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Abstract
In this paper, we consider a time-dependent diffusion problem with two-sided
Riemann-Liouville fractional derivatives. By introducing a fractional-order flux as
auxiliary variable, we establish the saddle-point variational formulation, based on
which we employ a locally conservative mixed finite element method to approximate
the unknown function, its derivative and the fractional flux in space and use the
backward Euler scheme to discrete the time derivative, and thus propose a fully
discrete expanded mixed finite element procedure. We prove the well-posedness and
the optimal order error estimates of the proposed procedure for a sufficiently smooth
solution. Numerical experiments are presented to confirm our theoretical findings.
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1 Introduction
We consider the following time-dependent fractional diffusion equation of order 2 – β :

(a)
∂u
∂t

– D
{

K
(
θ0Iβ

x + (1 – θ )xIβ
1
)
Du

}
(x, t) = f (x, t), x ∈ �, t ∈ (0, T],

(b) u(x, 0) = u0, x ∈ �,

(c) u(0, t) = u(1, t) = 0, t ∈ [0, T],

(1.1)

where � = (0, 1), 0 < β < 1, 0 ≤ θ ≤ 1, K is the diffusivity coefficient and f ∈ L2(�) is the
source or sink term; D = ∂

∂x is the first-order derivative operator, 0Iβ
x and xIβ

1 represent the
left and right fractional integral operators of order β , respectively, defined by (2.1).

The interest in (1.1) is motivated by its application to physical phenomena. Numerous
experiments show that fractional diffusion equations have more advantages and higher
accuracy in modeling anomalous or non-Fickian diffusion processes that arise from tur-
bulent flow [1, 2], chaotic dynamics [3] and viscoelasticity [1]. Recently, a series of defi-
nition of the fractional derivative were proposed [4–6]. These new definitions can better
describe the chemical kinetics system pertaining [7], the generation of nonlinear water-
waves in the long-wavelength regime [8], the convective straight fins with temperature-
dependent thermal conductivity [9], the relaxation and diffusion models [4], optimal con-
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trol problems [5], the motion of a bead sliding on a wire [10], the material heterogeneities
and structures with different scales [6].

In general, Fourier transform and Laplace transform are useful tools to obtain the an-
alytic solutions of fractional partial differential equations. However, these two methods
are available only in a few limited cases. Thus, it is important to find practical numeri-
cal means to deal with fractional model. In the last decade, different numerical methods
have been developed, such as the difference method [11, 12], the spectral method [13],
the fast difference method [14], the finite volume method [15, 16], the homotopy analy-
sis transform method [17, 18], the efficient nonstandard finite difference method [19], the
Riesz-Caputo difference method [20], and the Riesz-Riemann-Liouville difference method
[21].

Galerkin finite element method is another way to solve fractional derivative equations.
In the series of works [22–24], Ervin and Roop presented a first rigorous analysis for the
stationary fractional advection dispersion equation based on a variational formulation.
Then the discontinuous Galerkin method [25], mixed finite element method [26–30],
Petrov Galerkin method [31] and the least-squared mixed method are proposed [32] for
stationary fractional diffusion equations, consecutively.

In this article, we employ an expanded mixed finite element to discrete fractional diffu-
sion part and use the backward Euler scheme to approximate the time derivative, and thus
propose a fully discrete procedure for the time-dependent fractional diffusion equation
(1.1). The solvability and stability of the fully discrete scheme is proved and the optimal-
order numerical analysis are presented. Numerical experiments are conducted to verify
our theoretical findings.

This paper is organized as follows. In Section 2, we recall preliminaries on fractional
calculus and present the equivalent relations among negative fractional derivative spaces,
fractional derivative spaces and the standard Sobolev spaces. In Section 3, by introduc-
ing the flux function p = –K(θ0Iβ

x + (1 – θ )xIβ
1 )Du and q = Du we derive the corresponding

saddle-point formulation and the locally conservative expanded mixed finite element pro-
cedure, with its well-posedness analyzed. Optimal-order error analysis for fully regular
solution would be given in Section 4 and numerical experiments are performed to verify
our theoretical results in Section 5. In Section 6, some concluding remarks are presented.

2 Preliminaries
We first briefly revisit the definitions and some properties of left-sided and right-sided
Riemann-Liouville fractional derivatives.

Let μ > 0, 0Iμ
x be the left-sided fractional integral operator of order μ, defined by

0Iμ
x u =

1
�(μ)

∫ x

0
(x – s)μ–1u(s) ds, (2.1)

where �(·) is the Gamma function. Based on the definition of integral operator, we in-
troduce the left-sided Riemann-Liouville fractional derivative of order μ in [33–35]. Let
n ∈ N+ satisfy n – 1 < μ < n, then

0Dμ
x u =

dn

dxn

(
0In–μ

x u
)
. (2.2)
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Similarly, the right versions of fractional-order integral and derivative are defined as

xIμ
1 u =

1
�(μ)

∫ 1

x
(s – x)μ–1u(s) ds (2.3)

and

xDμ
1 u = (–1)n dn

dxn

(
xIn–μ

1 u
)
. (2.4)

The fractional integral operator 0Ix and xI1 satisfy the semigroup property

0Iν+μ
x u = 0Iν

x 0Iμ
x u,

xIν+μ
1 u = xIν

1 xIμ
1 u, for all u ∈ L2(�)

(2.5)

and the adjoint property

(
0Iμ

x u, v
)

=
(
u, xIμ

1 v
)
, for all u, v ∈ L2(�). (2.6)

The left fractional derivative spaces Jμ
L,0(�) [23] are defined as the closure of C∞

0 (�)
under the norms ‖ · ‖JμL

|u|JμL (�) :=
∥∥0Dμ

x u
∥∥

L2(�),

‖u‖JμL (�) :=
(‖u‖2

L2(�) + |u|2JμL (�)

)1/2.

The right fractional derivative spaces Jμ
R,0(�) are defined similarly. In these spaces, the

fractional differential operators satisfy the semigroup property [23]

0Dμ
x u = 0Dν

x 0Dμ–ν
x u, for all u ∈ Jμ

L,0(�). (2.7)

The equivalence theory for the fractional derivative spaces is described by the following
lemma.

Lemma 2.1 ([23], Theorem 2.13) Let μ > 0 and μ �= n– 1
2 , n = 1, 2, . . . . Then the Jμ

L,0(�) and
Jμ
R,0(�) are equal to the fractional-order Sobolev space Hμ

0 (�), with equivalent semi-norms
and norms.

Parallel to Lemma 2.1, we shall define the negative fractional derivative spaces and es-
tablish their equivalence theory with the negative fractional-order Sobolev spaces.

The left negative fractional derivative spaces J–μ
L (�) [36] are defined as the closure of

C∞
0 (�) under the norms ‖ · ‖J–μ

L

‖u‖J–μ
L (�) :=

∥∥0Iμ
x u

∥∥
L2(�).

The right negative fractional derivative spaces J–μ
R (�) are defined similarly.
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Lemma 2.2 ([36], Theorem 2.6) Let μ > 0, μ �= n – 1
2 , n = 1, 2, 3, . . . . Then the negative

fractional spaces J–μ
L (�) and J–μ

R (�) are equal to the standard negative fractional Sobolev
space H–μ(�) with equivalent norms. Furthermore,

(
0Iμ

x v, xIμ
1 v

)
= cos(μπ )‖v‖2

H–μ(�). (2.8)

For simplicity, we only use ‖ ·‖μ, | · |μ or ‖ ·‖–μ to represent their norms and semi-norms
in the following sections. When μ = 0, we understand H0(�) = L2(�) and simply use ‖ · ‖
to denote its norm.

We also need the definition of Sobolev spaces involving time defined by, for any Banach
space X,

W m
q (t1, t2; X) :=

{
f (x, t) :

∥∥∥∥
∂α f
∂tα

(·, t)
∥∥∥∥

X
∈ Lq(t1, t2), 0 ≤ α ≤ m, 1 ≤ q < ∞

}
,

‖f ‖W m
q (t1,t2;X) :=

⎧
⎨

⎩
(
∑m

α=0
∫ t2

t1
‖ ∂α f

∂tα (·, t)‖q
X dt)

1
q , 1 ≤ q < ∞,

max0≤α≤m esssupt∈(t1,t2) ‖ ∂α f
∂tα (·, t)‖X , q = ∞.

We conclude this section by the following commonly used inequality.

Lemma 2.3 (Discrete Gronwall inequality) Let �t, B, C > 0, (an)n, (bn)n, (cn)n, (dn)n be
sequence of nonnegative numbers satisfying

an + �t
n∑

i=0

bi ≤ B + C�t
n∑

i=0

ai + �t
n∑

i=0

ci, ∀n ≥ 0.

Then, if C�t < 1, we have

an + �t
n∑

i=0

bi ≤ eC(n+1)�t

(

B + �t
n∑

i=0

ci

)

, ∀n ≥ 0.

3 Mixed finite element procedure
We begin this section by introducing the intermediate variable q, p and rewrite (1.1) into
the following saddle-point problem:

(a) q = Du, x ∈ �,

(b) p = –K
(
θ0Iβ

x + (1 – θ )xIβ
1
)
q, x ∈ �,

(c) ut + Dp = f , x ∈ �,

(d) u(x, 0) = u0.

(3.1)

We let V := H1(�), H := H– β
2 (�) and W := L2(�). In order to define the variational formu-

lations, we multiply (3.1a) by any v ∈ V and integrate by parts over �. We multiply (3.1b) by
any σ ∈ H and (3.1c) by any w ∈ W , then integrate over �. Combining the homogeneous
boundary condition, we define the saddle-point variational formulation corresponding to
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(3.1) or (1.1) as to find (p, q, u) ∈ V × H × W such that

(a) (q, v) + (u, Dv) = 0, ∀v ∈ V ,

(b) (p,σ ) +
(
K

(
θ0Iβ

x + (1 – θ )xIβ
1
)
q,σ

)
= 0, ∀σ ∈ H ,

(c) (ut , w) + (Dp, w) = (f , w), ∀w ∈ W ,

(d) u(x, 0) = u0.

(3.2)

Based on the saddle-variational formulations (3.2), we shall construct a fully discrete
mixed finite element scheme for the fractional diffusion equation(1.1).

Let us uniformly divide � = [0, 1] by Ii = [xi–1, xi], i = 1, 2, . . . , M with x0 = 0, xM = 1,
h = xi – xi–1. Let tn = nτ , n = 0, 1, . . . , J , where τ = T/J is time step. We denote Raviart-
Thomas spaces or Brézzi-Douglas-Marini spaces [28, 37–39] by Vh × Wh ⊂ V × W with
space index k ≥ 0 and Hh ⊂ H is a piecewise finite dimensional subspace defined by

Vh =
{

vh ∈ V ; vh|Ii ∈ Pk+1(Ii), k ≥ 0
}

,

Hh =
{
σh ∈ H ;σh|Ii ∈ Pk+1(Ii), k ≥ 0

}
,

Wh =
{

wh ∈ W ; wh|Ii ∈ Pk(Ii), k ≥ 0
}

.

(3.3)

Here Pk(Ii) is the restriction of all polynomials of degree not bigger than k to Ii.
We use the backward Euler scheme to discrete the time derivative of first order and

define the fully discrete mixed finite element procedure of (3.2) so as to find (pn
h, qn

h, un
h) ∈

Vh × Hh × Wh such that

(a)
(
qn

h, vh
)

+
(
un

h, Dvh
)

= 0, ∀vh ∈ Vh,

(b)
(
pn

h,σh
)

+
(
K

(
θ0Iβ

x + (1 – θ )xIβ
1
)
qn

h,σh
)

= 0, ∀σh ∈ Hh,

(c)
(

un
h – un–1

h
τ

, wh

)
+

(
Dpn

h, wh
)

=
(
f n, wh

)
, ∀wh ∈ Wh,

(d) u0
h = Rhu0.

(3.4)

We assume

Vh = span{ϕi}N+1
i=1 , Hh = span{ϕj}N+1

j=1 , Wh = span{φk}L
k=1,

and express pn
h , qn

h , un
h as

pn
h =

N+1∑

i=1

pn
i ϕi, qn

h =
N+1∑

j=1

qn
j ϕj, un

h =
L∑

k=1

un
kφk .

Substituting the expression of pn
h , qn

h , un
h into (3.4) to rewrite it into a standard algebraic

equation

⎧
⎪⎪⎨

⎪⎪⎩

(a) EQn + BT Un = 0,

(b) AQn + EPn = 0,

(c) τBPn + HUn = Fn,

(3.5)
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and into its matrix form

⎡

⎢
⎣

E 0 BT

A E 0
0 τB H

⎤

⎥
⎦

⎡

⎢
⎣

Qn

Pn

Un

⎤

⎥
⎦ =

⎡

⎢
⎣

0
0

Fn

⎤

⎥
⎦ , (3.6)

where

P =
(
pn

1, pn
2, . . . , pn

N+1
)T , Q =

(
qn

1 , qn
2 , . . . , qn

N+1
)T , U =

(
un

1, un
2, . . . , un

L
)T ,

H =
(
(φk ,φm)

)
L×L, B =

(
(Dϕi,φk)

)
L×(N+1), E =

(
(ϕi,ϕj)

)
(N+1)×(N+1),

A =
((

K
(
θ0Iβ

x + (1 – θ )xIβ
1
)
ϕj,ϕi

))
(N+1)×(N+1),

Fn = τ
[(

f n,φ1
)
,
(
f n,φ2

)
, . . . ,

(
f n,φL

)]T + HUn–1.

Remark 3.1 In non-Fickian diffusion processes, p = –K(0Iβ
x + xIβ

1 )Du is the fractional dif-
fusive flux and thus pn

h can be understood as the numerical fractional diffusive flux. By
taking Wh = 1 in (3.4)(c), we get

∫

Ii

un
h

τ
+ pn

h(xi) – pn
h(xi–1) =

(
f n, 1

)
+

∫

Ii

un–1
h
τ

, ∀1 ≤ n ≤ J , (3.7)

which implies that the mass is preserved element by element. In fact, the left hand side
of (3.7) is the the mass accumulated over the interval Ii at t = tn per unit time and the
spreading through the boundary of the interval Ii, the right hand side of (3.7) is the mass
accumulated over the interval Ii at t = tn–1 and from the source term, and the = sign refers
to the conservation element by element. That is, the fully discrete expanded mixed finite
element scheme is conservative locally.

In the following discussion, we shall present the solvability and stability for the proposed
fully discrete expanded mixed finite element scheme (3.4).

Theorem 3.1 There exists a unique solution Un, Pn, Qn to (3.6) for any n = 1, 2, . . . , J and
τ > 0.

Proof We begin to show that the matrix A is positive definite. Notice the semi-group prop-
erty (2.5), the adjoint property (2.6), the definition of J–μ

L , Lemma 2.2 and (2.8) to derive

(Aσ ,σ ) =
(
K

(
θ0Iβ

x + (1 – θ )xIβ
1
)
σ ,σ

)

= Kθ
(

0I
β
2

x σ , xI
β
2

1 σ
)

+ K(1 – θ )
(

xI
β
2

1 σ , 0I
β
2

x σ
)

= K cos
β

2
π

∥∥0I
β
2

x σ
∥∥2

≥ C‖σ‖2
– β

2
.

This implies that the matrix A is positive definite.
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Noting that E is symmetric positive matrix, we can solve Pn from (3.5)(b),

Pn = –E–1AQn, (3.8)

and Qn from (3.5)(a),

Qn = –E–1BT Un. (3.9)

Substituting them into (3.5)(c) to have

(
H + τB

(
E–1AE–1)BT)

Un = Fn.

E–1AE–1 being positive definite implies that B(E–1AE–1)BT is positive semi-definite, from
which one derives H +τB(E–1AE–1)BT to be positive definite for ∀τ > 0 by combining with
the positive definiteness of H . Hence, there exists a unique Un. Substituting Un into (3.9)
and (3.8), we can solve the unique Qn and Pn, which completes the proof. �

Theorem 3.2 The fully discrete scheme (3.4) is unconditional stable, that is, for any τ > 0
and h > 0, there exists a constant C such that

max
1≤n≤J

∥∥un
h
∥∥2 + τ

J∑

n=1

∥∥qn
h
∥∥2

– β
2

+ τ

J∑

n=1

∥∥pn
h
∥∥2 ≤ C(T , K ,β)

(∥∥u0
h
∥∥2 + max

1≤n≤J

∥∥f n∥∥2
)

.

Proof Setting vh = pn
h , σh = qn

h , wh = un
h in the (3.4), we can get

(a)
(
qn

h, pn
h
)

+
(
un

h, Dpn
h
)

= 0,

(b)
(
pn

h, qn
h
)

+
(
K

(
θ0Iβ

x + (1 – θ )xIβ
1
)
qn

h, qn
h
)

= 0,

(c)
(

un
h – un–1

h
τ

, un
h

)
+

(
Dpn

h, un
h
)

=
(
f n, un

h
)
,

(d) u0
h = Rhu0.

(3.10)

From (3.10) we can get

(
K

(
θ0Iβ

x + (1 – θ )xIβ
1
)
qn

h, qn
h
)

+
(

un
h – un–1

h
τ

, un
h

)
=

(
f n, un

h
)
. (3.11)

Due to the fact that

(
K

(
θ0Iβ

x + (1 – θ )xIβ
1
)
qn

h, qn
h
)

= K cos
β

2
π

∥∥qn
h
∥∥2

– β
2

and

(
un

h – un–1
h , un

h
) ≥ 1

2
(∥∥un

h
∥∥2 –

∥∥un–1
h

∥∥2)

we can obtain
∥∥un

h
∥∥2 –

∥∥un–1
h

∥∥2 + τ
∥∥qn

h
∥∥2

– β
2

≤ C(K ,β)τ
(
f n, un

h
)

≤ C(K ,β)τ
(∥∥f n∥∥2 +

∥∥un
h
∥∥2). (3.12)
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Add all the terms from n = 1 to n = J to get

∥∥uJ
h
∥∥2 –

∥∥u0
h
∥∥2 + τ

J∑

n=1

∥∥qn
h
∥∥2

– β
2

≤ C(K ,β)τ

( J∑

n=1

∥∥f n∥∥2 +
J∑

n=1

∥∥un
h
∥∥2

)

≤ C(K ,β)

(

T max
1≤n≤J

∥∥f n∥∥2 + τ

J∑

n=1

∥∥un
h
∥∥2

)

.

By using the discrete Gronwall inequality, we have

∥∥uJ
h
∥∥2 + τ

J∑

n=1

∥∥qn
h
∥∥2

– β
2

≤ C(K , T ,β)
(∥∥u0

h
∥∥2 + max

1≤n≤J

∥∥f n∥∥2
)

. (3.13)

Notice that the spaces Vh and Hh are the same, set vh = σh = pn
h , wh = un

h in (3.4). Then we
can obtain

(
pn

h, pn
h
)

= –
(
K

(
θ0Iβ

x + (1 – θ )xIβ
1
)
qn

h, pn
h
)
,

so that

∥∥pn
h
∥∥2 ≤ C

∥∥qn
h
∥∥

– β
2

∥∥0I
β
2

x pn
h
∥∥

β
2

. (3.14)

When 0 < β < 1, the two spaces H
β
2

0 (�) and J
β
2

L (�) are equivalent, which means that

∥∥0I
β
2

x pn
h
∥∥

β
2

≤ C
∥∥0I

β
2

x pn
h
∥∥

J
β
2

L

.

Since 0I
β
2

x is a bounded linear operator from L2(�) to J
β
2

L (�), (3.14) turns out to be

∥∥pn
h
∥∥2 ≤ C

∥∥qn
h
∥∥

– β
2

∥∥pn
h
∥∥,

which means that

∥∥pn
h
∥∥ ≤ C

∥∥qn
h
∥∥

– β
2

.

Then

τ

J∑

n=1

∥∥pn
h
∥∥2 ≤ τ

J∑

n=1

∥∥qn
h
∥∥2

– β
2

.

Combined with (3.13), we have

max
1≤n≤J

∥∥un
h
∥∥2 + τ

J∑

n=1

∥∥qn
h
∥∥2

– β
2

+ τ

J∑

n=1

∥∥pn
h
∥∥2 ≤ C(T , K ,β)

(∥∥u0
h
∥∥2 + max

1≤n≤J

∥∥f n∥∥2
)

,

which completes the proof. �
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4 Convergence analysis
Based on the conclusions presented in the above sections, we shall conduct the conver-
gence analysis for the fully discrete expanded mixed finite element scheme. For this pur-
pose, we borrow the elliptic projection operator Rh which is defined as

(a) (q – Rhq, vh) + (u – Rhu, Dvh) = 0, ∀vh ∈ Vh,

(b) (p – Rhp,σh) +
(
K

(
θ0Iβ

x + (1 – θ )xIβ
1
)
(q – Rhq),σh

)
= 0, ∀σh ∈ Hh,

(c) (Dp – DRhp, wh) = 0, ∀wh ∈ Wh.

(4.1)

The elliptic projection operator Rh satisfies estimate properties which are given in [36],
We have

‖Rhu – u‖ ≤ Chmin{k+1,s–1+ β
2 }‖u‖s,

‖Rhp – p‖ ≤ Chmin{k+1+ β
2 ,s–1+ β

2 }‖u‖s,

‖Rhq – q‖– β
2

≤ Chmin{k+1+ β
2 ,s–1+ β

2 }‖u‖s.

We let t = tn, v = vh, σ = σh, w = wh in (3.2) and subtract it from (3.4) to obtain the following
error equation:

(a)
(
qn

h – qn, vh
)

+
(
un

h – un, Dvh
)

= 0, ∀vh ∈ Vh,

(b)
(
pn

h – pn,σh
)

+
(
K

(
θ0Iβ

x + (1 – θ )xIβ
1
)(

qn
h – qn),σh

)
= 0, ∀σh ∈ Hh,

(c)
(

un
h – un–1

h
τ

– un
t , wh

)
+

(
D

(
pn

h – pn), wh
)

= 0, ∀wh ∈ Wh,

(d) u0
h = Rhu0.

(4.2)

For compact expression, we denote

ξn = qn
h – Rhqn, ϕn = Rhqn – qn,

ηn = pn
h – Rhpn, φn = Rhpn – pn,

θn = un
h – Rhun, ρn = Rhun – un.

Then we combine with the elliptic projection (4.1) to rewrite the error equation as follows:

(a)
(
ξn, vh

)
+

(
θn, Dvh

)
= 0, ∀vh ∈ Vh,

(b)
(
ηn,σh

)
+

(
K

(
θ0Iβ

x + (1 – θ )xIβ
1
)
ξn,σh

)
= 0, ∀σh ∈ Hh,

(c)
(

θn – θn–1

τ
, wh

)
+

(
Rhun – Rhun–1

τ
– un

t , wh

)
+

(
Dηn, wh

)
= 0,

∀wh ∈ Wh,

(d) u0
h = Rhu0.

(4.3)

Now we shall derive the error analysis for un
h – un, qn

h – qn, pn
h – pn in the following the-

orem.
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Theorem 4.1 Assume that u ∈ H2(0, T ; L2(�)) ∩ H1(0, T ; Hs(�)) (s ≥ 1). Then there exists
a constant C > 0 such that

max
1≤n≤J

∥∥un
h – un∥∥2 + τ

J∑

n=1

∥∥qn
h – qn∥∥2

– β
2

+ τ

J∑

n=1

∥∥pn
h – pn∥∥2

≤ C0h2 min{k+1,s–1+ β
2 } + C1τ

2.

Here

C0 = C0
(‖ut‖2

L2(0,T ;Hs(�)),
∥∥u0∥∥2

L∞(0,T ;Hs(�))

)
,

C1 = C1
(‖utt‖L2(0,T ;Hs(�))

)
.

Proof Choose vh = ηn, σh = ξn, wh = θn in (4.3) to obtain

(a)
(
ξn,ηn) +

(
θn, Dηn) = 0,

(b)
(
ηn, ξn) +

(
K

(
θ0Iβ

x + (1 – θ )xIβ
1
)
ξn, ξn) = 0,

(c)
(

θn – θn–1

τ
, θn

)
+

(
Rhun – Rhun–1

τ
– un

t , θn
)

+
(
Dηn, θn) = 0.

(4.4)

To estimate θn, ξn and ηn we use (4.4)(c). For (4.4)(c) notice

(
θn – θn–1

τ
, θn

)
≥ (‖θn‖2 – ‖θn–1‖2)

2τ

and

(
θn, Dηn) =

(
K

(
θ0Iβ

x + (1 – θ )xIβ
1
)
ξn, ξn) = K cos

(
βπ

2

)∥∥ξn∥∥2
– β

2
≥ 0

to derive

1
2τ

(∥∥θn∥∥2 –
∥∥θn–1∥∥2) ≤

∣∣∣∣

(
Rhun – Rhun–1

τ
– un

t , θn
)∣∣∣∣. (4.5)

The right hand side of (4.5) is recast

(
Rhun – Rhun–1

τ
– un

t , θn
)

=
(

Rhun – un – (Rhun–1 – un–1)
τ

+
un – un–1

τ
– un

t , θn
)

=
(

ρn – ρn–1

τ
+

un – un–1

τ
– un

t , θn
)

(4.6)

and estimated term by term as follows:

(
ρn – ρn–1

τ
, θn

)
≤

∥∥∥∥
ρn – ρn–1

τ

∥∥∥∥
∥∥θn∥∥
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=
1
τ

∥∥∥∥

∫ tn

tn–1

ρr(r) dr
∥∥∥∥
∥∥θn∥∥

≤ 1
τ

τ
1
2

(∫ tn

tn–1

∥∥ρr(r)
∥∥2 dr

) 1
2 ∥∥θn∥∥

≤ 1
τ

(∫ tn

tn–1

∥∥ρr(r)
∥∥2 dr + τ

∥∥θn∥∥2
)

=
1
τ

∫ tn

tn–1

∥∥ρr(r)
∥∥2 dr +

∥∥θn∥∥2,

(
un – un–1

τ
– un

t , θn
)

≤
∥∥∥∥

un – un–1

τ
– un

t

∥∥∥∥
∥∥θn∥∥

=
1
τ

∥∥∥∥

∫ tn

tn–1

(r – tn–1)utt(r) dr
∥∥∥∥
∥∥θn∥∥

≤ 1
τ

(∫ 1

0
τ 3

∫ tn

tn–1

u2
tt dr dx

) 1
2 ∥∥θn∥∥

= τ
1
2

(∫ tn

tn–1

‖utt‖2 dr
) 1

2 ∥∥θn∥∥

≤ τ

∫ tn

tn–1

‖utt‖2 dr +
∥∥θn∥∥2.

Hence, the right hand side of (4.5) is bounded by

1
τ

∫ tn

tn–1

∥∥ρr(r)
∥∥2 dr + τ

∫ tn

tn–1

‖utt‖2 dr + 2
∥∥θn∥∥2. (4.7)

Substitute (4.7) into (4.5) to give

(‖θn‖2 – ‖θn–1‖2)
2τ

+ C
∥∥ξn∥∥2

– β
2

≤ 1
τ

∫ tn

tn–1

∥∥ρr(r)
∥∥2 dr + τ

∫ tn

tn–1

‖utt‖2 dr + 2
∥∥θn∥∥2.

Multiply two sides of this inequality by 2τ :

∥∥θn∥∥2 –
∥∥θn–1∥∥2 + 2Cτ

∥∥ξn∥∥2
– β

2
≤ 2

∫ tn

tn–1

∥∥ρr(r)
∥∥2 dr + 2τ 2

∫ tn

tn–1

‖utt‖2 dr + 4τ
∥∥θn∥∥2.

We add all the terms from n = 1 to n = J and notice θ0 = u0
h – Rhu0 = 0 to get

∥∥θ J∥∥2 + 2Cτ

J∑

n=1

∥∥ξn∥∥2
– β

2
≤ 2

∫ T

0

∥∥ρr(r)
∥∥2 dr + 2τ 2

∫ T

0
‖utt‖2 dr + 4τ

J∑

n=1

∥∥θn∥∥2.

Apply the discrete Gronwall inequality to derive

∥∥θ J∥∥2 + 2Cτ

J∑

n=1

∥∥ξn∥∥2
– β

2

≤ C
(∫ T

0

∥∥ρr(r)
∥∥2 dr + τ 2

∫ T

0
‖utt‖2 dr

)
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= Ch2 min{k+1,s–1+ β
2 }

∫ T

0
‖ut‖2

s dr

+ Cτ 2
∫ T

0
‖utt‖2 dr

= Ch2 min{k+1,s–1+ β
2 }‖ut‖2

L2(0,T ;Hs(�))

+ Cτ 2‖utt‖2
L2(0,T ;L2(�)). (4.8)

It remains to estimate ηn. Notice that the spaces Vh and Hh are the same, we choose
vh = ηn, σh = ηn, wh = θn in (4.3). Similar to the proof of Theorem 3.2, we can get

τ

J∑

n=1

∥∥ηn∥∥2 ≤ Cτ

J∑

n=1

∥∥ξn∥∥2
– β

2

≤ Ch2 min{k+1,s–1+ β
2 }‖ut‖2

L2(0,T ;Hs(�))

+ Cτ 2‖utt‖2
L2(0,T ;L2(�)). (4.9)

Hence, we can obtain

max
1≤n≤J

∥∥un
h – un∥∥2 + τ

J∑

n=1

∥∥qn
h – qn∥∥2

– β
2

+ τ

J∑

n=1

∥∥pn
h – pn∥∥2

≤ C0h2 min{k+1,s–1+ β
2 } + C1τ

2,

which completes the proof. �

From Theorem 4.1 we see the estimate for q is optimal and the estimate for u is optimal
when k + 1 ≤ s – 1 + β

2 .

5 Numerical experiments
In this section we perform two numerical experiments to verify the theoretical conver-
gence results. Here we show computations with different β to test β-dependent conver-
gence rates for the lowest-order (k = 0) Raviart-Thomas mixed finite element procedure.

Example 1 Let K = 1, θ = 1
2 , T = 1. The analytic and smooth solution is prescribed to be

u(x) = x2(1–x)2et ∈ H2+γ (�), and the source term f = et(x2 +(1–x)2)+et( –12[x2+β +(1–x)2+β ]
�(3+β) +

6[(1–x)1+β +x1+β ]
�(2+β) – xβ +(1–x)β

�(1+β) ) ∈ Hβ+γ (�). γ ∈ [0, 1
2 ) can be selected as close to 1

2 as possible
[36, 40]. We denote ‖p – ph‖L2(0,T ;H1(�)), ‖q – qh‖

L2(0,T ;H
–β
2 (�))

by |||p – ph||| and |||q – qh|||,
respectively, in Table 1 to Table 4.

The numerical results for Example 1 are presented in Table 1, Table 2 and Figure 1.
Table 1 shows that the convergence rate for u is 1 under the L2-norm, which exactly obey

the prediction of Theorem 4.1. The convergence rates for q and p are 1 + γ + β

2 under the
respective norms, which are almost close to the prediction of Theorem 4.1.

Table 2 tests that the convergence rate in time. The numerical results show that the
convergence rate for u, p, q in time is 1 which is consistent with the theoretical prediction
by Theorem 4.1.
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Table 1 Numerical results for Example 1 with τ = 2–12

β h 1/16 1/32 1/64 1/128 Order

1/4 ‖u – uh‖ 9.50e–03 4.78e–03 2.40e–03 1.20e–03 1.00
|||p – ph||| 3.33e–03 9.62e–04 2.81e–04 8.20e–05 1.78
|||q – qh||| 4.44e–03 1.43e–03 4.62e–04 1.50e–04 1.60

1/2 ‖u – uh‖ 9.48e–03 4.77e–03 2.39e–03 1.20e–03 1.00
|||p – ph||| 1.43e–03 3.94e–04 1.07e–04 2.79e–05 1.92
|||q – qh||| 3.90e–03 1.15e–03 3.45e–04 1.05e–04 1.73

2/3 ‖u – uh‖ 1.48e–02 7.53e–03 3.78e–03 1.89e–03 1.00
|||p – ph||| 6.15e–04 1.69e–04 4.54e–05 1.19e–05 1.94
|||q – qh||| 3.98e–03 1.09e–03 3.02e–04 8.37e–05 1.84

Table 2 Numerical results for Example 1 with h = 2–8 and β = 2
3

τ 1/8 1/16 1/32 1/64 Order

‖u – uh‖ 3.21e–03 1.25e–03 5.72e–04 2.83e–04 1.00
|||p – ph||| 1.23e–03 6.36e–04 3.21e–04 1.60e–04 1.00
|||q – qh||| 4.12e–03 2.01e–03 1.01e–03 5.11e–04 0.98

Table 3 Numerical results for Example 2 with τ = 2–10

β h 1/16 1/32 1/64 1/128 Order

1/4 ‖u – uh‖ 3.62e–02 1.91e–02 9.77e–03 4.95e–03 0.99
|||p – ph||| 6.51e–02 3.84e–02 2.28e–02 1.35e–02 0.75
|||q – qh||| 1.13e–02 7.26e–03 4.69e–03 3.04e–03 0.63

1/2 ‖u – uh‖ 3.62e–02 1.91e–02 9.77e–03 4.95e–03 0.99
|||p – ph||| 1.84e–02 9.04e–03 4.48e–03 2.23e–03 1.00
|||q – qh||| 1.03e–02 6.11e–03 3.62e–03 2.15e–03 0.75

2/3 ‖u – uh‖ 3.62e–02 1.91e–02 9.77e–03 4.95e–03 0.99
|||p – ph||| 6.86e–03 2.99e–03 1.31e–03 5.82e–04 1.15
|||q – qh||| 8.18e–03 4.59e–03 2.58e–03 1.46e–03 0.82

Table 4 Numerical results for Example 2 with h = 2–8 and β = 2
3

τ 1/8 1/16 1/32 1/64 Order

‖u – uh‖ 3.75e–02 1.10e–02 3.58e–03 1.44e–03 1.30
|||p – ph||| 9.00e–03 3.20e–03 1.50e–03 7.42e–04 1.02
|||q – qh||| 1.95e–03 9.49e–03 4.71e–03 2.35e–03 1.00

Figure 1 The sketch of Example 1 about errors
and degrees of freedom with β = 2

3 .

Example 2 Let K = 1, θ = 1
2 , T = 1. The analytic and smooth solution is prescribed to

be u(x) = x(1 – x)et ∈ H1+γ (�), and the source term f = x(1 – x)et + et(– xβ–1+(1–x)β–1

2�(β) +
xβ +(1–x)β

�(1+β) ) ∈ Hβ–1+γ (�). γ is defined as in Example 1.
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Figure 2 The sketch of Example 2 about errors
and degrees of freedom with β = 2

3 .

The numerical results are presented in Table 3, Table 4 and Figure 2.
Table 3 shows that the convergence rate for u is 1 under the L2-norm, which exactly

obey the prediction of Theorem 4.1. The convergence rates for q and p are γ + β

2 under
the respective norms, which are almost close to the prediction of Theorem 4.1.

Table 4 tests that the convergence rate in time. The numerical results show that the
convergence rate for u, p, q in time is 1 which is consistent with the theoretical prediction
by Theorem 4.1.

6 Concluding remarks
In this work, we establish the saddle-point variational formulation for a two-sided time-
dependent fractional diffusion problem over H1(�) × H– β

2 (�) × L2(�) and develop its
fully discrete expanded mixed finite element procedure, which approximates optimally the
unknown function u, its derivative q and the fractional flux p. We find that the advantages
of the mixed procedure at least are: (1) it can preserve the locally conservative property
and can describe realistic fractional diffusive processes; (2) it is easily implemented since
the standard finite element spaces are used.
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