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Abstract
In this paper, a discrete-time biological model and its dynamical behaviors are studied
in detail. The existence and stability of the equilibria of the model are qualitatively
discussed. More precisely, the conditions for the existence of a flip bifurcation and a
Neimark-Sacker bifurcation are derived by using the center manifold theorem and
bifurcation theory. Numerical simulations are presented not only to validate our
results with the theoretical analysis, but also to exhibit the complex dynamical
behaviors. We also analyze the dynamic characteristics of the system in a
two-dimensional parameter space. Numerical results indicate that we can more
clearly and directly observe the chaotic phenomenon, period-doubling and
period-adding, and the optimal parameters matching interval can also be found
easily.
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1 Introduction
A host-parasitoid model with a lower bound for the host is given by [1] as follows:

⎧
⎨

⎩

H(t + 1) = H(t) exp[ r(1– H(t)
k )(H(t)–c)

H(t)+m – abP(t)
1+aH(t) ],

P(t + 1) = H(t)[1 – exp(– abP(t)
1+aH(t) )],

(1.1)

where H(t) is the host population size in generation t, P(t) is the parasitoid population
size in generation t, r is the intrinsic growth rate. k is the carrying capacity of the environ-
ment and c is the lower bound for the host. Many species abide by their own ecological
genetic rules, and all of them have their own lower bound. Once the population size goes
below the lower bound, the species would die out. Therefore, it is necessary to investigate
the interspecific interaction with a lower bound. In this model, a is a search rate, b is a
conversion factor, and m is a constant. These parameters r, k, c, a, b and m are all positive
constants.

The two-dimensional parameter-space has attracted considerable interest in recent
years. There have been some studies focusing on detailed treatments of this topic [2–8].
For example, in [2] Sun et al. investigate the emergence of quasi-periodic and mode-locked
states of an arbitrary period in pairs of coupled maps of a discrete system. Li et al. [3]
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study the dynamic behaviors of a discrete system with exponential terms, two control
parameters are involved in this system. In their paper, the authors show that there are
different kinds of fractal structures in both the attractive and the divergent regions. The
two-dimensional parameter space has also been reported by Paulo C Rech [4], who in-
vestigates a three quadratic discrete-time system in which transitions are followed by pe-
riodic, quasi-periodic, chaotic and hyper-chaotic states. The author uses the maximum
Lyapunov exponents, parameter planes, phase space portraits and bifurcation diagrams
to verify these transitions. In [8] a new method with a discrete physiological control sys-
tem is introduced and the dynamical behaviors of the discrete model are investigated. The
division diagrams are simulated to catch the dynamic behaviors of the system about two
parameters. The above-mentioned models in these literatures are parameter spaces of the
discrete system. Similar results are observed in [5–7], they demonstrate the complicated
behaviors of the continuous system, which is also controlled by two different parameters
numerically.

With the increasing application of ecological models in the real world, more and more
attention has been paid to the host-parasitoid models, and they have played an important
and fundamental role in the relationship among the biological populations. Although this
kind of model has been investigated by many scholars, little research has been carried
out on discrete systems [9–13]. In this study, the discrete host-parasitoid system (1.1) is
further investigated in detail. We mainly pay our attention to deriving the existence of flip
and Neimark-Sacker bifurcations. For simplicity, system (1.1) can be rewritten as follows:

⎧
⎨

⎩

x → x exp[ r(1– x
k )(x–c)

x+m – aby
1+ax ],

y → x[1 – exp(– aby
1+ax )].

(1.2)

Our objective is to study systematically the existence conditions of the flip bifurcation
and the Neimark-Sacker bifurcation, which will be derived using the center manifold the-
orem and the bifurcation theory (see [14, 15]). The effectiveness of these theoretical analy-
ses is determined by bifurcation diagrams with one control parameter. Furthermore, two-
dimensional parameter-space diagrams for system (1.2) are presented to clarify the re-
lationship between complex dynamic behaviors and two control parameters. In fact, the
problem considered in this paper and the obtained results can be regarded as a beneficial
supplement to the work of [1].

The general outline of this paper is as follows. In Section 2, we discuss the stability crite-
rion of the system at different equilibria in the interior of R2. We prove that under certain
parametric condition system (1.2) admits a bifurcation in Section 3. Numerical simula-
tions using MATLAB are applied in Section 4 to support the theoretical analyses and vi-
sualize the newly observed complex dynamics of the system. These findings prove that
there are possibilities for periodic and chaotic motions to exist in the parameter space. In
addition, the phase diagrams of two control parameters are also presented. Finally, com-
ments and conclusions are summarized.

2 Stability of equilibria
In this section, we first determine the existence of equilibria of system (1.2) and then in-
vestigate their stability by calculating the eigenvalues for the Jacobian matrix at each equi-
librium. At last, sufficient conditions for the existence of a flip bifurcation and a Neimark-
Sacker bifurcation are derived using a qualitative theorem and bifurcation theory [14, 15].
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We can get one equilibrium E0(0, 0) and the other positive equilibrium E1(x1, y1), where
x1, y1 satisfy the following equation:

⎧
⎪⎨

⎪⎩

x1 = –
q ln c

q
a[q ln c

q +bq–b] ,

y1 =
(q–1) ln c

q
a[q ln c

q +bq–b] ,
(2.1)

where q = exp[ r(1–x1/k)(x1–c)
x1+m ].

The Jacobian matrix of system (1.2) at E0 is

J0(0, 0) =

(
e– rc

m 0
0 0

)

.

Accordingly, we can get eigenvalues

λ1 = e– rc
m , λ2 = 0,

from which, we find that E0 is a stable node (|λ1| < 1). The rigorous estimate of the result
can be found in [1]. Now we are interested in considering the stability of E1. The Jacobian
matrix of (1.2) at E1 can be written as follows:

J1(x1, y1) =

(
1 + rx1G + H – abx1

1+ax1

1 – e
aby1

1+ax1 – He
aby1

1+ax1 L

)

,

where G = –(x1–c)
k(x1+m) + 1– x1

k
x1+m – (1– x1

k )(x1–c)
(x1+m)2 , H = a2bx1y1

(1+ax1)2 , L = abx1
1+ax1

e
aby1

1+ax1 .
The characteristic equation of the Jacobian matrix J1 is given by

F(λ) = λ2 + P(x1, y1)λ + Q(x1, y1) = 0, (2.2)

with coefficients

P(x1, y1) = –(1 + rx1G + H + L),

Q(x1, y1) = rx1LG +
abx1

1 + ax1
.

From (2.2) we have

F(1) =
abx1

1 + ax1
– H – L – (x1G – x1LG)r,

F(–1) =
abx1

1 + ax1
+ H + L + 2 + (x1G + x1LG)r.

In order to discuss the stability of the equilibrium E1, we also need the following
lemma, which can be easily proved by the relationship between roots and coefficients of a
quadratic equation [9].

Lemma 2.1 Let F(λ) = λ2 +Pλ+Q. Assume that F(1) > 0, λ1 and λ2 are the roots of F(λ) = 0.
Then we have the following statements:
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(i) |λ1| < 1, |λ2| < 1 if and only if F(–1) > 0 and Q < 1;
(ii) |λ1| < 1, |λ2| > 1 (or|λ1| > 1 and |λ2| < 1) if and only if F(–1) < 0;

(iii) |λ1| > 1, |λ2| > 1 if and only if F(–1) > 0 and Q > 1;
(iv) λ1 = –1, |λ2| �= 1 if and only if F(–1) = 0 and P �= 0, 2;
(v) λ1, λ2 are complex and |λ1| = |λ2| = 1 if and only if P2 – 4Q < 0 and Q = 1.

Let λ1 and λ2 be the roots of (1.2), which are called eigenvalues of the fixed point (x1, y1).
The fixed point (x1, y1) is a sink or locally asymptotically stable if |λ1| < 1, |λ2| < 1. The fixed
point (x1, y1) is a source or locally unstable if |λ1| > 1, |λ2| > 1. The fixed point (x1, y1) is
a saddle if |λ1| < 1 and |λ2| > 1 (or |λ1| > 1 and |λ2| < 1). The fixed point (x1, y1) is non-
hyperbolic if either |λ1| = 1 or |λ2| = 1.

Then we have the following theorem on the stability of a positive fixed point of system
(1.2).

Theorem 2.1 For the positive equilibrium E1, we have the following estimates:

(i) it is a sink if the condition holds: r > –
2+H+L+ abx1

1+ax1
x1G+x1LG and r <

1– abx1
1+ax1

x1LG ;

(ii) it is a source if the condition holds: r > –
2+H+L+ abx1

1+ax1
x1G+x1LG and r >

1– abx1
1+ax1

x1LG ;

(iii) it is a saddle if the condition holds: r < –
2+H+L+ abx1

1+ax1
x1G+x1LG ;

(iv) it is non-hyperbolic if one of the following conditions holds:

(iv.1) r = –
2+H+L+ abx1

1+ax1
x1G+x1LG , and r �= – 1+H+L

x1G , – 3+H+L
x1G ;

(iv.2) r =
1– abx1

1+ax1
x1GL , and – 3+H+L

x1G < r < 1–H–L
x1G .

From the above theorem, if the term (iv.1) holds, one can easily obtain that one of the
eigenvalues of E1 is –1 and the other is 2 + rx1G + H + L, which is neither 1 nor –1. If the
term (iv.2) holds, then the eigenvalues of E1 are a pair of complex conjugate eigenvalues
with modulus one. By Theorems 4.3 and 4.6 in [16], we can obtain that when the eigenval-
ues of the positive point are –1 and a pair of conjugate numbers, the system will undergo
a flip bifurcation and N-S bifurcation, respectively.

Let

FB =
{

(r, a, m, k, c, b) : r = –
2 + H + L + abx1

1+ax1

x1G + x1LG
, m > 0

}

.

The equilibrium E1(x1, y1) can arise a flip bifurcation when parameters vary in a small
neighborhood of FB.

Let

HB =
{

(r, a, m, b, c, k) : r =
1 – abx1

1+ax1

x1GL
,

–(3 + H + L)
x1G

< r <
1 – H – L

x1G
, m > 0

}

.

The equilibrium E1(x1, y1) can lead to the bifurcation of Neimark-Sacker when parame-
ters are restricted to a small neighborhood of HB. In the following section, we will investi-
gate the flip bifurcation of E1 if parameters vary in a small vicinity of FB and the Neimark-
Sacker bifurcation of E1 if parameters lie in a small scope of HB.
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3 Bifurcation
Based on the above-mentioned analysis, in this section, we mainly focus on the flip bifur-
cation and Neimark-Sacker bifurcation of E1 because they are correlated with the local
and global stability of system (1.2). We choose r as a bifurcation parameter for studying
the bifurcations.

3.1 Flip bifurcation
We first discuss the flip bifurcation of system (1.2) at E1(x1, y1) when parameters vary in a
small neighborhood of FB [10, 17, 18]. Select arbitrary parameters (a, r1, m, k, b, c) from FB.
System (1.2) has a unique positive equilibrium E1(x1, y1), the corresponding eigenvalues
are λ1 = –1,λ2 = 2 + rx1G + H + L with |λ2| �= 1.

Let u = x – x1, v = y – y1, r∗ = r – r1, the equilibrium (x1, y1) is transformed to the origin
point (0, 0). We consider the parameter r∗ as a new dependent variable, and we can get

⎛

⎜
⎝

u
r∗

v

⎞

⎟
⎠ →

⎛

⎜
⎜
⎝

a11u + a12r∗ + a13v + a0u2 + a1uv + a2ur∗ + a3vr∗ + a4u3 + a5u2v + a6u2r∗
+a7uvr∗ + a8v2 + a9uv2 + a10v3 + O(4)

–r∗
a31u + a33v + b0u2 + b1uv + b4u3 + b5u2v + b8v2 + b9uv2 + b10v3 + O(4)

⎞

⎟
⎟
⎠,

(3.1)

where

a11 = 1 + rx1G + H , a12 =
x1(1 – x1

k )(x1 – c)
m + x1

, a13 = –
abx1

1 + ax1
,

a0 = r
(

G + GHx1 –
x1(kG + 1)
k(m + x1)

)

+
x1H2

2
+ H +

aH
1 + ax1

,

a1 = –
abx1G
1 + ax1

r –
abx1H
1 + x1

–
ab

(1 + ax1)2 ,

a2 = Gx1, a3 = 0, a31 = 1 – He– aby1
1+ax1 – e– aby1

1+ax1 , a33 = L,

a4 = r
(

a2by1G
(1 + ax1)3 +

a4b2x1y2
1G

2(1 + ax1)4 –
m(1 + kG)
k(m + x1)2 –

H(kG + 1)
k(m + x1)

)

+
a4b2y2

1G
2(1 + ax1)4

–
a3by1

(1 + ax1)4 –
a5b3x1y2

1
(1 + ax1)5 +

a6b3x1y3
1

6(1 + ax1)6 ,

a5 = r
(

abx1(1 + kG)
k(1 + ax1)(m + x1)

–
abG

(1 + ax1)2 –
a3b2x1y1G
2(1 + ax1)3

)

+
a2b

(1 + ax1)3

–
a3b2y1

(1 + ax1)4 –
a4b2x1y1

(1 + ax1)4 –
a5b3x1y2

1
2(1 + ax1)5 , (3.2)

a6 = G + GHx1 –
x1(kG + 1)
k(m + x1)

, a7 =
–abx1G
1 + ax1

, a8 =
a2b2x1

2(1 + ax1)2 ,

a9 =
a2b2x1G

2(1 + ax1)2 r +
a2b2(1 + x1H)

2(1 + ax1)2 –
a3b2x1

(1 + ax1)3 , a10 =
–a3b3x1

6(1 + ax1)3 ,

b0 = e– aby1
1+ax1

(
–a2by1

(1 + ax1)3 –
a4b2x1y2

1
2(1 + ax1)4

)

, b1 = e– aby1
1+ax1

(
a3b2x1y1

(1 + ax1)3 +
ab

(1 + ax1)2

)

,

b4 = e– aby1
1+ax1

(
–a6b3x1y3

1
6(1 + ax1)6 +

a5b2x1y2
1

(1 + ax1)5 +
a3by1

(1 + ax1)4 –
a4b2y2

1
2(1 + ax1)4

)

,
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b5 = e– aby1
1+ax1

(
a3b2y1

(1 + ax1)3 –
a2b

(1 + ax1)3 +
a5b3x1y2

1
2(1 + ax1)5 –

2a4b2x1y1

(1 + ax1)4

)

,

b8 = –e– aby1
1+ax1

a2b2x1

2(1 + ax1)2 , b10 =
a3b3x1

6(1 + ax1)3 e– aby1
1+ax1 ,

b9 = e– aby1
1+ax1

(
a3b2x1

(1 + ax1)3 –
a2b2

2(1 + ax1)2 –
a4b3x1y1

2(1 + ax1)4

)

.

If a11 + a33 + 2 �= 0, we make an invertible matrix T as follows:

T =

⎛

⎜
⎝

–1 – a33 1 λ2–a33
a31

0 – a11+a33+2
a12

0
a31 0 1

⎞

⎟
⎠ .

Using translation

⎛

⎜
⎝

u
r∗

v

⎞

⎟
⎠ = T

⎛

⎜
⎝

x̄
r̄∗

ȳ

⎞

⎟
⎠ , (3.3)

then system (3.1) reduces to

⎛

⎜
⎝

x̄
r̄∗

ȳ

⎞

⎟
⎠ →

⎛

⎜
⎝

–1 1 0
0 –1 0
0 0 λ2

⎞

⎟
⎠

⎛

⎜
⎝

x̄
r̄∗

ȳ

⎞

⎟
⎠ +

⎛

⎜
⎝

f (x̄, ȳ, r̄∗)
0

g(x̄, ȳ, r̄∗)

⎞

⎟
⎠ , (3.4)

where

f
(
x̄, ȳ, r̄∗) =

(
b0(λ2 – a33)
a31(1 + λ2)

–
a0

1 + λ2

)

u2 +
(

b1(λ2 – a33)
a31(1 + λ2)

–
a1

1 + λ2

)

uv –
a2

1 + λ2
ur∗

+
(

b4(λ2 – a33)
a31(1 + λ2)

–
a4

1 + λ2

)

u3 +
(

b5(λ2 – a33)
a31(1 + λ2)

–
a5

1 + λ2

)

u2v –
a6

1 + λ2
u2r∗

+
(

b8(λ2 – a33)
a31(1 + λ2)

–
a8

1 + λ2

)

v2 +
(

b9(λ2 – a33)
a31(1 + λ2)

–
a9

1 + λ2

)

uv2 –
a7

1 + λ2
uvr∗

+
(

b10(λ2 – a33)
a31(1 + λ2)

–
a10

1 + λ2

)

v3 + O
((|u| + |v| +

∣
∣r∗∣∣)4),

g
(
x̄, ȳ, r̄∗) =

(
a31a0

1 + λ2
+

b0(1 + a33)
1 + λ2

)

u2 +
(

a31a1

1 + λ2
+

b1(1 + a33)
1 + λ2

)

uv +
a31a2

1 + λ2
ur∗

+
(

a31a4

1 + λ2
+

b4(1 + a33)
1 + λ2

)

u3 +
(

a31a5

1 + λ2
+

b5(1 + a33)
1 + λ2

)

u2v +
a31a6

1 + λ2
u2r∗

+
(

a31a8

1 + λ2
+

b8(1 + a33)
1 + λ2

)

v2 +
(

a31a9

1 + λ2
+

b9(1 + a33)
1 + λ2

)

uv2 +
a31a7

1 + λ2
uvr∗

+
(

a31a10

1 + λ2
+

b10(1 + a33)
1 + λ2

)

v3 + O
((|u| + |v| +

∣
∣r∗∣∣)4),

u = (–1 – a33)x̄ + r̄∗ +
λ2 – a33

a31
ȳ, r∗ = –

a11 + a33 + 2
a12

r̄∗, v = a31x̄ + ȳ.
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Next, we search for the center manifold of (3.4) at the point (0, 0) in a small neighborhood
of r∗ = 0. By a center manifold theorem (Theorem 7 in [14]), we know that there exists a
center manifold W c(0, 0, 0), which can be approximately represented as follows:

W c(0, 0, 0) =
{(

x̄, ȳ, r̄∗) ∈ R3 : ȳ = c1x̄2 + c2x̄r̄∗ + c3 ¯r∗2 + O
((|x̄| +

∣
∣r̄∗∣∣)3)},

where O((|x̄| + |r̄∗|)3) is the sum of all terms whose order is greater than 2.
After calculations, the following results can be easily obtained:

c1 = (1 + a33)2[a31a0 + b0(1 + a33)] – a31(1 + a33)[a31a1 + b1(1 + a33)] + a2
31[a31a8 + b8(1 + a33)]

(1 – λ2
2)

,

c2 =
a31[a31a1 + b1(1 + a33)] – 2(1 + a33)[a31a0 + b0(1 + a33)]

(1 – λ2)2

+
a31a2(1 + a33)(a11 + a33 + 2)

a12(1 – λ2)2 ,

c3 =
a31a0 + b0(1 + a33)

(1 – λ2)2 –
a31a2(a11 + a33 + 2)

a12(1 – λ2)2 .

Therefore, we consider the following map originating from (3.4) restricted to the center
manifold W c(0, 0, 0).

F : x̄ → –x̄ + r̄∗ + h1x̄2 + h2x̄r̄∗ + h3r̄∗2 + h4x̄3 + h5x̄2r̄∗

+ h6x̄r̄∗2 + h7r̄∗3 + O
((|x̄| +

∣
∣r̄∗∣∣)4), (3.5)

where

h1 =
1

1 + λ2

{
(1 + a33)2[a31a0 + b0(1 + a33)

]
– a31(1 + a33)

[
a31a1 + b1(1 + a33)

]

+ a2
31

[
a31a8 + b8(1 + a33)

]}
,

h2 =
1

1 + λ2

{
a31

[
a31a1 + b1(1 + a33)

]
– 2(1 + a33)

[
a31a0 + b0(1 + a33)

]

+ a31a2(1 + a33)(a11 + a33 + 2)
}

,

h3 =
1

1 + λ2

{
a31a0 + b0(1 + a33) – a31a2(a11 + a33 + 2)

}
,

h4 =
1

1 + λ2

{[
a31a1 + b1(1 + a33)

]
(λ2 – 1 – 2a33)c1

– 2(1 + a33)(λ2 – a33)
[
a31a0 + b0(1 + a33)

]
c1

+ 2a31
[
a31a8 + b8(1 + a33)

]
c1 – (1 + a33)3[a31a4 + b4(1 + a33)

]

+ a3
31

[
a31a10 + b10(1 + a33)

]

+ a2
31(1 + a33)

[
a31a9 + b9(1 + a33)

]
+ a31(1 + a33)2[a31a5 + b5(1 + a33)

]}
,

h5 =
1

1 + λ2

{
[
a31a1 + b1(1 + a33)

]
(λ2 – 1 – 2a33)c2

– 2(1 + a33)(λ2 – a33)
[
a31a0 + b0(1 + a33)

]
c2
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+ 2a31
[
a31a8 + b8(1 + a33)

]
c2 +

[
a31a1 + b1(1 + a33)

]
c1

–
a2a31(λ2 – a33)(a11 + a33 + 2)

a12a31
c1

+ 3(1 + a33)2[a31a4 + b4(1 + a33)
]

+ a31
[
a31a9 + b9(1 + a33)

]

– 2(1 + a33)
[
a31a5 + b5(1 + a33)

]

+
a7a2

31(1 + a33)(a11 + a33 + 2)
a12

–
a6a31(a11 + a33 + 2)(1 + a33)2

a12

}

,

h6 =
1

1 + λ2

{
[
a31a1 + b1(1 + a33)

]
(λ2 – 1 – 2a33)c3

– 2(1 + a33)(λ2 – a33)
[
a31a0 + b0(1 + a33)

]
c3

+ 2a31
[
a31a8 + b8(1 + a33)

]
c3 +

[
a31a1 + b1(1 + a33)

]
c2

–
a2a31(λ2 – a33)(a11 + a33 + 2)

a12a31
c2 – 3(1 + a33)

[
a31a4 + b4(1 + a33)

]

+ a31
[
a31a5 + b5(1 + a33)

]
–

a7a2
31(a11 + a33 + 2)

a12

+
2a31a6(1 + a33(a11 + a33 + 2))

a12

}

,

h7 =
1

1 + λ2

{
[
a31a1 + b1(1 + a33)

]
c3 –

a31a2(λ2 – a33)(a11 + a33 + 2)
a12a31

c3

+
[
a31a4 + b4(1 + a33)

]
–

a31a6(a11 + a33 + 2)
a12

}

.

In order to ensure that map (3.5) appears as a flip bifurcation, we require two discrimi-
natory quantities α1 and α2 to be not zero, where

α1 =
(

2∂2F
∂ x̄ ∂r∗ +

∂F
∂r∗

∂2F
∂ x̄2

)

(0,0)
, α2 =

(
1
3

∂3F
∂ x̄3 +

1
2

(
∂2F
∂ x̄2

)2)

(0,0)
. (3.6)

According to the above discussions and applying the bifurcation theory presented as
Section 3.2 in Guckenheimer [15], we state the following result on a flip bifurcation.

Theorem 3.1 If α2 �= 0, the parameter r∗ alters in the limited region of the point (0, 0),
then system (1.2) undergoes a flip bifurcation at E1(x1, y1). Moreover, the period-2 orbit
that bifurcates from E1(x1, y1) is stable (unstable) if α2 > 0 (α2 < 0).

3.2 N-S bifurcation
Next, we will give attention to recapitulating the conditions of the existence for a
Neimark-Sacker bifurcation (discrete Hopf bifurcation) by using the bifurcation theorem
[11, 12, 19].

Considering system (1.2) with arbitrary parameters (a, r2, m, k, b, c) ∈ HB, we write sys-
tem (1.2) in the form

⎧
⎨

⎩

x → x exp[ r2(1– x
k )(x–c)

x+m – aby
1+ax ],

y → x[1 – exp(– aby
1+ax )].

(3.7)
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E1(x1, y1) is the only positive equilibrium of system (3.7) given by (2.1) and

r2 =
1

x1GL

(

1 –
abx1

1 + ax1

)

.

We consider the perturbation of (3.7), as shown below, with r̄∗ as a bifurcation param-
eter.

⎧
⎨

⎩

x → x exp[ (r̄∗+r2)(1– x
k )(x–c)

x+m – aby
1+ax ],

y → x[1 – exp(– aby
1+ax )],

(3.8)

where |r̄∗| � 1, which is a limited perturbation parameter.
Let u = x – x1, v = y – y1. After shifting the fixed point (x1, y1) to the origin, we can get

(
u
v

)

→
(

a11u + a13v + a0u2 + a1uv + a4u3 + a5u2v + a8v2 + a9uv2 + a10v3 + O(4)
a31u + a33v + b0u2 + b1uv + b4u3 + b5u2v + b8v2 + b9uv2 + b10v3 + O(4)

)

,

(3.9)

where a11, a13, a0, a1, a4, a5, a8, a9, a10, a31, a33, b0, b1, b4, b5, b8, b9, b10 are given in (3.2),
and r = r2 + r̄∗. The characteristic equation associated with the linearization of system (3.9)
at (0, 0) is given by

λ2 + p
(
r̄∗)λ + q

(
r̄∗) = 0,

with coefficients

p
(
r∗) = –

[
1 +

(
r2 + r̄∗)Gx1 + H + L

]
,

q
(
r∗) =

(
r2 + r̄∗)x1GL +

abx1

1 + ax1
.

Since the parameters belong to HB, the roots of the characteristic equation are

λ, λ̄ = –
p(r̄∗)

2
± i

2

√

4q
(
r̄∗) – p2

(
r̄∗). (3.10)

Then we have

|λ| =
√

q
(
r̄∗), l =

d|λ|
dr̄∗

∣
∣
∣
∣
r̄∗=0

=
x1LG

2
�= 0.

In addition, it is required that if r̄∗ = 0, we have λm, λ̄m �= 1 (m = 1, 2, 3, 4), i.e., nondegen-
eracy condition, which is equivalent to p(0) �= –2, 0, 1, 2. Note that (a, m, k, r2, b, c) ∈ HB, we
have p(0) �= –2, 2. We only need to require p(0) �= 0, 1 which leads to

–L(3 + H + L), –L(1 + H + L) �= 1 –
abx1

1 + ax1
. (3.11)

Therefore, the eigenvalues λ, λ̄ do not lie in the intersection of the unit circle with the
coordinate axes when r̄∗ = 0 and condition (3.11) holds.
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Letting r̄∗ = 0, μ = – p(0)
2 , ω =

√
4q(0)–p2(0)

2 , we construct an invertible matrix

T =

(
a12 0

μ – a11 –ω

)

, (3.12)

and use the following translation:

(
u
v

)

= T

(
x̄
ȳ

)

. (3.13)

Then system (3.9) becomes of the following form:

(
x̄
ȳ

)

→
(

μ –ω

ω μ

)(
x̄
ȳ

)

+

(
f̄ (x̄, ȳ)
ḡ(x̄, ȳ)

)

, (3.14)

where

f̄ (x̄, ȳ) =
1

a12

(
a0u2 + a1uv + a4u3 + a5u2v + a8v2 + a9uv2 + a10v3) + O

((|u| + |v|)4),

ḡ(x̄, ȳ) =
1

a12ω

{[
a0(μ – a11) – a12b0

]
u2 +

[
a1(μ – a11) – a12b1

]
uv

+
[
a8(μ – a11) – a12b8

]
v2 +

[
a4(μ – a11) – a12b4

]
u3

+
[
a5(μ – a11) – a12b5

]
u2v +

[
a9(μ – a11) – a12b9

]
uv2

+
[
a10(μ – a11) – a12b10

]
v3} + O

((|u| + |v|)4),

and

u2 = a2
12x̄2,

uv = a12(μ – a11)x̄2 – a12ωx̄ȳ,

v2 = (μ – a11)2x̄2 – 2ω(μ – a11)x̄ȳ + ω2ȳ2,

u3 = a3
12x̄3,

u2v = a2
12(μ – a11)x̄3 – a2

12ωx̄2ȳ,

uv2 = a12(μ – a11)2x̄3 – 2a12ωx̄2ȳ + a12ω
2x̄ȳ2,

v3 = (μ – a11)x̄3 – ω3ȳ3 – 3ω(μ – a11)2x̄2ȳ + 3ω2(μ – a11)x̄ȳ2.

Therefore

f̄x̄x̄ = 2a12
[
a0 + a1(μ – a11)

]
+

2a8(μ – a11)2

a12
,

f̄x̄ȳ = –ωa1 –
2a8ω(μ – a11)

a12
, f̄ȳȳ =

2a8ω
2

a12
,

f̄x̄x̄x̄ = 6a12
[
a5(μ – a11) + a4a12

]
+

6
a12

[
a10(μ – a11) + a12a9(μ – a11)2],
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f̄x̄x̄ȳ = –2ωa12a5 – 4a9ω(μ – a11) –
6a10ω

a12
(μ – a11)2,

f̄ȳȳȳ =
–6a10ω

3

a12
, f̄x̄ȳȳ = 2ω2a9 +

6a1ω
2

a12
(μ – a11),

ḡx̄x̄ =
2
ω

{
a12

[
a0(μ – a11) – a12b0

]
+ (μ – a11)

[
a1(μ – a11) – a12b1

]

– (μ – a11)2[a8(μ – a11) – a12b8
]}

,

ḡȳȳ =
2ω

a12

[
a8(μ – a11) – a12b8

]
,

ḡx̄ȳ = a12b1 – (μ – a11)
[
2a8(μ – a11) + 2a12b8 – a1

]
,

ḡx̄x̄x̄ =
6a12

ω

{

a12
[
a4(μ – a11) – a12b4

]
+ (μ – a11)

[
a5(μ – a11) – a12b5

]

+
6

a12ω

[
a9(μ – a11)3 – a12b9(μ – a11)2 + a10(μ – a11)2 – a12b10(μ – a11)

]
}

,

ḡx̄x̄ȳ = 2a12
[
a12b5 – a5(μ – a11)

]
–

2
a12

{
2a12(μ – a11)

[
a9(μ – a11) – a12b9

]

+ 3(μ – a11)2[a10(μ – a11) – a12b10
]}

,

ḡx̄ȳȳ = 2ω
{[

a9(μ – a11) – a12b9
]
a12 + 3(μ – a11)

[
a10(μ – a11) – a12b10

]}
,

ḡȳȳȳ =
6ω2

a12

[
a10(μ – a11) – a12b10

]
.

In order to ensure that map (3.9) undergoes a Neimark-Sacker bifurcation, we require
the following discriminatory quantity θ to be not zero.

θ = –
[

Re

(
(1 – 2λ)λ̄2

1 – λ
ξ20ξ11

)

–
1
2
|ξ11|2 – |ξ02|2 + Re(λ̄ξ21)

]

r̄∗=0
,

where

ξ20 =
1
8
[
f̄x̄x̄ – f̄ȳȳ + 2ḡx̄ȳ + i(ḡx̄x̄ – ḡȳȳ – 2f̄x̄ȳ)

]
,

ξ11 =
1
4
[
f̄x̄x̄ + f̄ȳȳ + i(ḡx̄x̄ + ḡȳȳ)

]
,

ξ02 =
1
8
[
f̄x̄x̄ – f̄ȳȳ – 2ḡx̄ȳ + i(ḡx̄x̄ – ḡȳȳ + 2f̄x̄ȳ)

]
,

ξ21 =
1

16
[
f̄x̄x̄x̄ + f̄x̄ȳȳ + ḡx̄x̄ȳ + i(ḡx̄x̄x̄ + ḡx̄ȳȳ – 2f̄ȳȳȳ)

]
.

Therefore, by the above analysis and the theorem presented as Section 3.4 in Gucken-
heimer [15], we obtain the following result.

Theorem 3.2 System (1.2) undergoes a Neimark-Sacker bifurcation at equilibrium E1 if
the conditions (a, r, m, k, b, c) ∈ HB, θ �= 0 hold and r̄∗ varies in a small vicinity of the ori-
gin. In addition, if θ < 0 (or θ > 0), then an attracting (or repelling) invariant closed curve
bifurcates from E1 for r̄∗ > 0 (or r̄∗ < 0).
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4 Numerical simulation
In this section, we draw the bifurcation diagrams of model (1.2) to validate the previous
theoretical analysis and show the new interesting complex dynamical behaviors by using
numerical simulations.

The bifurcation parameters are considered in the following two cases.
Case 1: Varying r in range 1.8 ≤ r ≤ 2.8 and fixing k = 5, c = 0.2, m = 0.00001, b = 100,

a = 0.001. From the above data, we find that model (1.2) has only one positive fixed point
(6.8196, 7.3943) and (r1, a, m, k, c, b) = (2.079, 0.001, 0.00001, 5, 0.2, 100) ∈ FB. By calculat-
ing, we see that the flip bifurcation emerges from this equilibrium at r1 = 2.079 with
α1 = –0.463538 and α2 = 0.014119. This verifies Theorem 3.1.

From Figure 1(a), we see that the stability of a fixed point E1 happens for r < 2.079 and
loses its stability at the flip bifurcation parameter value r = 2.079. We also observe that
there is a cascade of period doubling. Moreover, a chaotic set emerges with the increase
of r.

Case 2: We fix k = 5, c = 0.2, m = 0.00001, b = 100, a = 0.008, and let the parameter r vary
in the range [3.475, 3.495]. By calculating, we see that model (1.2) has a unique endemic
equilibrium (2.5089, 2.0006) and (r2, a, m, b, c, k) = (3.482, 0.008, 0.00001, 100, 0.2, 5) ∈ HB.
By a direct calculation, we know that the Neimark-Sacker bifurcation occurs at r2 = 3.482
with l = 1.353496 > 0 and θ = –8.147308 < 0. This shows the correctness of Theorem 3.2.

The bifurcation diagram shown in Figure 1(b) demonstrates that the stability of a fixed
point (2.5089, 2.0006) happens for r < 3.482 and loses its stability at r = 3.482, and an at-
tracting invariant closed curve appears if r > 3.482.

In order to accurately catch the dynamic behavior of system (1.2) with respect to two
parameters, the division diagrams are drawn in Figures 2-4. These parameters are com-
bined arbitrarily. Lyapunov exponents are calculated in order to perform some numerical
experiments. Figure 2 displays the division of this region by a pseudo-colored map, in
which different attractors are identified by different colors. Figures 2 and 3 show a global
view of the a × c or c × r parameter planes, respectively. For each point (a, c) and (c, r), the
orbit corresponding initial condition successively converges to a chaotic, antiperiodic, or
periodic attractor. In Figure 2, two parameters a and c are varied synchronously, while the
other parameters are fixed as follows: k = 5, r = 0.2, m = 0.00001, b = 100. Then we can

(a) (b)

Figure 1 Numerical simulations of equation (1.2). (a) Flip bifurcation of model (1.2) for k = 5, c = 0.2,
m = 0.00001, b = 100, a = 0.001; (b) NS bifurcation of model (1.2) for k = 5, c = 0.2,m = 0.00001, b = 100,
a = 0.008. Initial value (x0, y0) = (5.0, 2.5).
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(a) (b)

Figure 2 Attractor region of different periods. (a) The 2D projection onto the (a, c) plane of equation (1.2);
(b) The magnification of (a). In this and further similar plots, different attractors are identified by different
colors and numbers. For the sake of beauty, the period-1 is shown in white for (b).

(a) (b)

Figure 3 Attractor region of different periods. (a) The c× r parameter plane of equation (1.2); (b) Local
amplification of (a) for c ∈ [0, 0.2299].

see that the periodic motions of the system appear alternatively. In Figure 3, we change
two parameters c and r simultaneously, while the other parameters are selected as follows:
k = 5, a = 0.008, m = 0.00001, b = 100. By observing the diagrams of two parameters, we
can find that different color intensities represent different periodic values, the color bar on
the right-hand side specifies the correspondence between colors and periods. Meanwhile,
the periodic solutions are plotted in different colors and marked by the corresponding
numbers (e.g., the number 4 represents period-4, painted in yellow; the number 9 repre-
sents period-9, painted in red; and the chaos phase appears when the number is equal to
30, painted in black).

In Figure 2, it is an interesting phenomenon that there is a chaotic region embedded in
period regions. That is to say, when the searching efficiency a is changed from 0 to 0.001,
the lower bound c will appear with abundant dynamic behavior accordingly. The cycle be-
havior appears alternately in the chaotic area, which can be clearly seen from (b). These cy-
cle windows demonstrate the characteristics of the period-doubling and periodic-adding.

From Figure 3, we can see that there exists a chaotic region filled in period-1 area, which
is quite different from what is seen in Figure 2. Compared to Figure 2, there are many
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(a) (b)

Figure 4 Numerical simulations of equation (1.2) with two parameters. (a) The a× r parameter plane of
system (1.2); (b) The phase diagram for c× k.

periodicities between 2 and 26 embedded in period-1 regions, and the detailed periodic
orbits can be found from (b). It can be explained that the hosts’ intrinsic rate r has a very
rich behavior when the lower bound c is changed from 0 to 0.2, as shown in Figure 3.
Therefore, in this discrete system the lower bound plays an important role. The frequent
occurrence of crisis is seen when c increases from 0 to 2. In addition, these cycle windows
illuminate the characteristics of the period-doubling and periodic-adding.

Furthermore, we can also observe abundant dynamic behaviors when more parameters
vary at the same time, such as a and r, c and k. The corresponding phase diagrams are
shown in Figure 4. In these two plots, there also exists a chaotic region embedded in period
areas.

From Figure 1, we can observe the flip bifurcation and the Neimark-Sacker bifurcation
when the hosts’ intrinsic rate r has different values, which is entirely consistent with the
results in Theorems 3.1 and 3.2. Numerical results illustrate that the theoretical analysis is
effective. The results obtained in this paper are interesting and useful and may be applied
to a variety of the life systems.

5 Conclusion
The dynamic behavior of a host-parasitoid system is examined. We algebraically show
that system (1.2) undergoes a bifurcation (flip or Neimark-Sacker) at a unique positive
fixed point if r varies around the sets FB and HB. Many forms of complexities, such as the
cascade of period-doubling bifurcation and Neimark-Sacker bifurcation, are observed by
numerical simulation. The numerical simulation results not only show consistency with
the theoretical analysis but also exhibit unpredictable behaviors of the system through the
bifurcation. Furthermore, we present the system’s parameter spaces which are restricted
by two control parameters. Regardless of the combination of parameters, the different
phase diagrams indicate that a variety of extraordinary geometries exist in the parameter
plane. It can be told from our analysis that there exists a chaotic region in the periodic
areas. Now, the new results reported in this paper give us more complete understanding
of the discrete host-parasitoid system. However, it is still a challenging problem to explore
a multiple parameter bifurcation in the system. We expect to obtain some more analytical
results on this issue in the future.
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