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Abstract
In this paper, we review indispensable properties and characterizations of almost
periodic functions and asymptotically almost periodic functions in Banach spaces.
Special accent is put on the Stepanov generalizations of almost periodic functions
and asymptotically almost periodic functions. We also recollect some basic results
regarding equi-Weyl-almost periodic functions and Weyl-almost periodic functions.
The class of asymptotically Weyl-almost periodic functions, introduced in this work,
seems to be not considered elsewhere even in the scalar-valued case. We actually
introduce eight new classes of asymptotically almost periodic functions and analyze
relations between them. In order to make a picture as complete and clear as possible,
several illustrating examples and counter-examples are given. It is worth noting that
the topics dealt with in this paper seem to be of an intrinsic connection with the
problem of existence and uniqueness of solutions of differential and difference
equations, in both determinist and stochastic cases.
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1 Introduction
The theory of almost periodic functions has gradually been increased to a comprehen-
sive and extensive theory by the contributions of numerous mathematicians. Indeed, the
prehistory of almost periodicity begins with Esclangon and Bohl. The theory of almost
periodic functions was developed in its main features by Bohr as a generalization of pure
periodicity in three rather long papers [1–3], under the common title ‘Zur Theorie der fast-
periodischen Funktionen’ in 1925 and 1926. The first of these papers dealt with the almost
periodic functions of a real variable, while the third one took up the case of a complex
variable. Afterwards, the theory of almost periodic functions was continuously getting
established by several mathematicians like Amerio and Prouse [4], Levitan [5], Besicov-
itch, Bochner, von Neumann, Fréchet, Pontryagin, Lusternik, Stepanov, Weyl, etc.; with
respect to this matter, we cite [6–10] and the references therein. In 1962, Bochner [11] de-
fined and studied the almost periodic functions with values in Banach spaces. He showed
that these functions include certain earlier generalizations of the notion of almost peri-
odic functions. Some extensions of Bohr’s concept have been introduced, most notably by
Besicovitch, Stepanov, Weyl and Eberlein. One can remark that speaking about Stepanov,
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Weyl or Besicovitch metrics implicitly means dealing with the related quotient spaces,
because otherwise we should rather speak about Stepanov, Weyl or Besicovitch.

In fact, the first motivation for the study of almost periodic functions is the set of vari-
ous ways to combine periodic functions with different periods. For instance, the function
x �→ cos x + cos(5x) is periodic, and this remains true when 5 is replaced by any other ra-
tional number. However, the sum of the periodic functions x �→ eix and x �→ ei

√
2x is not

periodic. Hence, when such functions, obtained by using a combination of periodic func-
tions, are not periodic, they are not without properties: they are almost periodic functions.
In the courses of mechanics, we usually encounter some two-dimensional differential sys-
tems of the form x′ = Ax + e(t), where A is a 2 × 2 matrix with purely imaginary eigenvalue
and e(·) is a periodic exterior force. It is well known that when these forced systems possess
a periodic oscillation, then the period of this oscillation is exactly the period of the exte-
rior force. It is not mentioned in these courses, but these forced systems possess almost
periodic solutions. More generally, we know that when all the solutions of an autonomous
linear finite dimensional system are bounded, then all these solutions are almost periodic.
In more physical terms, the almost periodic trajectories are trajectories with a discrete
spectrum. Besides, among the actual literature about the chaos theory, a famous model of
transition towards the chaos is the Landau-Hopf model [12] where the involved potential
is an almost periodic potential. Maurice Allais (Nobel Price of Economics) has written a
wide work about the foundations of the theory of probabilities [13]. The major conclusion
of his work is the following: many natural phenomena are considered as stochastic phe-
nomena, but, in fact, they are almost periodic phenomena which are badly understood. In
support of his viewpoint, Allais has established (with rigorous proofs [13]) a mathemati-
cal theorem which says that the samplings of an almost periodic function converge to the
Laplace-Gauss distribution.

Ever since their introduction by Bohr in the mid-twenties, almost-periodic (a.p.) func-
tions have played an important role in various branches of mathematics. Also, in the
course of time, various variants and extensions of Bohr’s concept have been introduced,
most notably by Besicovitch, Stepanov and Weyl. Accordingly, there are a number of
monographs and papers covering a wide spectrum of notions of almost periodicity and
applications (see, for instance, the large list of references [14, Chapters 1 and 2]). An ex-
tension of Bohr’s original (scalar) concept of a different kind is the generalization to vector-
valued almost-periodic functions, starting with Bochner’s work in the thirties. Here, too,
are a number of monographs on the subject, most notably by Amerio and Prouse [4] and
Levitan and Zhikov [15]. This vector-valued (Banach space-valued) case is particularly im-
portant for applications to (the asymptotic behavior of solutions to) differential equations
and dynamical systems.

As aforementioned, the notion and properties of almost periodic functions, either in
their initial or in generalized form, turned out to be of great importance in various
fields of analysis, function theory, topology and applied mathematics. The necessity of a
manuscript giving a concise and systematic exposition of the fundamentals of the theory
of almost periodic functions was becoming more and more obvious. The task of writing
such a manuscript in a just only one part was an arduous one. Therefore, it is not aston-
ishing that the present article will lead to other future works running in the same aim.

In the present article, we study the basic properties of almost periodic functions and
asymptotically almost periodic functions. These topics are intrinsically connected with
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the problem of existence and uniqueness of solutions of differential equations. To give a
complete and clear picture for the different spaces studied in our work, we illustrate them
by several examples and counter-examples.

Throughout this paper, we use the usual notation N, Z, R and C for the sets of natural,
integer, real and complex numbers, respectively.

For any real number s ∈R, we denote �s� = sup{l ∈ Z : s ≥ l} and 
s� = inf{l ∈ Z : s ≤ l}.
Unless stated otherwise, we assume that X is an infinite-dimensional complex Banach

space, and the norm of an element x ∈ X is denoted by ‖x‖. Assuming that Y is another
complex Banach space, we denote by L(X, Y ) the space consisting of all continuous linear
mappings from X into Y and L(X) ≡ L(X, X). The norm on L(X, Y ) shall be denoted by the
same notation ‖ · ‖. The topology on L(X, Y ) and X∗ := L(X,C), the dual space of X, are
introduced in the usual way. The symbol I denotes the identity operator on X. In some
places, we need to have two different pivot spaces, thus we sometimes use the symbols
Y , Z, . . . , E in place of X.

Let I = R or I = [0,∞). The space of all Bochner integrable functions from I into X
is denoted by L1(I : X), equipped with the norm ‖f ‖1 =

∫
I ‖f (t)‖dt. For 1 ≤ p < ∞ and

(�,R,μ) a measure space, by Lp(� : X) we denote the space consisting of all strongly μ-
measurable functions f : � → X such that ‖f ‖p := (

∫
�

‖f (·)‖p dμ)1/p is finite. By Cb(I : X)
we denote the space consisting of all bounded continuous functions from I into X. The
symbol C0([0,∞) : X) denotes the closed subspace of Cb(I : X) consisting of functions van-
ishing as the module of the argument tends to infinity. By BUC(I : X) we denote the space
consisting of all bounded uniformly continuous functions from I to X. The sup-norm turns
these spaces into Banach’s. The notation c0 will be deserved to the space of all complex
sequences (an)n that converge to zero at infinity, that is, such that limn→∞ |an| = 0. Some-
times, we use the notation XI for the set of all applications from I into X. For an application
f ∈ XI , R(f ) denotes its range (or its image).

Our paper is organized in three big sections. In the first section, we study general al-
most periodic functions and asymptotically almost periodic ones. In the second section,
we deal with the Stepanov generalization for almost periodicity and asymptotic almost pe-
riodicity. Then, Weyl almost periodic functions and asymptotically almost periodic func-
tions are considered. These sections are mutually closely connected since we analyze some
comparison relations linking the different functional spaces defined in each paragraph.

2 Almost periodic functions and asymptotically almost periodic functions
As underlined above, the concept of almost periodicity was introduced by Danish math-
ematician Bohr around 1924-1926 and later generalized by many other authors (cf. [10,
15–20] for more details on the subject).

Let I = R or I = [0,∞), and let f : I → R be a continuous function. Given ε > 0, we call
τ > 0 an ε-period for f (·) if and only if, for all t ∈ I ,

∥
∥f (t + τ ) – f (t)

∥
∥ ≤ ε. (2.1)

The set consisting of all ε-periods for f (·) is denoted by V(f , ε).
It is said that the function f (·) is almost periodic, a.p. for short, if and only if, for each

ε > 0, the set V(f , ε) is relatively dense in I , which means that there exists a constant l > 0
such that any subinterval of I of length l meets V(f , ε).
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Since for each ε > 0 we have V(f , ε) ⊂ V(‖f ‖, ε), which is a consequence of the inequality
|‖x‖ – ‖y‖| ≤ ‖x – y‖, x, y ∈ X, it immediately follows from the definition that the almost
periodicity of function f : I → X implies the almost periodicity of scalar-valued function
‖f ‖ : I → R. Furthermore, it can be easily seen that the almost periodicity of function
f : I → X implies the almost periodicity of vector-valued functions f (·+a) and f (a·), where
a ∈ I .

We call f (·) weakly almost periodic, w.a.p. for short, if and only if for each x∗ ∈ X∗ the
function x∗(f (·)) is almost periodic (it is well known that any function f ∈ BUC(I : X) which
has a relatively compact range in X and which is w.a.p., needs to be a.p., cf. [21, Proposi-
tion 4.5.12]). A family of functions F ⊂ XI is said to be uniformly almost periodic if and
only if, for each ε > 0, there exists a constant l > 0 such that any subinterval of I of length
l contains a number τ > 0 such that (2.1) holds for all f ∈F .

The space consisting of all almost periodic functions from the interval I into X will be
denoted by AP(I : X). Equipped with the sup-norm, AP(I : X) becomes a Banach space.

For the sequel, we need some preliminaries from the pioneering paper [22] by Bart and
Goldberg. The translation semigroup (W (t))t≥0 on AP([0,∞) : X), given by [W (t)f ](s) :=
f (t + s), t ≥ 0, s ≥ 0, f ∈ AP([0,∞) : X), consists solely of surjective isometries W (t) (t ≥ 0)
and can be extended to a C0-group (W (t))t∈R of isometries on AP([0,∞) : X), where
W (–t) := W (t)–1 for t > 0. Furthermore, the mapping E : AP([0,∞) : X) → AP(R : X), de-
fined by

[Ef ](t) :=
[
W (t)f

]
(0), t ∈R, f ∈ AP

(
[0,∞) : X

)
,

is a linear surjective isometry and Ef is the unique continuous almost periodic extension
of a function f from AP([0,∞) : X) to the whole real line. We have that [E(Bf )] = B(Ef ) for
all B ∈ L(X) and f ∈ AP([0,∞) : X).

The most intriguing properties of almost periodic vector-valued functions are collected
in the following two theorems (in the case that I = R these assertions are well known in
the existing literature, in the case that I = [0,∞), then these assertions can be deduced by
using their validity in the case I = R and the properties of extension mapping E(·)).

Theorem 2.1 Let f ∈ AP(I : X). Then the following assertions hold:
(1) f ∈ BUC(I : X);
(2) if g ∈ AP(I : X), h ∈ AP(I : C), α,β ∈ C, then αf + βg and hf belong to AP(I : X);
(3) Bohr’s transform of f (·)

Pr(f ) := lim
t→∞

1
t

∫ t

0
e–irsf (s) ds

exists for all r ∈R and

Pr(f ) = lim
t→∞

1
t

∫ t+α

α

e–irsf (s) ds

for all α ∈ I and r ∈R;
(4) if Pr(f ) = 0 for all r ∈R, then f (t) = 0 for all t ∈ I ;
(5) σ (f ) := {r ∈R : Pr(f ) �= 0} is at most countable;



Lassoued et al. Advances in Difference Equations  (2018) 2018:47 Page 5 of 19

(6) if c0 � X , which means that X does not contain an isomorphic copy of c0, I = R and
g(t) =

∫ t
0 f (s) ds (t ∈R) is bounded, then g ∈ AP(R : X);

(7) if (gn)n∈N is a sequence in AP(I : X) and (gn)n∈N converges uniformly to g , then
g ∈ AP(I : X);

(8) if I = R and f ′ ∈ BUC(R : X), then f ′ ∈ AP(R : X);
(9) (spectral synthesis) f ∈ span{eiμx : μ ∈ σ (f ), x ∈ R(f )};
(10) R(f ) is relatively compact in X ;
(11) we have

‖f ‖∞ = sup
t≥t0

∥
∥f (t)

∥
∥, t0 ∈ I; (2.2)

(12) if I = R and g ∈ L1(R), then g � f ∈ AP(R : X), where (g � f )(t) =
∫ ∞

–∞ g(t – s)f (s) ds,
t ∈R.

Theorem 2.2 (Bochner’s criterion) Let f ∈ BUC(R : X). Then f (·) is almost periodic if and
only if, for any sequence (bn)n of numbers from R, there exists a subsequence (an)n of (bn)n

such that (f (· + an))n converges in BUC(R : X).

Remark 2.3 It is worth noting that assertion (8) in Theorem 2.1 holds in the case that
I = [0,∞). More precisely, letting f ∈ AP([0,∞) : X) and f ′ ∈ BUC([0,∞) : X), then f ′ ∈
AP([0,∞) : X). To see this, it suffices to apply assertion (7) from the same theorem by
noticing that the sequence defined by fn(t) := n[f (t + 1/n) – f (t)], t ≥ 0 of almost periodic
functions converges uniformly to f (t) for t ≥ 0, because

∥
∥fn(t) – f (t)

∥
∥ =

∥
∥
∥
∥n

∫ t+1/n

t

[
f ′(s) – f ′(t)

]
ds

∥
∥
∥
∥

≤ n
∫ t+1/n

t

∥
∥f ′(s) – f ′(t)

∥
∥ds, t ≥ 0

and f ′(·) is bounded uniformly continuous on [0,∞).

Before proceeding any further, we would like to mention that the necessary and sufficient
condition for X to contain c0 is given in [21, Theorem 4.6.14] : c0 ⊆ X if and only if there
exists a divergent series

∑∞
n=1 xn in X which is unconditionally bounded, i.e., there exists

a constant M > 0 such that ‖∑m
j=1 xnj‖ ≤ M, whenever nj ∈ N (j = 1, 2, . . . , m) such that

n1 < n2 < · · · < nm. The importance of condition c0 � X has been recognized already by
Bohr and later employed by many others (see, e.g., Kadet’s theorem [21, Theorem 4.6.11]).

By either AP(	 : X) or AP	(I : X), where 	 is a nonempty subset of I , we denote the
vector subspace of AP(I : X) consisting of all functions f ∈ AP(I : X) for which the inclusion
σ (f ) ⊆ 	 holds good. It can be easily seen that AP(	 : X) is a closed subspace of AP(I : X)
and therefore Banach space itself.

The relative compactness of subsets in AP(I : X) has been examined by Corduneanu
[23] (see also [17, Theorem 3.11]). A function f ∈ BUC(I : X) is said to be weakly almost
periodic in the sense of Eberlein if and only if {f (· + s) : s ∈ I} is relatively weakly compact
in X. This important class of functions will not be considered in the sequel (for further
details concerning this intriguing topic and connections between almost periodicity and
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Carleman spectrum of functions, one may refer to the monograph [21] and the references
cited therein).

2.1 Asymptotically almost periodic functions
The notion of an asymptotically almost periodic function was introduced by Fréchet in
1941 (for more details concerning the vector-valued asymptotically almost periodic func-
tions and asymptotically almost periodic differential equations, see, e.g., [17, 18, 24–30]).

A function f ∈ Cb([0,∞) : X) is said to be asymptotically almost periodic if and only if,
for every ε > 0, we can find numbers l > 0 and M > 0 such that every subinterval of [0,∞)
of length l contains, at least, one number τ such that ‖f (t + τ ) – f (t)‖ ≤ ε for all t ≥ M. The
space consisting of all asymptotically almost periodic functions from [0,∞) into X will be
denoted by AAP([0,∞) : X).

It is well known that (see Ruess, Summers, and Vũ Quôc Phóng [27, 31–33]), for any
function f ∈ C([0,∞) : X), the following statements are equivalent:

(i) f ∈ AAP([0,∞) : X);
(ii) there exist uniquely determined functions g ∈ AP([0,∞) : X) and


 ∈ C0([0,∞) : X) such that f = g + 
;
(iii) the set H(f ) := {f (· + s) : s > 0} is relatively compact in Cb([0,∞) : X), which means

that for any sequence (bn)n of nonnegative real numbers there exists a subsequence
(an)n of (bn)n such that (f (· + an))n converges in Cb([0,∞) : X).

The functions g and 
 from (ii) are called the principal and corrective terms of the
function f , respectively. Then we know that R(g) ⊆ R(f ) (see, e.g., [17, Lemma 3.43]).

By C0([0,∞)×Y : X), we denote the space of all continuous functions h : [0,∞)×Y → X
such that limt→0 h(t, y) = 0 uniformly for y in any compact subset of Y . A continuous func-
tion f : I × Y → X is called uniformly continuous on bounded sets, uniformly for t ∈ I if
and only if, for every ε > 0 and every bounded subset K of Y , there exists a number δε,K > 0
such that ‖f (t, x) – f (t, y)‖ ≤ ε for all t ∈ I and all x, y ∈ K satisfying that ‖x – y‖ ≤ δε,K . If
f : I × Y → X, then we define f̂ : I × Y → Lp([0, 1] : X) by ˆf (t, y) := f (t + ·, y), t ≥ 0, y ∈ Y .
For the purpose of research of (asymptotically) almost periodic properties of solutions to
semilinear Cauchy inclusions, we need to remind ourselves of the following well-known
definitions and results (see, e.g., Zhang [34], Long and Ding [35] and Proposition 2.6 be-
low).

Definition 2.4 Let 1 ≤ p < ∞.
(1) A function f : I × Y → X is called almost periodic if and only if f (·, ·) is bounded,

continuous as well as, for every ε > 0 and every compact K ⊂ Y , there exists an
l(ε, K) > 0 such that every subinterval J ⊂ I of length l(ε, K) contains a number τ

with the property that ‖f (t + τ , y) – f (t, y)‖ ≤ ε for all t ∈ I , y ∈ K . The collection of
such functions will be denoted by AP(I × Y : X).

(2) A function f : [0,∞) × Y → X is said to be asymptotically almost periodic if and
only if it is bounded continuous and admits a decomposition f = g + q, where
g ∈ AP([0,∞) × Y : X) and q ∈ C0([0,∞) × Y : X). Denote by AAP([0,∞) × Y : X)
the vector space consisting of all such functions.

The following composition principles are well known in the existing literature (see, e.g.,
[34]).
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Theorem 2.5
(1) Let f ∈ AP(I × Y : X) and h ∈ AP(I : Y ). Then the mapping t �→ f (t, h(t)), t ∈ I ,

belongs to the space AP(I : X).
(2) Let f ∈ AAP([0,∞) × Y : X) and h ∈ AAP([0,∞) : Y ). Then the mapping

t �→ f (t, h(t)), t ≥ 0, belongs to the space AAP([0,∞) : X).

In Definition 2.4(2), a great number of authors assume a priori that g ∈ AP(R× Y : X).
This is slightly redundant on account of the following proposition.

Proposition 2.6 Let f : [0,∞) × Y → X and let S ⊆ Y . Suppose that, for every ε > 0, there
exists an l(ε, S) > 0 such that every subinterval J ⊆ [0,∞) of length l(ε, S) contains a number
τ with the property that ‖f (t +τ , y) – f (t, y)‖ ≤ ε for all t ≥ 0, y ∈ S (this, in particular, holds
provided that f ∈ AP(I × Y : X)).

Denote by F(t, y) the unique almost periodic extension of function f (t, y) from the interval
[0,∞) to the whole real line for fixed y ∈ S.

Then, for every ε > 0, with the same l(ε, S) > 0 chosen as above, we have that every subin-
terval J ⊆ R of length l(ε, S) contains a number τ with the property that ‖F(t + τ , y) –
F(t, y)‖ ≤ ε for all t ∈R, y ∈ S.

Proof Let ε > 0 be given in advance, l(ε, S) > 0 be as above, and let J = [a, b] ⊆ R. The
assertion is clear provided that a > 0. Suppose now that a < 0. We choose a number τ0 > 0
arbitrarily. Then there exists a τ ′ ∈ J = [τ0, τ0 + b – a] ⊆ [0,∞) such that ‖f (t + τ0, y) –
f (t, y)‖ ≤ ε for all t ≥ 0, y ∈ S.

Since τ := τ ′ – τ0 – |a| ∈ J , it suffices to show that ‖F(t + τ , y) – F(t, y)‖ ≤ ε for all t ∈ R,
y ∈ S.

To this end, fix a number t ∈ R and an element y ∈ S. Since the mapping s �→ F(s + τ ′ –
τ0 – |a|, y) – F(s – τ0 – |a|, y), s ∈R is almost periodic, equation (2.2) shows that

∥
∥F

(
s + τ ′ – τ0 – |a|, y

)
– F

(
s – τ0 – |a|, y

)∥
∥

≤ ∥
∥F

(
s + τ ′ – τ0 – |a|, y

)
– F

(
s – τ0 – |a|, y

)∥∥∞

= sup
s≥τ0+|a|

∥
∥F

(
s + τ ′ – τ0 – |a|, y

)
– F

(
s – τ0 – |a|, y

)∥
∥

= sup
s≥τ0+|a|

∥
∥f

(
s + τ ′ – τ0 – |a|, y

)
– f

(
s – τ0 – |a|, y

)∥
∥

= sup
s≥0

∥
∥f

(
s + τ ′, y

)
– f (s, y)

∥
∥

≤ ε.

This ends the proof of the proposition. �

3 Stepanov almost periodic functions and asymptotically Stepanov almost
periodic functions

Let 1 ≤ p < ∞, l > 0, and f , g ∈ Lp
loc(I : X), where I = R or I = [0,∞).

We define the Stepanov ‘metric’ by

Dp
Sl

[
f (·), g(·)] = sup

x∈I

[
1
l

∫ x+l

x

∥
∥f (t) – g(t)

∥
∥p dt

]1/p

. (3.1)
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Then we know that, for every two numbers l1, l2 > 0, there exist two positive real con-
stants k1, k2 > 0 independent of f , g such that

k1Dp
Sl1

[
f (·), g(·)] ≤ Dp

Sl2

[
f (·), g(·)] ≤ k2Dp

Sl1

[
f (·), g(·)], (3.2)

as well as that (see, e.g., [6, pp. 72-73]) in the scalar-valued case there exists

Dp
W

[
f (·), g(·)] = lim

l→∞
Dp

Sl

[
f (·), g(·)] (3.3)

in [0,∞).
The distance appearing in (3.3) is called the Weyl distance of f (·) and g(·).
The Stepanov and Weyl ‘norms’ of f (·) are now respectively defined by

‖f ‖Sp
l

= Dp
Sl

[
f (·), 0

]

and

‖f ‖W p = Dp
W

[
f (·), 0

]
.

Taking into account (3.2), in the sequel of this section it will be appropriate to assume
that l1 = l2 = 1. We say that a function f ∈ Lp

loc(I : X) is Stepanov p-bounded, Sp-bounded
shortly, if and only if

‖f ‖Sp = sup
x∈I

[∫ x+1

x

∥
∥f (t)

∥
∥p dt

]1/p

< ∞.

The space Lp
S(I : X) consisting of all Sp-bounded functions becomes a Banach space when

equipped with the above norm. A function f ∈ Lp
S(I : X) is said to be Stepanov p-almost

periodic, Sp-almost periodic shortly, if and only if the function f̂ : I → Lp([0, 1] : X) defined
by

f̂ (t)(s) = f (t + s), t ∈ I, s ∈ [0, 1]

is almost periodic (cf. [4] for more details).

3.1 Asymptotically Stepanov almost periodic functions
It is said that f ∈ Lp

S([0,∞) : X) is asymptotically Stepanov p-almost periodic, asymptoti-
cally Sp-almost periodic shortly, if and only if f̂ : [0,∞) → Lp([0, 1] : X) is asymptotically
almost periodic.

It is a well-known fact that if f (·) is an almost periodic (respectively, a.p.) function, then
f (·) is also Sp-almost periodic (respectively, Sp-a.p.) for 1 ≤ p < ∞. The converse statement
is false, however, as the following example from the book of Levitan [5] shows.

Example 3.1 Assume that α,β ∈ R and αβ–1 is a well-defined irrational number. Then
the functions

f (t) = sin
1

2 + cos(αt) + cos(βt)
, t ∈ R
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and

g(t) = cos
1

2 + cos(αt) + cos(βt)
, t ∈R

are Stepanov p-almost periodic but not almost periodic (1 ≤ p < ∞).

Denote by APSp(I : X) the space consisting of all Sp-almost periodic functions f : I → X.
For any Sp-almost periodic function f (·) and for any real number δ ∈ (0, 1), we define the
function

fδ(t) =
1
δ

∫ t+δ

t
f (s) ds, t ∈ I.

Arguing as in the scalar-valued case [10], we can prove that the function fδ(·) is almost
periodic (0 < δ < 1) as well as that ‖fδ – f ‖Sp converges to 0 as δ → 0+.

Hereafter, we will also use the Bochner theorem, which asserts that any BUC function
that is Stepanov p-almost periodic needs to be almost periodic (1 ≤ p < ∞).

The notion of a scalar Sp-almost periodic function, slightly different from the notion of
usually considered weakly Sp-almost periodic function, is given as follows: a function f ∈
Lp

S(I : X) is said to be scalarly Stepanov p-almost periodic if and only if, for each x∗ ∈ X∗, we
have that the function x∗(f ) : [0,∞) → C defined by x∗(f )(t) := x∗(f (t)), t ≥ 0, is Stepanov
p-almost periodic.

Definition 3.2 A function f : I × Y → X is called Stepanov p-almost periodic, Sp-almost
periodic shortly, if and only if f̂ : I × Y → Lp([0, 1] : X) is almost periodic.

By [34, Theorem 2.6], we have that a bounded continuous function f : [0,∞) × Y → X
is asymptotically almost periodic if and only if, for every ε > 0 and every compact K ⊆ Y ,
there exist l(ε, K) > 0 and M(ε, K) > 0 such that every subinterval J ⊆ [0,∞) of length
l(ε, K) contains a number τ with the property that ‖f (t + τ , y) – f (t, y)‖ ≤ ε for all t >
M(ε, K), y ∈ K .

We introduce the notion of an asymptotically Stepanov p-almost periodic function f (·, ·)
as follows.

Definition 3.3 Let 1 ≤ p < ∞. A function f : [0,∞) × Y → X is said to be asymptotically
Sp-almost periodic if and only if f̂ : [0,∞) × Y → Lp([0, 1] : X) is asymptotically almost
periodic. The collection of such functions will be denoted by AAPSp([0,∞) × Y : X).

It is very elementary to prove that any asymptotically almost periodic function is also
asymptotically Stepanov p-almost periodic (1 ≤ p < ∞).

We need the assertion of [36, Lemma 1].

Lemma 3.4 Suppose that f : [0,∞) → X is an asymptotically Sp-almost periodic function.
Then there are two locally p-integrable functions g : R → X and q : [0,∞) → X satisfying
the following conditions:

(1) g is Sp-almost periodic;
(2) q̂ belongs to the class C0([0,∞) : LP([0, 1] : X));
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(3) f (t) = g(t) + q(t) for all t ≥ 0.
Moreover, there exists an increasing sequence (tn)n∈N of positive reals such that limn→∞ tn =
∞ and g(t) = limn→∞ f (t + tn) a.e. t ≥ 0.

Now we state the following two-variable analogue of Lemma 3.4.

Lemma 3.5 Suppose that f : [0,∞)×Y → X is an asymptotically Sp-almost periodic func-
tion. Then there are two functions g : R × Y → X and q : [0,∞) × Y → X satisfying that,
for each y ∈ Y , the functions g(·, y) and q(·, y) are locally p-integrable as well as that the
following hold:

(1) ĝ : R× Y → Lp([0, 1] : X) is almost periodic;
(2) q̂ belongs to the class C0([0,∞) × Y : LP([0, 1] : X));
(3) f (t, y) = g(t, y) + q(t, y) for all t ≥ 0 and y ∈ Y .

Moreover, for every compact set K ⊆ Y , there exists an increasing sequence (tn)n∈N of pos-
itive reals such that limn→∞ tn = ∞ and g(t, y) = limn→∞ f (t + tn, y) for all y ∈ K and a.e.
t ≥ 0.

Proof By the foregoing, we have that f̂ : [0,∞) × Y → X is bounded continuous and
admits a decomposition f̂ = G + Q, where G ∈ AP([0,∞) × Y : Lp([0, 1] : X)) and Q ∈
C0([0,∞) × Y : Lp([0, 1] : X)). Moreover, the proof of [34, Theorem 2.6] shows that, for
every compact set K ⊆ Y , there exists an increasing sequence (tn)n∈N of positive reals such
that limn→∞ tn = ∞ and G(t, y) = limn→∞ f̂ (t + tn, y) for all y ∈ Y and t ≥ 0. The remaining
part of proof follows by applying Lemma 3.4 to the function f̂ (·, y) for a fixed element y ∈ Y
and the uniqueness of decomposition g(·) + q(·) in this lemma. �

In the case that the value of p is irrelevant, we simply say that the function under our
consideration is (asymptotically, scalarly) Stepanov almost periodic. Hereafter, we will use
the following lemma (see, e.g., [6, p. 70] for the scalar-valued case).

Lemma 3.6 Let –∞ < a < b < ∞, 1 ≤ p′ < p′′ < ∞, and f ∈ Lp′′ ([a, b] : X). Then f ∈
Lp′ ([a, b] : X) and

[
1

b – a

∫ b

a

∥
∥f (s)

∥
∥p′

ds
]1/p′

≤
[

1
b – a

∫ b

a

∥
∥f (s)

∥
∥p′′

ds
]1/p′′

.

4 Weyl almost periodic functions and asymptotically Weyl almost periodic
functions

Unless specified otherwise, in this section it will be always assumed that I = R or I = [0,∞).
The pivot Banach space will be denoted by X. The notion of an (equi-)Weyl almost peri-
odic function is given as follows (cf. also (3.1)).

Definition 4.1 Let 1 ≤ p < ∞ and f ∈ Lp
loc(I : X).

(1) We say that the function f (·) is equi-Weyl-p-almost periodic, f ∈ e-W p
ap(I : X) for

short, if and only if, for each ε > 0, we can find two real numbers l > 0 and L > 0 such
that any interval I ′ ⊆ I of length L contains a point τ ∈ I ′ such that

sup
x∈I

1
l

[∫ x+l

x

∥
∥f (t + τ ) – f (t)

∥
∥p dt

]1/p

≤ ε,
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that is,

Dp
Sl

[
f (· + τ ), f (·)] ≤ ε.

(2) We say that the function f (·) is Weyl-p-almost periodic, f ∈ W p
ap(I : X) for short, if

and only if, for each ε > 0, we can find a real number L > 0 such that any interval
I ′ ⊆ I of length L contains a point τ ∈ I ′ such that

lim
l→∞

sup
x∈I

1
l

[∫ x+l

x

∥
∥f (t + τ ) – f (t)

∥
∥p dt

]1/p

≤ ε,

that is,

lim
l→∞

Dp
Sl

[
f (· + τ ), f (·)] ≤ ε.

Let us recall that

APSp(I : X) ⊆ e-W p
ap(I : X) ⊆ W p

ap(I : X)

in the set theoretical sense and that any of these two inclusions can be strict (see [37]).
For instance, the scalar-valued function f : R → C defined by f (x) := χ(0,1/2)(x), x ∈ R is

not Stepanov 1-almost periodic, but it is equi-Weyl-almost-1-periodic (see, e.g., [37, Ex-
ample 4.27]); and the scalar-valued function f : R → C defined by f (x) := χ(0,∞)(x), x ∈ R

is not equi-Weyl-almost-1-periodic, but it is Weyl-almost-1-periodic (see, e.g., [38, Ex-
ample 1]). Here, χ (·) denotes the characteristic function. We also want to point out that
the space of scalar-valued functions W p

ap(R : R) seems to be defined and analyzed for the
first time by Kovanko [39] in 1944 (according to the information given in the survey paper
[37]).

It is well known that for any function f ∈ Lp
loc(I : X) its Stepanov boundedness is equiv-

alent to its Weyl boundedness, i.e.,

‖f ‖Sp < ∞ ⇐⇒ ‖f ‖W p < ∞.

In the sequel, we use abbreviations e-Wap(I : X) and Wap(I : X) to denote the spaces
e-W 1

ap(I : X) and W 1
ap(I : X), respectively (the case p = 1 will be most important in our

further analysis). Similarly, we say that a function is (equi)-Weyl-almost periodic if and
only if it is (equi)-Weyl-1-almost periodic.

It is very important to state the following characteristic of the space e-W p
ap(I : X), see,

e.g., [37] for the scalar-valued case.

Theorem 4.2 Let 1 ≤ p < ∞ and f ∈ Lp
loc(I : X). Then f ∈ e-W p

ap(I : X) if and only if, for
every ε > 0, there exists a trigonometric X-valued polynomial Pε(·) such that

Dp
W

[
Pε(·), f (·)] ≤ ε.

A Bochner type theorem holds for Weyl almost periodic functions; see [5, 40].
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Theorem 4.3 Let 1 ≤ p < ∞ and let f ∈ W p
ap(I : X) be uniformly continuous. Then f ∈

AP(I : X).

It is well known that the functions belonging to the space e-W p
ap(I : X) need to be Weyl

uniformly continuous in the following sense (see [6, p. 84]).

Theorem 4.4 Let 1 ≤ p < ∞ and f ∈ W p
ap(I : X). Then, for every ε > 0, there exist two finite

numbers L > 0 and δ0 > 0 such that

Dp
SL

[
f (· + δ), f (·)] ≤ ε

for |δ| ≤ δ0.

For some other notions of Weyl-almost periodicity, like equi-W p-normality and W p-
normality, we refer the reader to [37, Section 4].

4.1 Asymptotically Weyl almost periodic functions
For the beginning, we need to introduce the following notion. If q ∈ Lp

loc([0,∞) : X), then
we define the function q(·, ·) : [0,∞) × [0,∞) → X by

q(t, s) := q(t + s), t ≥ 0, s ≥ 0.

Definition 4.5 It is said that q ∈ Lp
loc([0,∞) : X) is Weyl-p-vanishing if and only if

lim
t→∞

∥
∥q(t, ·)∥∥W p = 0, i.e., lim

t→∞ lim
l→∞

sup
x≥0

[
1
l

∫ x+l

x

∥
∥q(t + s)

∥
∥p ds

]1/p

= 0. (4.1)

It is clear that, for any function q ∈ Lp
loc([0,∞) : X), we can replace the limits in (4.1). We

say that q ∈ Lp
loc([0,∞) : X) is equi-Weyl-p-vanishing if and only if

lim
l→∞

lim
t→∞ sup

x≥0

[
1
l

∫ x+l

x

∥
∥q(t + s)

∥
∥p ds

]1/p

= 0. (4.2)

Since the second limit in (4.1) always exists in [0,∞) (on account of (3.3)) and the sec-
ond limit in (4.2) always exists in [0,∞) (taking into account the fact that the mapping
t �→ supx≥0[

∫ x+l
x ‖q(t + s)‖p ds/l]1/p, t ≥ 0 is monotonically decreasing), condition (4.1) is

equivalent to

∀ε > 0, ∃t0(ε) > 0, ∀t ≥ t0(ε), ∃lt > 0, ∀l > lt :

sup
x≥0

[
1
l

∫ x+l

x

∥
∥q(t + s)

∥
∥p ds

]1/p

≤ ε, (4.3)

while condition (4.2) is equivalent to

∀ε > 0, ∃l0(ε) > 0, ∀l ≥ l0(ε), ∃tl > 0, ∀t > tl :

sup
x≥0

[
1
l

∫ x+l

x

∥
∥q(t + s)

∥
∥p ds

]1/p

≤ ε. (4.4)
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Now, assume that q ∈ Lp([0,∞) : X). Then, for each ε > 0, there exists a t0(ε) > 0 such
that

∫ ∞
t ‖q(s)‖p ds ≤ εp, t ≥ t0(ε). In particular,

∫ t+1
t ‖q(s)‖p ds ≤ εp, t ≥ t0(ε), and the func-

tion q̂ : [0,∞) → Lp([0, 1] : X) belongs to the class C0([0,∞) : Lp([0, 1] : X)). The converse
statement is not true, however, since the scalar-valued function q(t) = t–1/(2p), t > 0 satisfies
that q̂ ∈ C0([0,∞) : Lp([0, 1] : X)) and q /∈ Lp([0,∞) : X).

If q ∈ Lp
loc([0,∞) : X) and q̂ ∈ C0([0,∞) : Lp([0, 1] : X)), then the computation

sup
x≥0

[
1
l

∫ x+l

x

∥
∥q(t + s)

∥
∥p ds

]1/p

≤
[

1
l

(∫ x+t+1

x+t
+ · · · +

∫ x+t+
l�

x+t+
l�–1

)∥
∥q(s)

∥
∥p ds

]1/p

≤
(

εp
l�
l

)1/p

≤ 2ε,

holding for any t ≥ 0, shows that the function q(·) is equi-Weyl-p-vanishing, with l0(ε) = 1
and tl = t0(ε) chosen so that

∫ t+1
t ‖q(s)‖p ds ≤ εp, t ≥ t0(ε) (l > l0(ε)).

As the following simple counter-example shows, the converse statement does not hold
in general.

Example 4.6 Define

q(t) :=
∞∑

n=0

χ[n2,n2+1](t), t ≥ 0.

Since
∫ n2+1

n2 ‖q(s)‖p ds = 1, n ∈ N, it is clear that q̂ /∈ C0([0,∞) : Lp([0, 1] : X)). On the other
hand, the interval [t, t + l] contains at most

√
t + l –

√
t + 2 squares of nonnegative integers,

so that

1
l

∫ x+l

x

∥
∥q(t + s)

∥
∥p ds ≤ sup

x≥t

1
l

∫ t+l

t

∥
∥q(s)

∥
∥p ds

≤ 1
l
(√

t + l –
√

t + 2
) ≤ 1

l

(

2 +
l√

t +
√

l

)

, x ≥ 0, t ≥ 0,

so that (4.4) holds with l0(ε) > 0 sufficiently large and tl = l (l > l0(ε)).

If q ∈ Lp
loc([0,∞) : X) and q(·) is equi-Weyl-p-vanishing, then q(·) is Weyl-p-vanishing.

To see this, assume that (4.4) holds with l0(ε) > 0 and put after that t0(ε) := tl0 (ε). Therefore,

sup
x≥0

[
1

l0(ε)

∫ x+l0(ε)

x

∥
∥q(t + s)

∥
∥p ds

]1/p

≤ ε, t ≥ tl0 (ε). (4.5)

For any fixed t > t0(ε), we set lt := l0(ε). Then it suffices to show that, for any l > lt , we
have

sup
x≥0

[
1
l

∫ x+l

x

∥
∥q(t + s)

∥
∥p ds

]1/p

≤ 2ε.
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This follows from (4.5) and a simple analysis involving the second inequality in part (i) of
[38, Proposition 1]:

sup
x≥0

[
1
l

∫ x+l

x

∥
∥q(t + s)

∥
∥p ds

]1/p

≤ 21/p sup
x≥0

[
1

l0(ε)

∫ x+l0(ε)

x

∥
∥q(t + s)

∥
∥p ds

]1/p

, l > lt = l0(ε).

Again, the converse statement does not hold in general and a Weyl-p-vanishing function
need not be equi-Weyl-p-vanishing.

Example 4.7 Define

q(t) :=
∞∑

n=0

√
nχ[n2,n2+1](t), t ≥ 0.

Then it is clear that

1
l

∫ x+l

x

∥
∥q(t + s)

∥
∥p ds ≤ sup

x≥t

1
l

∫ t+l

t

∥
∥q(s)

∥
∥p ds

≤
√

t + l
l2 , x ≥ 0, t ≥ 0,

so that (4.3) holds with t0(ε) > 0 chosen so that
√

1/(t + l) ≤ εp and lt = t + l. Hence, q(·) is
Weyl-p-vanishing. On the other hand, q(·) cannot be equi-Weyl-p-vanishing because, for
each number l > 1, there does not exist a finite limit

lim
l→∞

[
1
l

∫ x+l

x

∥
∥q(t + s)

∥
∥p ds

]1/p

.

To see this, it suffices to observe that, for each t > 0 and n ∈N such that n ≥ t2, we have

sup
x≥0

1
l

∫ x+l

x

∥
∥q(t + s)

∥
∥p ds ≥

√
n

l
≥ t

l
.

Before proceeding further, we would like to note that an equi-Weyl-p-vanishing function
q(·) need not be bounded as t → ∞.

Example 4.8 Define

q(t) :=
∞∑

n=0

n1/(4p)χ[n4,n4+1](t), t ≥ 0.

Then, similarly as in Example 4.6, we can prove that

1
l

∫ x+l

x

∥
∥q(t + s)

∥
∥p ds ≤ sup

x≥t

1
l

∫ t+l

t

∥
∥q(s)

∥
∥p ds

≤ 1
l

(

2 +
l√

t +
√

l

)

, x ≥ 0, t ≥ 0,

which yields the required conclusions.
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Denote by W p
0 ([0,∞) : X) and e-W p

0 ([0,∞) : X) the sets consisting of all Weyl-p-
vanishing functions and equi-Weyl-p-vanishing functions, respectively. The symbol
Sp

0([0,∞) : X) will be used to denote the set of all functions q ∈ Lp
loc([0,∞) : X) such that

q̂ ∈ C0([0,∞) : Lp([0, 1] : X)).
By our previous considerations, Examples 4.6 and 4.7, we have the following result.

Theorem 4.9 The following inclusions hold:

Lp([0,∞) : X
) ⊆ Sp

0
(
[0,∞) : X

) ⊆ e-W p
0
(
[0,∞) : X

) ⊆ W p
0
(
[0,∞) : X

)

and any of them can be strict.

Now, we introduce the following function spaces:

AAPWp([0,∞) : X
)

:= AP
(
[0,∞) : X

)
+ W p

0
(
[0,∞) : X

)
,

e- AAPWp([0,∞) : X
)

:= AP
(
[0,∞) : X

)
+ e-W p

0
(
[0,∞) : X

)
,

AAPSWp([0,∞) : X
)

:= APSp([0,∞) : X
)

+ W p
0
(
[0,∞) : X

)
,

e- AAPSWp([0,∞) : X
)

:= APSp([0,∞) : X
)

+ e-W p
0
(
[0,∞) : X

)
,

e-W p
aap

(
[0,∞) : X

)
:= e-W p

ap
(
[0,∞) : X

)
+ W p

0
(
[0,∞) : X

)
,

ee-W p
aap

(
[0,∞) : X

)
:= e-W p

ap
(
[0,∞) : X

)
+ e-W p

0
(
[0,∞) : X

)
,

W p
aap

(
[0,∞) : X

)
:= W p

ap
(
[0,∞) : X

)
+ W p

0
(
[0,∞) : X

)
,

e-W p
aap

(
[0,∞) : X

)
:= W p

ap
(
[0,∞) : X

)
+ e-W p

0
(
[0,∞) : X

)
.

Then it is clear that

AAPWp([0,∞) : X
) ⊆ AAPSWp([0,∞) : X

)

⊆ e-W p
aap

(
[0,∞) : X

) ⊆ W p
aap

(
[0,∞) : X

)

and

e- AAPWp([0,∞) : X
) ⊆ e- AAPSWp([0,∞) : X

)

⊆ ee-W p
aap

(
[0,∞) : X

) ⊆ e-W p
aap

(
[0,∞) : X

)
,

and that any of these inclusions can be strict.
By the analysis contained in [37, Example 4.27], the function f : [0,∞) → C defined by

f (t) := χ(0,1/2)(t), t > 0 is equi-Weyl-almost periodic. Since this function is also in class
e-W p

0 ([0,∞) : X), we have that the sums defining e-W p
aap([0,∞) : X), ee-W p

aap([0,∞) :
X), W p

aap([0,∞) : X) and e-W p
aap([0,∞) : X) are not direct. For the first four spaces

AAPWp([0,∞) : X), e- AAPWp([0,∞) : X), AAPSWp([0,∞) : X) and e- AAPSWp([0,∞) :
X), the sums in their definitions are direct, which follow from the following proposition.

Proposition 4.10 Let 1 ≤ p < ∞. Then

W p
0
(
[0,∞) : X

) ∩ APSp([0,∞) : X
)

= {0}.
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Proof Assume q ∈ W p
0 ([0,∞) : X)∩APSp([0,∞) : X). In order to prove that q(t) = 0 for a.e.

t ≥ 0, it suffices to show that q̂(t) = 0, t ≥ 0, in Lp([0, 1] : X). Since q̂(·) is almost periodic,
we only need to prove that any Bohr-Fourier coefficient of q̂(·) is equal to zero, i.e., that

lim
t→∞

(∫ 1

0

∥
∥
∥
∥

1
t

∫ t

0
e–irsq(s + v) ds

∥
∥
∥
∥

p

dv
)1/p

= 0, r ∈R. (4.6)

To see that (4.6) holds good, observe first that

(∫ 1

0

∥
∥
∥
∥

1
t

∫ t

0
e–irsq(s + v) ds

∥
∥
∥
∥

p

dv
)1/p

≤ 1
t

(∫ 1

0

[∫ t

0

∥
∥q(s + v)

∥
∥ds

]p

dv
)1/p

,

which can be further majorized by using Lemma 3.6:

≤ 1
t

(∫ 1

0
tp–1

∫ t

0

∥
∥q(s + v)

∥
∥p ds dv

)1/p

= t–1/p
(∫ 1

0

∫ t

0

∥
∥q(s + v)

∥
∥p ds dv

)1/p

.

Hence, we need to prove that

lim
t→∞

1
t

∫ 1

0

∫ t

0

∥
∥q(s + v)

∥
∥p ds dv = lim

t→∞
1
t

∫ s+t

s

∫ t

0

∥
∥q(r)

∥
∥p dr dv = 0. (4.7)

Let ε > 0 be given in advance. Since q ∈ W p
0 ([0,∞) : X), we know that there exist two

finite numbers t0(ε) > 0 and l0(ε) > 0 such that, for every l > l0(ε),

sup
x≥0

[
1
l

∫ x+l

x

∥
∥q

(
l0(ε) + s

)∥
∥p ds

]1/p

≤ ε. (4.8)

Let T0(ε) > 0 be such that, for each t > T0(ε),

t ≥ t0(ε)2 and t –
√

t ≥ l0(ε). (4.9)

The validity of (4.9) clearly implies by (4.8) that

1
t –

√
t

∫ s+t

s+
√

t

∥
∥q(s)

∥
∥p ds ≤ ε, s ∈ [0, 1]. (4.10)

Since

1
t

∫ s+t

s

∥
∥q(r)

∥
∥p dr ≤ 1

t

(∫ s+1

s
+

∫ s+2

s+1
+ · · ·

∫ s+
√t�

s+
√t�–1

)∥
∥q(r)

∥
∥p dr

+
1
t

(∫ s+
√t�+1

s+
√t�
+ · · · +

∫ s+t

s+�t�

)∥
∥q(r)

∥
∥p dr

≤ 
√t�
t

‖q‖Sp +
t – �t�

t
ε,

by Sp-boundedness of q(·) and (4.10), equation (4.7) holds true. The proof of the proposi-
tion is thereby complete. �
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It is an easy task to prove that W p
0 ([0,∞) : X) and e-W p

0 ([0,∞) : X) are vector spaces,
so that the introduced eight function spaces have a linear vector structure. Disregarding
the term ([0,∞) : X) and taking into consideration the previously defined spaces AAP

and AAPSp, we have the following inclusion diagram of asymptotically almost periodic
function spaces (see Theorem 4.9):

AAP ⊆ e- AAPWp ⊆ AAPWp

⊆ ⊆ ⊆
AAPSp ⊆ e- AAPSWp ⊆ AAPSWp

⊆ ⊆
ee-W p

aap ⊆ e-W p
aap

⊆ ⊆

e-W p
aap ⊆ W p

aap

By the foregoing, any inclusion of this diagram can be strict. Furthermore, for any two
function spaces A and B belonging this diagram and satisfying additionally that there is
no transitive sequence of inclusions connecting either A and B or B and A, we have that
A \ B �= ∅ and B \ A �= ∅ (the diagram can be expanded by constructing the sums of spaces
of (equi-)Weyl almost periodic functions with Sp

0([0,∞) : X), which will be not examined
here).

We refer the reader to the paper [41] by Diagana et al. for more details about the notion
of S(n)

p -almost periodicity (the notion of N-almost periodicity is very well explored in the
monograph [15] by Levitan and Zhikov. Stepanov cases have not been introduced so far, to
the best knowledge of the authors). For an excellent survey of results about various classes
of (Stepanov) almost periodic functions and (Stepanov) asymptotically almost periodic
functions, we refer the reader to the review paper [37] by Andres et al. (cf. also Andres et
al. [38]), already cited multiple times before.

We round off our paper by introducing the following important definition.

Definition 4.11 Let I = R or I = [0,∞), (R(t))t∈I ⊆ L(X) be a strongly continuous operator
family, and let

⊕
denote any of (asymptotically) almost periodic properties considered

above. Then we say that (R(t))t∈I is
⊕

(asymptotically) almost periodic if and only if the
mapping t �→ R(t)x, t ∈ I is

⊕
(asymptotically) almost periodic for all x ∈ X. It is said that

(R(t))t∈I is uniformly almost periodic if and only if the family {R(·)x : ‖x‖ ≤ 1} is uniformly
almost periodic.
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