
t→+∞

〈
I(t)

〉 ≥
[

2λ – 2d – 2r – (σ 2
1 + σ 2

2 )
2α

–
λdβ

α2�(d + ν)

]

· α�(d + ν)
λd(ν + d + dr)

=
β

α(ν + d + r)

[
α�(d + ν)[2λ – 2d – 2r – (σ 2

1 + σ 2
2 )]

2dβλ
– 1

]

:=
β

α(ν + d + r)
(̃R – 1). (29)

When the condition R̃ = α�(d+ν)[2λ–2d–2r–(σ 2
1 +σ 2

2 )]
2dβλ

> 1 holds, taking the inferior limit of both
sides of (29) yields

lim inf
t→+∞

〈
I(t)

〉 ≥ β

α(ν + d + r)
(̃R – 1) > 0.
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By Lemma 2.4, we know lim supt→+∞ I(t) ≤ �
d , then lim supt→+∞〈I(t)〉 ≤ �

d . Therefore, we
get

0 <
β

α(ν + d + r)
(̃R – 1) ≤ lim inf

t→+∞
〈
I(t)

〉 ≤ lim sup
t→+∞

〈
I(t)

〉 ≤ �

d
.

This completes the proof of Theorem 2.2. �

3 Conclusions and numerical simulations
In this paper, we investigate the stochastic SIRS epidemic model with standard incidence
rate and saturated treatment function. We first prove the existence and uniqueness of a
global positive solution for the corresponding limiting system (7). Then we investigate the
persistence in mean and extinction of the stochastic SIRS epidemic system by using the
Lyapunov method and the techniques of a series of stochastic inequalities. The biological
significance of our results shows that the ability of the epidemic model to adapt to the
external environment disturbance is limited, and the external environment disturbances
may have important effect on the stability of the SIRS epidemic system. When the pertur-
bations in the environment are small enough, the stability of the stochastic SIRS epidemic
system cannot be destroyed, while large disturbances occurring in the environment can
lead to the extinction of epidemic diseases. Therefore, this shows that the environmental
distributions are advantageous to controlling infectious diseases. Our results significantly
improve and generalize the corresponding results in recent literature. The developed the-
oretical methods and stochastic inequalities techniques can be applied to explore the high-
dimensional nonlinear stochastic differential systems.

Next, we give some numerical simulations to illustrate our theoretical results. The dis-
crete equations of system (7) are described by

Sn+1 = Sn +
[

� – dSn –
dλSnIn

�
+ ν

(
�

d
– Sn – In

)]

�t

– σ1
dSnIn

�

√
�tW1n –

σ 2
1

2
dSnIn

�

(
W 2

1n – 1
)
�t,

In+1 = In +
[

dλSnIn

�
– (d + r)In –

βIn

1 + αIn

]

�t

+ σ1
dSnIn

�

√
�tW1n +

σ 2
1

2
dSnIn

�

(
W 2

1n – 1
)
�t

– σ2
In

1 + αIn

√
�tW2n –

σ 2
2

2
In

1 + αIn

(
W 2

2n – 1
)
�t,

where W1n, W2n, n = 1, 2, . . . , are independent Gaussian random variables N(0, 1). Here,
we let �t = 0.01.

In the following figures, we let S(0) = 0.1, I(0) = 0.1, α = 0.3, β = 0.01, λ = 0.7, d = 0.5,
� = 0.1, r = 0.07, ν = 0.5, and the step size �t = 0.01.

Figure 1(a) is the deterministic model of stochastic system (7) with σ1 = σ2 = 0. Fig-
ure 1(b) shows the stochastic epidemic system (7) with σ1 = 0.7 and σ2 = 0.1. By compu-
tation, we get that

R1 =
λ2

2(d + r)σ 2
1

+
β2

2(d + r)σ 2
2

= 0.886 < 1, lim
t→+∞ S(t) =

�

d
= 0.2, lim

t→+∞ I(t) = 0,
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Figure 1 Time sequence diagram: (a) the deterministic epidemic model, (b) the stochastic epidemic system
(7) for case (i) of Theorem 2.1

Figure 2 Time sequence diagram of stochastic system (7): (a) case (ii) of Theorem 2.1, (b) case (iii) of
Theorem 2.1

which satisfy case (i) of Theorem 2.1. For Figure 2(a) with σ1 = 0.5 and σ2 = 0.2, we get that

λ = 0.7 ≥ 0.25 = 0.52 = σ 2
1 ,

R2 =
2(λ – d – r)(d + α�)2

σ 2
1 (d + α�)2 + d2σ 2

2
–

2dβ(d + α�)
σ 2

1 (d + α�)2 + d2σ 2
2

= 0.8443 < 1,

and

lim
t→+∞ S(t) =

�

d
= 0.2, lim

t→+∞ I(t) = 0,

which satisfy case (ii) of Theorem 2.1. For Figure 2(b) with σ1 = 0.85 and σ2 = 0.3, we get
that

λ = 0.7 < 0.7225 = 0.852 = σ 2
1 ,

R3 =
λ2(d + α�)

2σ 2
1 [dβ + (d + r)(d + α�)]

–
d2σ 2

2
2[dβ(d + α�) + (d + r)(d + α�)2]

= 0.5161 < 1,
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Figure 3 Time sequence diagram of stochastic system (7): (a) case (iv) of Theorem 2.1, (b) case of Theorem 2.2

and

lim
t→+∞ S(t) =

�

d
= 0.2, lim

t→+∞ I(t) = 0,

which satisfy case (iii) of Theorem 2.1. For Figure 3(a) with σ1 = 0.7 and σ2 = 0.3, we get
that

λ = 0.7 ≥ 0.49 = 0.72 = σ 2
1 , R4 =

2λ

σ 2
1 + 2(d + r)

+
β2

σ 2
2 [σ 2

1 + 2(d + r)]
= 0.85958 < 1,

and

lim
t→+∞ S(t) =

�

d
= 0.2, lim

t→+∞ I(t) = 0,

which satisfy case (iv) of Theorem 2.1.
According to Figures 1(b), 2(a), 2(b) and 3(a), the disease I(t) in the stochastic epidemic

system (7) is extinct. Comparing Figure 1(a) with Figures 1(b), 2(a), 2(b) and 3(a), we can
see that when the environmental fluctuations are large enough, they can lead to the ex-
tinction of disease. Thus, the random fluctuations are beneficial to the control of epidemic
diseases. This is consistent with our conclusion in Theorem 2.1.

For Figure 3(b), we let σ1 = σ2 = 0.03. By computation, we get that

dλ

α�
= 11.6 ≥ 1 = d + ν, R̃ =

α�(d + ν)[2λ – 2d – 2r – (σ 2
1 + σ 2

2 )]
2dβλ

= 1.10657 > 1,

which satisfies the conditions of Theorem 2.2. Comparing Figure 1(a) with Figure 3(b),
when the white noises are small, the stochastic epidemic system (7) is persistent in mean.
This is consistent with our conclusion in Theorem 2.2.

Obviously, the numerical simulation results are consistent with the conclusions of our
theorems.

To sum up, our main results are summarized as follows:
I. Extinction

When one of the following conditions holds:
(i) R1 = λ2

2(d+r)σ 2
1

+ β2

2(d+r)σ 2
2

< 1,
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(ii) λ ≥ σ 2
1 and R2 = 2(λ–d–r)(d+α�)2

σ 2
1 (d+α�)2+d2σ 2

2
– 2dβ(d+α�)

σ 2
1 (d+α�)2+d2σ 2

2
< 1,

(iii) λ < σ 2
1 and R3 = λ2(d+α�)

2σ 2
1 [dβ+(d+r)(d+α�)] – d2σ 2

2
2[dβ(d+α�)+(d+r)(d+α�)2] < 1,

(iv) λ ≥ σ 2
1 and R4 = 2λ

σ 2
1 +2(d+r) + β2

σ 2
2 [σ 2

1 +2(d+r)] < 1,
then

lim
t→+∞ S(t) =

�

d
, lim

t→+∞ I(t) = 0.

II. Persistence in mean
When both conditions dλ

α�
≥ d + ν and

R̃ =
α�(d + ν)[2λ – 2d – 2r – (σ 2

1 + σ 2
2 )]

2dβλ
> 1

hold, then the epidemic disease I(t) is persistent in mean; in other words,

0 <
β

α(ν + d + r)
(̃R – 1) ≤ lim inf

t→+∞
〈
I(t)

〉 ≤ lim sup
t→+∞

〈
I(t)

〉 ≤ �

d
.
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