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Abstract
In this paper, we establish some relations involving q-Euler type sums, q-harmonic
numbers and q-polylogarithms. Then, using the relations obtained with the help of
q-analog of partial fraction decomposition formula, we develop new closed form
representations of sums of q-harmonic numbers and reciprocal q-binomial
coefficients. Moreover, we give explicit formulas for several classes of q-harmonic
sums in terms of q-polylogarithms and q-harmonic numbers. The given
representations are new.
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1 Introduction and preliminaries
Let k, r, m1, m2, . . . , mr be positive integers and p ∈ N0 := {0, 1, 2, . . .} with p + k > 1. The
Euler type sums Wk(m1, m2, . . . , mr , p) involving harmonic numbers and binomial coeffi-
cients are defined by the convergent series [1]

Wk(m; p) = Wk(m1, m2, . . . , mr ; p) :=
∞∑

n=1

H (m1)
n H (m2)

n · · ·H (mr )
n

np
( n+k

k

) , (1.1)

where H (m)
n stands for the nth generalized harmonic number defined by

H (m)
n :=

n∑

j=1

1
jm

(
n, k ∈ N := {1, 2, 3, . . .}), (1.2)

the quantity w := m1 + m2 + · · · + mr + p + k and the quantity r are called the weight and
the degree of (1.1), respectively. The empty sum H (m)

0 is conventionally understood to be
zero. When m = 1, then Hn := H (1)

n is called a classical harmonic number. As usual, we let
{a}k be the k repetitions such that

W
(
a, {m}r , b; p

)
= W (a, m, . . . , m︸ ︷︷ ︸

r

, b; p).
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There are many results for sums of harmonic numbers with positive terms. For example,
in [1], Xu et al. proved the result

Wk
({1}2; 1

)
=

k∑

r=1

(–1)r+1

(
k
r

)⎧
⎨

⎩
3ζ (3) + H3

r +3HrH(2)
r +2H(3)

r
3

– H2
r +H(2)

r
r –

∑r–1
i=1

Hi
i2 + ζ (2)Hr–1

⎫
⎬

⎭ (k ∈N). (1.3)

Sofo also obtained many other identities involving harmonic numbers and central bino-
mial coefficients. For instance, in [2], Sofo gave the following identity:

Wk
({1}2; 0

)
=

k
k – 1

(
ζ (2) – H (2)

k–1 +
2

(k – 1)2

)
(2 ≤ k ∈N), (1.4)

where ζ (p) stands for the classical Riemann zeta function defined by [3]

ζ (p) :=
∞∑

n=1

1
np

(�(p) > 1
)
.

There are many works investigating sums of both harmonic numbers and binomial coef-
ficients (see, for example, [1, 2, 4–6] and the references therein).

If k = 0 in (1.1), then

W0(m; p) = W0(m1, m2, . . . , mr ; p) :=
∞∑

n=1

H (m1)
n H (m2)

n · · ·H (mr )
n

np , (1.5)

which is just the classical Euler sums Sm,p defined in [7], where m := (m1, m2, . . . , mr). The
study of Euler sums W0(m; p) was started by Euler. Euler’s original contribution was a
method to reduce double sums W0(p; q) (or Sp,q) to certain rational linear combinations
of products of zeta values. Examples for such evaluations, all due to Euler, are as follows:

W0(1; 3) =
5
4
ζ (4), W0(1; 4) = 3ζ (5) – ζ (2)ζ (3),

W0(2; 4) = ζ 2(3) –
1
3
ζ (6), W0(2; 5) = 5ζ (2)ζ (5) + 2ζ (3)ζ (4) – 10ζ (7).

After that many different methods, including partial fraction expansions, Eulerian beta
integrals, summation formulas for generalized hypergeometric functions and contour in-
tegrals, have been used to evaluate these sums. The relationship between the values of the
Riemann zeta function and the classical Euler sums W0(m; p) (or Sm;p) has been studied
by many authors (for example, see [7–16] and the references therein).

So far, surprisingly little work has been done on q-analogues of Euler sums. We begin
with some basic notation. Let q be a real number with 0 < q < 1. The q-analogue of a non-
negative integer n is defined as

nq = [n]q :=
n–1∑

k=0

qk =
1 – qn

1 – q
.
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For any real number a, put

(a)0 := (a; q)0 = 1 and (a)n := (a; q)n :=
n∏

k=1

(
1 – aqk–1), n ≥ 1.

Let n, m denote integers. Then the Gaussian q-binomial coefficient is defined by

[
n
m

]

q

:=
(q)n

(q)m(q)n–m
=

[n]q!
[m]q![n – m]q!

, (1.6)

where 0 ≤ m ≤ n and [n]q! = [1]q[2]q · · · [n]q with [ n
0 ]q = 1.

For non-negative integers n, s and m ∈N, define q-analogues of harmonic numbers

ζn
[
m, qs] :=

n∑

j=1

qsj

[j]m
q

,

with the convention that ζ0[m, qs] := 0. When s = 0 and 1, we use the following notations
(see [17]):

[Hn] := ζn[1] = ζn[1, 1]

and

ζn[m] := ζn[m, 1],
[
H (m)

n
]

:= ζn[m, q].

Similar as in the definition of classical Euler sum W0(m; p) (or Sm;p), the q-analogues of
Euler sum of index m := (m1, . . . , mr), s := (s1, . . . , sr) with p > 1 are defined by

W (s)
0,t [m; p] :=

∞∑

n=1

ζn[m1, qs1 ]ζn[m2, qs2 ] · · · ζn[mr , qsr ]
([n]q)p qtn, (1.7)

where si ∈ N0, mi ∈ N (i = 1, 2, . . . , r) and r, t ∈ N, the quantities w := m1 + m2 + · · · + mr +
p + k and r are called the weight and the degree of W (s)

0,t [m; p], respectively. There are fewer
results for sums of the type (1.7). Some related results for q-Euler type sums and related
sums (e.g. q-L-function and q-multiple zeta values) may be seen in the works of [17–37]
and the references therein. For example, in [17], Xu et al. gave the following identity:

W (0)
0,1 [1; s] = Lis+1[q] +

s
2

Lis+1
[
q2] –

1
2

s–1∑

j=2

Lij[q]Lis+1–j[q], 2 ≤ s ∈N.

Examples for such evaluation are as follows:

∞∑

n=1

[Hn]
n2

q
qn = Li3[q] + Li3

[
q2],

∞∑

n=1

[Hn]
n3

q
qn =

3
2

Li4
[
q2] + Li4[q] –

1
2

Li2
2[q].

Furthermore, they proved the following conclusion: for positive integer s ≥ 2, the
quadratic sum W (0,0)

0,1 [{1}2; s] and the cubic combination sum W (0,0,0)
0,1 [{1}3; s] – 3W (0,0)

0,1 [1, 2;
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s] are reducible to linear q-Euler sums and to polynomials in q-polylogarithms. In partic-
ular, we have

W (0,0)
0,1

({1}2; 2
)

=
7
2

Li4
[
q2] + 2Li4[q] –

1
2

Li2
2[q] – (1 – q)

(
Li3

[
q2] + Li3[q]

)
. (1.8)

The q-analogues of polylogarithm function Lim[x] and linear q-Euler sum W (s)
0,t [m; p] are

defined by

Lim[x] :=
∞∑

n=1

xn

[n]m
q

, |x| < 1, (1.9)

W (s)
0,t [m; p] :=

∞∑

n=1

ζn[m, qs]
[n]p

q
qtn, (1.10)

where t, m ∈N, s ∈ N0 and p > 1.
In this paper we will develop identities, closed form representations of q-harmonic num-

bers and reciprocal q-binomial coefficients of the form:

W (s1,...,sr)
k,t [m1, m2, . . . , mr ; p] :=

∞∑

n=1

ζn[m1, qs1 ]ζn[m2, qs2 ] · · · ζn[mr , qsr ]
[n]p

q
[ n+k

k

]
q

qtn, (1.11)

for p = 0 and 1 with t = k and k – 1. Here, si ∈ N0, mi ∈ N (i = 1, 2, . . . , r) and k, r ∈ N.
We show that the linear sums W (m–1)

k,k [m; 1] is a rational linear combination of products
of q-harmonic numbers and q-polylogarithms, and we give an explicit formula. We also
provide explicit evaluations of quadratic sum W (0,0)

k,k [{1}2; 1] in a closed form in terms of
q-polylogarithms, q-harmonic numbers and q-rational series. Furthermore, we prove that
the cubic sum W (0,0,0)

k,k [{1}3; 1] is expressible in terms of q-polylogarithms, q-harmonic
numbers and q-rational series. Letting q approach 1, we can find that the q-Euler type
sum W (s)

k,t [m; p] converges to the classical Euler type sums Wk(m; p), namely

lim
q→1

W (s1,...,sr)
k,t [m1, m2, . . . , mr ; p] = Wk(m1, m2, . . . , mr ; p).

Next, we prove a lemma which will be useful in the development of the main theorems.

Lemma 1.1 For positive integers m, r, k and r < k, then

∞∑

n=1

qmn

[n + r]m
q [n + k]q

=
m–1∑

j=1

(–1)j–1

[k – r]j
qqrj

Lim–j+1
[
qm–j, r

]
+

(–1)m–1

[k – r]m
q qrm

{[
H (1)

k
]

–
[
H (1)

r
]}

, (1.12)

where the q-special function Lip[x, a] is defined by

Lip[x, a] :=
∞∑

n=1

xn

[n + a]p
q

, |x| < 1, p ∈N. (1.13)
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Proof By a simple calculation, the sum on the left-hand side of (1.12) is equal to

∞∑

n=1

qmn

[n + r]m
q [n + k]q

=
m–1∑

j=1

(–1)j–1

[k – r]j
qqrj

∞∑

n=1

q(m–j)n

[n + r]m–j+1
q

+
(–1)m–1

[k – r]m–1
q qr(m–1)

∞∑

n=1

qn

[n + r]q[n + k]q
. (1.14)

On the other hand, we note that, for N > k > r ≥ 1 and N , k, r ∈N,

∞∑

n=1

qn

[n + r]q[n + k]q
=

1
[k – r]qqr

∞∑

n=1

{
1

[n + r]q
–

1
[n + k]q

}

=
1

[k – r]qqr lim
N→∞

N∑

n=1

{
1

[n + r]q
–

1
[n + k]q

}

=
1

[k – r]qqr

{
1

[r + 1]q
+ · · · +

1
[k]q

– lim
N→∞

k∑

j=r+1

1
[N + j]q

}
(1.15)

and

lim
N→∞ (N + j)q = lim

N→∞
1 – qN+j

1 – q
=

1
1 – q

. (1.16)

By using the definition of q-harmonic numbers, we have the relations

[
H (m)

n
]

= (q – 1)ζn[m – 1] + ζn[m], m ∈N, (1.17)
[
H (1)

n
]

= [Hn] + n(q – 1). (1.18)

Combining (1.15), (1.16) and (1.18) yields

∞∑

n=1

qn

[n + r]q[n + k]q
=

1
[k – r]qqr

{[
H (1)

k
]

–
[
H (1)

r
]}

. (1.19)

Substituting (1.19) into (1.14) yields the desired result. The proof of Lemma 1.1 is fin-
ished. �

2 Main conclusions and proofs
In this section, we will give the main results of the present paper. Firstly, we establish a q-
analog of partial fraction decomposition formula by the method of mathematical induc-
tion. Secondly, using the Jackson’s q-integral, we prove some relations between q-Euler
type sums, q-harmonic numbers and q-polylogarithms. Then we use the formulas ob-
tained to evaluate several infinite series involving q-harmonic numbers.

It is clear that the conclusions which we present here can be seen as an extension of
classical Euler type sums given by Sofo and Xu. Letting q → 1, we obtain many well-known
results which are given by Sofo and Xu.
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2.1 q-analog of partial fraction decomposition formula
Theorem 2.1 For positive integer m and real x with x �= –1, –2, . . . , –m, the following iden-
tity holds:

m∏

i=1

(
1 – qx+i)–1 =

m∑

i=1

q(1–m)x

1 – qx+i

m∏

j=1,j �=i

1
qi – qj . (2.1)

Notice that the term in the sum for m = 1 is the empty product which is 1, namely, when
m = 1, we set

∏1
j=1,j �=1(qi – qj)–1 := 1.

Proof The proof is by induction on m. For m = 1, we have
∏1

i=1 (1 – qx+i)–1 = (1 – qx+1)–1,
and the formula is true. For m > 1, we proceed as follows. First assume that formula (2.1)
holds for m ≤ k – 1, we note that

1
∏k

i=1 (1 – qx+i)
=

1
1 – qx+k · 1

∏k–1
i=1 (1 – qx+i)

=
k–1∑

i=1

q(2–k)x

(1 – qx+k)(1 – qx+i)

k–1∏

j=1,j �=i

1
qi – qj

=
k–1∑

i=1

q(2–k)x

qx+i – qx+k

{
1

1 – qx+i –
1

1 – qx+k

} k–1∏

j=1,j �=i

1
qi – qj

=
k–1∑

i=1

q(1–k)x

1 – qx+i

k∏

j=1,j �=i

1
qi – qj –

q(1–k)x

1 – qx+k

k–1∑

i=1

k∏

j=1,j �=i

1
qi – qj . (2.2)

Then, by the induction hypothesis, we have that

1
∏k–1

i=1 (1 – qx+i)

=
k–1∑

i=1

q(2–k)x

1 – qx+i

k–1∏

j=1,j �=i

1
qi – qj , x �= –1, –2, . . . , –(k – 1). (2.3)

Setting x = –k in the above equation, we deduce that

1
∏k–1

i=1 (1 – qi–k)
=

qk(k–1)

∏k–1
i=1 (qk – qi)

=
k–1∑

i=1

q(k–2)k

1 – qi–k

k–1∏

j=1,j �=i

1
qi – qj

= –
k–1∑

i=1

qk(k–1)

qi – qk

k–1∏

j=1,j �=i

1
qi – qj .

Hence, we obtain

k–1∏

i=1

(
qk – qi)–1 = –

k–1∑

i=1

k∏

j=1,j �=i

1
qi – qj . (2.4)
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Substituting (2.4) into (2.2), we arrive at the conclusion that

k∏

i=1

(
1 – qx+i)–1 =

k∑

i=1

q(1–k)x

1 – qx+i

k∏

j=1,j �=i

1
qi – qj .

The proof of Theorem 2.1 is completed. �

Next, we give a q-analog of partial fraction decomposition formula.

Corollary 2.2 For integer m > 0 and real x with x �= {–1, –2, . . . , –m}, we have

m∏

i=1

[x + i]q
–1 =

m∑

i=1

(–1)i–1[i]q

[
m
i

]

q

q(1–m)x– i
2 (2m–1–i)

[m]q!
· 1

[x + i]q
, (2.5)

where [x + i]q := 1–qx+i

1–q .

Proof Multiplying (2.1) by (1 – q)m and using the definition of [x + i]q, we obtain

1∏m
i=1 [x + i]q

=
1

∏m
i=1

1–qx+i

1–q

=
m∑

i=1

q(1–m)x

1–qx+i

1–q

m∏

j=1,j �=i

1
qi–qj

1–q

=
m∑

i=1

q(1–m)x

[x + i]q

m∏

j=1,j �=i

1
qi–qj

1–q

. (2.6)

We may rewrite the product on the right-hand side of (2.6) as follows:

m∏

j=1,j �=i

1
qi–qj

1–q

=
i–1∏

j=1

1

–qj 1–qi–j

1–q

·
m∏

j=i+1

1

qi 1–qj–i

1–q

=
(–1)i–1

q i
2 (2m–1–i)

· 1
[i – 1]q![m – i]q!

. (2.7)

Combining (2.6) with (2.7), we may deduce the desired result. This completes the proof of
Corollary 2.2. �

By using the definition of q-binomial coefficient in (1.6) and combining (2.5) with m =
k, x = n (k, n ∈N), we have the following expansion:

1
[ n+k

k

]
q

=
[k]q!

∏k
i=1 [n + i]q

=
k∑

i=1

(–1)i–1[i]q

[
k
i

]

q

q(1–k)n– i
2 (2k–1–i)

[n + i]q
. (2.8)

Similarly, using a similar argument, we can get

1
[ n+k+r

k

]
q

= [k]q

k–1∑

i=1

(–1)i–1[i]q

[
k – 1

i

]

q

q(2–k)(n+r+1)– i
2 (2k–3–i)

[n + r + 1]q[n + r + 1 + i]q
, (2.9)

where r ∈N0 and 2 ≤ k ∈ N.
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2.2 Identities for q-Euler type sums
Theorem 2.3 For positive integers m and k, the following identity holds:

∞∑

n=1

ζn[m, qm–1]
[n]q[n + k]q

qn =
1

[k]q

⎧
⎨

⎩
Lim+1[qm] + (–1)m–1 ∑k–1

i=1
[H(1)

i ]
[i]m

q
qi

+
∑m–1

j=1 (–1)j–1Lim+1–j[qm–j][H (j)
k–1]

⎫
⎬

⎭ . (2.10)

Proof By using the Cauchy product of power series and the definition of q-harmonic num-
bers, we can find that

∞∑

n=1

ζn
[
m, qp]xn =

Lim[qpx]
1 – x

, |x| < 1, m, p ∈N. (2.11)

Multiplying (2.11) by x–1 – xk–1 and q-integrating over (0, q) yield

[k]q

∞∑

n=1

ζn[m, qp]
[n]q[n + k]q

qn = Lim+1
[
qp+1] +

k–1∑

i=1

∞∑

n=1

q(p+1)n+i

[n]m
q [n + i]q

, (2.12)

where the generalized q-integral is defined by (a ≤ x �= ∞) (see [3, 17, 38, 39])

∫ x

a
f (t)dqt =

∫ x

0
f (t)dqt –

∫ a

0
f (t)dqt = (1 – q)

∞∑

i=0

qi[xf
(
qix

)
– af

(
qia

)]
(2.13)

and

∫ x

0
f (t)dqt =(1 – q)x

∞∑

i=0

qif
(
qix

)
, x �= ∞. (2.14)

Taking p = m – 1 in (2.12) and r = 0 in (1.12), we obtain

[k]q

∞∑

n=1

ζn[m, qm–1]
[n]q[n + k]q

qn = Lim+1
[
qm] +

k–1∑

i=1

qi
∞∑

n=1

qmn

[n]m
q [n + i]q

, (2.15)

∞∑

n=1

qmn

[n]m
q [n + k]q

=
m–1∑

j=1

(–1)j–1

[k]j
q

Lim–j+1
[
qm–j] + (–1)m–1 [H (1)

k ]
[k]m

q
. (2.16)

Substituting (2.16) into (2.15) yields the desired result. We finish the proof of Theo-
rem 2.3. �

In fact, by a similar argument as in the proof of Theorem 2.3, we obtain the more general
identity

[k – r]q

∞∑

n=1

ζn[m, qm–1]
[n + r]q[n + k]q

qn =
m–1∑

j=1

(–1)j–1Lim–j+1
[
qm–j] [H (j)

k–1] – [H (j)
r–1]

qr

+ (–1)m–1
k–r∑

i=1

[H (1)
r+i–1]

[r + i – 1]m
q

qi–1, (2.17)
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where m, k, r ∈N and r < k. Putting m = 1 and 2 in (2.10), we give the following two exam-
ples:

∞∑

n=1

[Hn]
[n]q[n + k]q

qn =
1

[k]q

{
Li2[q] +

[H (1)
k ]

2
+ ζk[2, q2]
2

–
[H (1)

k ]
[k]q

qk
}

, (2.18)

∞∑

n=1

[H (2)
n ]

[n]q[n + k]q
qn =

1
[k]q

{
Li3

[
q2] + Li2[q]

[
H (1)

k–1
]

–
k–1∑

i=1

[H (1)
i ]

[i]2
q

qi

}
. (2.19)

Corollary 2.4 For m ∈N, we have

1
2

W (1,1)
0,m [1, 1; m + 1] – (–1)m–1W (0,1)

0,1 [1, 1; m + 1]

= W (1)
0,m+1[1; m + 2] +

m–1∑

j=1

(–1)j–1Lim–j+1
[
qm–j]W (0)

0,1 [1; j + 1]

–
1
2

W (2)
0,m[2; m + 1] – Li2[q]Lim+1

[
qm] (2.20)

and

1
2
{

W (0,1,1)
0,m

[{1}3; m + 1
]

+ W (0,2)
0,m [1, 2; m + 1]

}

–
(–1)m–1

2
{

W (0,1,1)
0,1

[{1}3; m + 1
]

+ W (0,2)
0,1 [1, 2; m + 1]

}

=
{

W (0,1)
0,m+1[1, 1; m + 2] – (–1)m–1W (0,1)

0,2 [1, 1; m + 2]
}

– Li2[q]
{

W (0)
0,m[1; m + 1] – (–1)m–1W (0)

0,1 [1; m + 1]
}

+
m–1∑

j=1

(–1)j–1W (0)
0,1 [1; j + 1]W (0)

0,m–j[1; m – j + 1]. (2.21)

Proof Formula (2.20) shows that multiplying (2.18) by qmk

[k]m
q

and summing with respect to k,
then using (2.16) yield

∞∑

n,k=1

[Hn]
[k]m

q [n]q[n + k]q
qnqmk

=
∞∑

k=1

qmk

[k]m+1
q

{
Li2[q] +

[H (1)
k ]

2
+ ζk[2, q2]
2

–
[H (1)

k ]
[k]q

qk
}

= Li2[q]Lim+1
[
qm] +

1
2
{

W (1,1)
0,m [1, 1; m + 1] + W (2)

0,m[2; m + 1]
}

– W (1)
0,m+1[1; m + 2]

=
∞∑

n=1

[Hn]
[n]q

qn
∞∑

k=1

qmk

[k]m
q [n + k]q

=
∞∑

n=1

[Hn]
[n]q

qn

{m–1∑

j=1

(–1)j–1

[n]j
q

Lim–j+1
[
qm–j] + (–1)m–1 [H (1)

n ]
[n]m

q

}
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= (–1)m–1W (0,1)
0,1 [1, 1; m + 1]

+
m–1∑

j=1

(–1)j–1Lim–j+1
[
qm–j]W (0)

0,1 [1; j + 1]. (2.22)

By a direct calculation, we obtain the result (2.20).
Similarly, to prove (2.21), multiplying (2.18) by [Hk ]

[k]m
q

qmk and summing with respect to k,
then applying the same arguments as in the proof of (2.20), we may easily deduce the
desired result. �

Theorem 2.5 For x, y ∈ [–1, 1] and positive integers m1, m2, k, r with r < k, the following
identity holds:

[k – r]q

∞∑

n=1

ζn[m1, x]ζn[m2, y] – ζn[m1 + m2, xy]
[n + r]q[n + k]q

qn+r

=
k–r∑

i=1

∞∑

n=1

{
ζn[m1, x]yn

[n]m2
q [n + r + i – 1]q

+
ζn[m2, y]xn

[n]m1
q [n + r + i – 1]q

–
2(xy)n

[n]m1+m2
q [n + r + i – 1]q

}
qn+r+i–1, (2.23)

where the partial sum ζn[m, x] is defined by

ζn[m, x] :=
n∑

j=1

xj

[j]m
q

.

Proof To prove identity (2.23), we consider the generating function

F[x, y, z] :=
∞∑

n=1

{
ζn[m1, x]ζn[m2, y] – ζn[m1 + m2, xy]

}
zn–1, z ∈ (–1, 1). (2.24)

By the definition of ζn[m, x], we can rewrite (2.24) as follows:

F[x, y, z] =
∞∑

n=1

⎧
⎨

⎩
(ζn[m1, x] + xn+1

[n+1]m1
q

)(ζn[m2, y] + xn+1

[n+1]m2
q

)

– (ζn[m1 + m2, xy] + xn+1yn+1

[n+1]m1+m2
q

)

⎫
⎬

⎭ zn–1

= zF[x, y, z] +
∞∑

n=1

{
ζn[m1, x]
[n + 1]m2

q
yn+1 +

ζn[m2, y]
[n + 1]m1

q
xn+1

}
zn

= zF[x, y, z] +
∞∑

n=1

{
ζn[m1, x]

[n]m2
q

yn +
ζn[m2, y]

[n]m1
q

xn – 2
xnyn

[n]m1+m2
q

}
zn–1.

Hence, we obtain the formula

∞∑

n=1

{
ζn[m1, x]ζn[m2, y] – ζn[m1 + m2, xy]

}
zn–1

=
∞∑

n=1

{
ζn[m1, x]

[n]m2
q

yn +
ζn[m2, y]

[n]m1
q

xn – 2
xnyn

[n]m1+m2
q

}
zn–1

1 – z
. (2.25)
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Multiplying (2.25) by zr – zk and q-integrating over (0, q), then using the identity

qn+r

[n + r]q
–

qn+k

[n + k]q
= [k – r]q

qn+r

[n + r]q[n + k]q
,

we can deduce (2.23). The proof is completed. �

In fact, using the Cauchy product of power series, (2.25) can be rewritten as

∞∑

n=1

{
ζn[m1, x]ζn[m2, y] – ζn[m1 + m2, xy]

}
zn–1

=
∞∑

n=1

n∑

k=1

{
ζk[m1, x]

[k]m2
q

yk +
ζn[m2, y]

[k]m1
q

xk – 2
xkyk

[k]m1+m2
q

}
zn–1. (2.26)

Thus, comparing the coefficients of zn–1 in (2.26), we obtain

n∑

k=1

{
ζk[m1, x]

[k]m2
q

yk +
ζk[m2, y]

[k]m1
q

xk
}

= ζn[m1, x]ζn[m2, y] + ζn[m1 + m2, xy]. (2.27)

Similarly, considering the following function

F[x, y] :=
∞∑

n=1

{
ζ 3

n [m, x] – 3ζn[m, x]ζn
[
2m, x2] + 2ζn

[
3m, x3]}yn–1, y ∈ (–1, 1),

by a similar argument as in the proof of (2.23), we deduce that

∞∑

n=1

{
ζ 3

n [m, x] – 3ζn[m, x]ζn
[
2m, x2] + 2ζn

[
3m, x3]}yn–1

= 3
∞∑

n=1

{
ζ 2

n [m, x]
[n]m

q
xn –

ζn[2m, x2]
[n]m

q
xn – 2

ζn[m, x]
[n]2m

q
x2n + 2

x3n

[n]3m
q

}
yn–1

1 – y
. (2.28)

By using the Cauchy product of power series again and then comparing the coefficients of
yn–1, we obtain

3
n∑

k=1

{
ζ 2

k [m, x] – ζk[2m, x2]
[k]m

q
xk – 2

ζk[m, x]
[k]2m

q
x2k + 2

x3k

[k]3m
q

}

= ζ 3
n [m, x] – 3ζn[m, x]ζn

[
2m, x2] + 2ζn

[
3m, x3]. (2.29)

Combining (2.27) and (2.29), we have the result

n∑

k=1

ζ 2
k [m, x] + ζk[2m, x2]

[k]m
q

xk =
1
3
{
ζ 3

n [m, x] + 3ζn[m, x]ζn
[
2m, x2] + 2ζn

[
3m, x3]}. (2.30)

Setting x = q, m = 1 in the above equation, we obtain

n∑

k=1

[H (1)
k ]

2
+ ζk[2, q2]
[k]q

qk =
1
3
{[

H (1)
n
]3 + 3

[
H (1)

n
]
ζn
[
2, q2] + 2ζn

[
3, q3]}.
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Theorem 2.6 For positive integers m, r, k with r < k and x ∈ [–1, 1], the following identity
holds:

[k – r]q

∞∑

n=1

ζ 3
n [m, x] – ζn[3m, x3]

[n + r]q[n + k]q
qn+r

= 3
k–r∑

i=1

∞∑

n=1

{
ζ 2

n [m, x]
[n]m

q [n + r + i – 1]q
xn –

ζn[m, x]
[n]2m

q [n + r + i – 1]q
x2n

}
qn+r+i–1. (2.31)

Proof Similar as in the proof of Theorem 2.5, we consider the power series

F[x, y] :=
∞∑

n=1

{
ζ 3

n [m, x] – ζn
[
3m, x3]}yn–1, y ∈ (–1, 1)

and apply the same arguments as in the proof of Theorem 2.5. We may deduce for-
mula (2.31). �

Taking r = 0 and m1 = m2 = x = y = 1 in (2.23), we get

[k]q

∞∑

n=1

[Hn]2 – ζn[2]
[n]q[n + k]q

qn

= 2
k–1∑

i=1

qi
∞∑

n=1

{
[Hn]

[n]q[n + i]q
qn –

qn

[n]2
q[n + i]q

}
+ 2

∞∑

n=1

{
[Hn]
[n]2

q
qn –

qn

[n]3
q

}

= 2Li3
[
q2] + 2Li2[q]

[
H (1)

k–1
]

+
k–1∑

i=1

[H (1)
i ]

2
+ ζi[2, q2]
[i]q

qi

– 2
k–1∑

i=1

[H (1)
i ]

[i]2
q

q2i – 2
k–1∑

i=1

qi
∞∑

n=1

qn

[n]2
q[n + i]q

. (2.32)

From (1.17) and (2.19), we have

[k]q

∞∑

n=1

ζn[2]
[n]q[n + k]q

qn = [k]q

∞∑

n=1

[H (2)
n ]

[n]q[n + k]q
qn + (1 – q)[k]q

∞∑

n=1

[Hn]
[n]q[n + k]q

qn

= Li3
[
q2] + Li2[q]

[
H (1)

k–1
]

–
k–1∑

i=1

[H (1)
i ]

[i]2
q

qi

+ (1 – q)
{

Li2[q] +
[H (1)

k ]
2

+ ζk[2, q2]
2

–
[H (1)

k ]
[k]q

qk
}

. (2.33)

Substituting (2.33) into (2.32) results in

[k]q

∞∑

n=1

[Hn]2

[n]q[n + k]q
qn

= 3Li3
[
q2] + 3Li2[q]

[
H (1)

k–1
]

+
k–1∑

i=1

[H (1)
i ]

2
+ ζi[2, q2]
[i]q

qi
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– 2
k–1∑

i=1

[H (1)
i ]

[i]2
q

q2i –
k–1∑

i=1

[H (1)
i ]

[i]2
q

qi – 2
k–1∑

i=1

qi
∞∑

n=1

qn

[n]2
q[n + i]q

+ (1 – q)
{

Li2[q] +
[H (1)

k ]
2

+ ζk[2, q2]
2

–
[H (1)

k ]
[k]q

qk
}

. (2.34)

Similarly, putting r = 0, m = 1, x = 1 in (2.31), we get

[k]q

∞∑

n=1

[Hn]3 – ζn[3]
[n]q[n + k]q

qn = 3
∞∑

n=1

{
[Hn]2

[n]2
q

qn –
[Hn]
[n]3

q
qn
}

+ 3
k–1∑

i=1

qi
∞∑

n=1

{
[Hn]2

[n]q[n + i]q
–

[Hn]
[n]2

q[n + i]q

}
qn. (2.35)

From (2.10), (2.34) and (2.35), we know that the cubic q-sums

∞∑

n=1

[Hn]3

[n]q[n + k]q
qn

are reducible to q-polylogarithms, q-harmonic numbers and q-rational series. Letting q
tend to 1 in (2.34), we get the expression for quadratic sums

∞∑

n=1

H2
n

n(n + k)

in terms of harmonic numbers and zeta values:

∞∑

n=1

H2
n

n(n + k)
=

1
k

⎧
⎨

⎩
3ζ (3) + H3

k +3Hk H(2)
k +2H(3)

k
3

– H2
k +H(2)

k
k –

∑k–1
i=1

Hi
i2 + ζ (2)Hk–1

⎫
⎬

⎭ . (2.36)

Note that result (2.36) is given in Sofo’s paper [40] and Xu’s paper [1] with Zhang and Zhu.
It should be emphasized that the papers [1, 2, 4, 5, 40] also contain many other types of
results. For example, from [1], we have the result

∞∑

n=1

H3
n

n(n + k)
=

1
k

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

10ζ (4) + H4
k +8Hk H(3)

k +6H2
k H(2)

k +3(H(2)
k )

2
+6H(4)

k
4

– H3
k +3Hk H(2)

k +2H(3)
k

k + 4ζ (3)Hk–1 + 1
2ζ (2)H (2)

k–1

+ 3
2ζ (2)H2

k–1 +
∑k–1

i=1
Hi
i3 – 3

2
∑k–1

i=1
H2

i +H(2)
i

i2 – 3
∑k–1

i=1
1
i
∑i

j=1
Hj
j2

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
.

The result above can also be obtained by using (2.35) with letting q → 1.

3 Some expressions of series involving q-harmonic numbers and q-binomial
coefficients

In this section, we give some closed form sums of W (s)
k,t [m; p] through q-polylogarithms,

q-harmonic numbers and other q-series.
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From (2.8) and (2.9), we have the expansions

W (s1,...,sr)
k,k+p–1 [m1, m2, . . . , mr ; p]

=
k∑

i=1

(–1)i–1[i]q

[
k
i

]

q

q– i
2 (2k–1–i)

×
∞∑

n=1

ζn[m1, qs1 ]ζn[m2, qs2 ] · · · ζn[mr , qsr ]
[n]p

q[n + i]q
qpn (3.1)

and

W (s1,...,sr)
k,k–1 [m1, m2, . . . , mr ; 0]

= [k]q

k–1∑

i=1

(–1)i–1[i]q

[
k – 1

i

]

q

q(2–k)– i
2 (2k–3–i)

×
∞∑

n=1

ζn[m1, qs1 ]ζn[m2, qs2 ] · · · ζn[mr , qsr ]
[n + 1]q[n + 1 + i]q

qn. (3.2)

Hence, combining formulas (2.10), (2.17), (2.34), (3.1) and (3.2), by direct calculations, we
can get the following three results.

Theorem 3.1 For positive integers m, k and p,

W (m–1)
k,k+p–1[m; p]

=
k∑

i=1

(–1)i–1[i]q

[
k
i

]

q

q– i
2 (2k–1–i)

∞∑

n=1

ζn[m, qm–1]
[n]p

q[n + i]q
qpn

=
k∑

i=1

(–1)i–1[i]q

[
k
i

]

q

q– i
2 (2k–1–i)

{ p–1∑

j=1

(–1)j–1

[i]j
q

∞∑

n=1

ζn[m, qm–1]
[n]p+1–j

q
q(p–j)n

}

+
k∑

i=1

(–1)i–1

[
k
i

]

q

q– i
2 (2k–1–i)

× (–1)p–1

[i]p–1
q

⎧
⎨

⎩
Lim+1[qm] + (–1)m–1 ∑i–1

j=1
[H(1)

j ]
[j]m

q
qj

+
∑m–1

j=1 (–1)j–1Lim+1–j[qm–j][H (j)
i–1]

⎫
⎬

⎭ . (3.3)

Theorem 3.2 For positive integers m and k,

W (m–1)
k,k–1 [m; 0]

= [k]q

k–1∑

i=1

(–1)i–1[i]q

[
k – 1

i

]

q

q(2–k)– i
2 (2k–3–i)

∞∑

n=1

ζn[m, qm–1]
[n + 1]q[n + 1 + i]q

qn

= [k]q

k–1∑

i=1

(–1)i–1

[
k – 1

i

]

q

q(2–k)– i
2 (2k–3–i)

⎧
⎪⎨

⎪⎩

∑m–1
j=1 (–1)j–1Lim–j+1[qm–j] [H(j)

i ]
q

+ (–1)m–1 ∑i
j=1

[H(1)
j ]

[j]m
q

qj–1

⎫
⎪⎬

⎪⎭
. (3.4)
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Theorem 3.3 For positive integer k,

W (0,0)
k,k [1, 1; 1]

=
k∑

i=1

(–1)i–1[i]q

[
k
i

]

q

q– i
2 (2k–1–i)

∞∑

n=1

[Hn]2

[n]q[n + i]q
qn

=
k∑

i=1

(–1)i–1

[
k
i

]

q

q– i
2 (2k–1–i)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3Li3[q2] + 3Li2[q][H (1)
i–1]

+
∑i–1

j=1
[H(1)

j ]
2

+ζj[2,q2]
[j]q

qj

– 2
∑i–1

j=1
[H(1)

j ]

[j]2
q

q2j –
∑i–1

j=1
[H(1)

j ]

[j]2
q

qj

– 2
∑i–1

j=1 qj ∑∞
n=1

qn

[n]2
q[n+j]q

+ (1 – q)Li2[q]

+ (1 – q)( [H(1)
i ]

2
+ζi[2,q2]
2 – [H(1)

i ]
[i]q

qi)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (3.5)

Taking p = 1 in (3.3), we have

W (m–1)
k,k [m; 1]

=
k∑

i=1

(–1)i–1

[
k
i

]

q

q– i
2 (2k–1–i)

⎧
⎨

⎩
Lim+1[qm] + (–1)m–1 ∑i–1

j=1
[H(1)

j ]
[j]m

q
qj

+
∑m–1

j=1 (–1)j–1Lim+1–j[qm–j][H (j)
i–1]

⎫
⎬

⎭ . (3.6)

Moreover, from (2.10), (2.34), (2.35) and (3.1), we know that the cubic q-Euler type sum
W (0,0,0)

k,k [{1}3; 1] is reducible to q-polylogarithms, q-harmonic numbers and q-rational se-
ries. Letting q → 1 in (3.5) and (3.6), we obtain the well-known identities [1]

Wk(m; 0) = k
k–1∑

i=1

(–1)i–1

(
k – 1

i

){m–1∑

j=1

(–1)j–1ζ (m – j + 1)H (j)
i + (–1)m–1

i∑

j=1

Hj

jm

}
,

Wk(m; 1) =
k∑

r=1

(–1)r+1

(
k
r

){
ζ (m + 1) + (–1)m–1 ∑r–1

i=1
Hi
im

+
∑m–1

j=1 (–1)j–1ζ (m + 1 – j)H (j)
r–1

}
,

Wk
({1}2; 1

)
=

k∑

r=1

(–1)r+1

(
k
r

)⎧
⎨

⎩
3ζ (3) + H3

r +3HrH(2)
r +2H(3)

r
3

– H2
r +H(2)

r
r –

∑r–1
i=1

Hi
i2 + ζ (2)Hr–1

⎫
⎬

⎭ .
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