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Abstract
We investigate oscillatory behavior of solutions to a class of second-order nonlinear
neutral delay dynamic equations with nonpositive neutral coefficients. In particular,
we study the corresponding noncanonical neutral differential equations. New
oscillation criteria are established that complement and improve related
contributions to the subject. An example is given to illustrate the main results.
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1 Introduction
Differential, difference equations, and dynamic equations on time scales have an enor-
mous potential for applications in biology, engineering, economics, physics, neural net-
works, social sciences, etc. Recently, significant attention has been devoted to the oscilla-
tion theory of various classes of equations; see, e.g., [1–21]. In this paper, we are concerned
with the oscillatory behavior of solutions to a second-order neutral dynamic equation

[
r(t)

(
z�(t)

)α]� + q(t)f
(
x
(
δ(t)

))
= 0, t ∈ [t0,∞)T, (1.1)

where α ≥ 1 is a ratio of odd integers and z(t) = x(t) – p(t)x(τ (t)). Throughout, the follow-
ing assumptions are tacitly satisfied:

(I1) r ∈ Crd([t0,∞)T, (0,∞)), R(t) =
∫ t

t1
r– 1

α (s)�s, where t1 ∈ [t0,∞)T is sufficiently large;
(I2) p, q ∈ Crd([t0,∞)T,R), 0 ≤ p(t) ≤ p0 < 1, q(t) ≥ 0, and q(t) is not identically zero for

large t;
(I3) τ , δ ∈ Crd([t0,∞)T,T), τ (t) ≤ t, δ(t) ≤ t, and limt→∞ τ (t) = limt→∞ δ(t) = ∞;
(I4) f ∈ C(R,R), xf (x) > 0 for all x �= 0, and there exists a positive constant k such that

f (x)/xα ≥ k for all x �= 0.

We consider the following case:

∫ ∞

t0

r– 1
α (s)�s = ∞. (1.2)
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By a solution of (1.1), we mean a function x ∈ Crd[Tx,∞)T, Tx ∈ [t0,∞)T, which has the
property r(z�)α ∈ C1

rd[Tx,∞)T and satisfies (1.1) on [Tx,∞)T. We consider only those so-
lutions x of (1.1) which satisfy sup{|x(t)| : t ∈ [T ,∞)T} > 0 for all T ∈ [Tx,∞)T. We assume
that (1.1) possesses such solutions. A solution of (1.1) is called oscillatory if it is neither
eventually positive nor eventually negative; otherwise, it is termed nonoscillatory.

In recent years, many studies have been devoted to the oscillatory behavior of solutions
to different classes of equations with nonnegative neutral coefficients; see, e.g., [2, 4, 5,
12, 13, 15, 20] and the references cited therein. However, for equations with nonpositive
neutral coefficients, there are relatively fewer results in the literature; see [3, 4, 6, 11, 14,
16–18]. For instance, in the particular case of (1.1) when T = R, Li et al. [14] studied the
differential equation

[
r(t)

(
z′(t)

)α]′ + q(t)f
(
x
(
δ(t)

))
= 0, t ≥ t0, (1.3)

under the assumption that
∫ ∞

t0
r– 1

α (s) ds = ∞. Their results were improved by Arul and
Shobha [3] who established new oscillation results for the solutions of (1.3). Seghar et al.
[16] discussed the difference equation

�
(
an�(xn – pnxn–k)

)
+ qnf (xn–l) = 0, n ≥ n0, (1.4)

where 0 ≤ pn ≤ p < 1, qn > 0, and k, l are positive integers, and they obtained several oscil-
lation criteria for (1.4) assuming that

∑∞
n=n0

1
an

< ∞. Karpuz [11] established some suffi-
cient conditions which guarantee that every solution of the second-order dynamic equa-
tion

(
x(t) – p(t)x

(
τ (t)

))�� + q(t)x
(
δ(t)

)
= 0, t ∈ [t0,∞)T

oscillates or tends to zero, where 0 ≤ p(t) ≤ 1 and
∫ ∞

t0
q(t)�t = ∞. Bohner and Li [6] gave

new oscillation criteria for a class of second-order p-Laplace dynamic equations

(
r(t)

∣∣z�(t)
∣∣p–2z�(t)

)� + q(t)
∣∣x

(
δ(t)

)∣∣p–2x
(
δ(t)

)
= 0, t ∈ [t0,∞)T,

where z(t) = x(t) – p(t)x(τ (t)), p > 1 is a constant, 0 ≤ p(t) ≤ p0 < 1, q(t) > 0, and
∫ ∞

t0
r– 1

p–1 (s)�s = ∞.
The aim of this paper is not only to improve some results in the cited papers but also to

present new oscillation criteria for (1.3) in the noncanonical case

∫ ∞

t0

r– 1
α (s) ds < ∞. (1.5)

In what follows, all functional inequalities are assumed to hold eventually. Without loss of
generality, we can deal only with eventually positive solutions of (1.1) and (1.3).

2 Auxiliary results
The following auxiliary results may play a major role throughout the proofs of our main
results.
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Lemma 2.1 (Bohner and Peterson [7]) Assume that v : T → R is strictly increasing and
T̃ := v(T) is a time scale. Let y : T̃ →R. If y�̃(v(t)) and v�(t) exist for t ∈ T

κ , then

(
y
(
v(t)

))� = y�̃
(
v(t)

)
v�(t).

The following results can be obtained by similar techniques to those used in [3, 14].

Lemma 2.2 Let x(t) be an eventually positive solution of (1.1) and assume that (1.2) holds.
Then z(t) satisfies one of the following two possibilities:

(I) z(t) > 0, z�(t) > 0, (r(t)(z�(t))α)� ≤ 0;
(II) z(t) < 0, z�(t) > 0, (r(t)(z�(t))α)� ≤ 0,

for t ∈ [t1,∞)T, where t1 ∈ [t0,∞)T is sufficiently large.

Lemma 2.3 Let x(t) be an eventually positive solution of (1.1) and assume that the corre-
sponding z(t) has property (II) of Lemma 2.2. Then

lim
t→∞ x(t) = 0.

Lemma 2.4 If x(t) is an eventually positive solution of (1.1) such that case (I) of Lemma 2.2
holds, then x(t) ≥ z(t) and z(t)/R(t) is strictly decreasing for large t.

3 Main results
Theorem 3.1 Assume that (1.2) holds, δ([t0,∞)T) = [δ(t0),∞)T, and δ�(t) > 0. If

lim sup
t→∞

[
Q(t) + α

∫ ∞

t
δ�(s)r– 1

α
(
δ(s)

)
Q

α+1
α

(
σ (s)

)
�s

](∫ δ(t)

t0

r– 1
α (s)�s

)α

> 1, (3.1)

where Q(t) =
∫ ∞

t kq(u)�u, then every solution x(t) of (1.1) is either oscillatory or satisfies
limt→∞ x(t) = 0.

Proof Suppose that (1.1) has a nonoscillatory solution x(t) such that x(t) > 0, x(τ (t)) > 0,
and x(δ(t)) > 0 for t ∈ [t1,∞)T. Then, by virtue of Lemma 2.2, z(t) satisfies one of the two
cases (I) and (II) for t ∈ [t1,∞)T.

Case 1. Assume first that z(t) satisfies case (I). From the definition of z(t), we have

x(t) = z(t) + p(t)x
(
τ (t)

) ≥ z(t),

and therefore (1.1) takes the form

[
r(t)

(
z�(t)

)α]� ≤ –kq(t)zα
(
δ(t)

)
.

Define the Riccati substitution

ν(t) =
r(t)(z�(t))α

zα(δ(t))
. (3.2)
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It is clear that ν(t) > 0 and

ν�(t) =
[r(t)(z�(t))α]�

zα(δ(t))
+

[
r(t)

(
z�(t)

)α]σ

[
1

zα(δ(t))

]�

≤ –kq(t) – αδ�(t)ν
(
σ (t)

) z�(δ(t))
z(δ(σ (t)))

. (3.3)

Note that

ν
1
α
(
σ (t)

)
=

r 1
α (σ (t))z�(σ (t))

z(δ(σ (t)))
. (3.4)

Using the fact that r(t)(z�(t))α is nonincreasing and δ(t) ≤ t ≤ σ (t), (3.4) yields

ν
1
α (σ (t))

r 1
α (δ(t))

≤ z�(δ(t))
z(δ(σ (t)))

. (3.5)

Substituting (3.5) into (3.3), we get

ν�(t) ≤ –kq(t) – αδ�(t)r– 1
α
(
δ(t)

)
ν

α+1
α

(
σ (t)

)
. (3.6)

Integrating (3.6) on [t, s], we have

ν(s) – ν(t) ≤ –
∫ s

t
kq(u)�u – α

∫ s

t
δ�(u)r– 1

α
(
δ(u)

)
ν

α+1
α

(
σ (u)

)
�u,

which implies that

ν(t) ≥
∫ s

t
kq(u)�u + α

∫ s

t
δ�(u)r– 1

α
(
δ(u)

)
ν

α+1
α

(
σ (u)

)
�u.

Letting s → ∞, we obtain

ν(t) ≥ Q(t) + α

∫ ∞

t
δ�(u)r– 1

α
(
δ(u)

)
ν

α+1
α

(
σ (u)

)
�u. (3.7)

An application of (3.7) yields

ν(t) ≥ Q(t) + α

∫ ∞

t
δ�(u)r– 1

α
(
δ(u)

)
Q

α+1
α

(
σ (u)

)
�u. (3.8)

By (3.2), we conclude that

1
ν(t)

=
1

r(t)

(
z(δ(t))
z�(t)

)α

=
1

r(t)

(z(t2) +
∫ δ(t)

t2
r 1

α (s)z�(s)r– 1
α (s)�s

z�(t)

)α

≥ 1
r(t)

( r 1
α (t)z�(t)

∫ δ(t)
t2

r– 1
α (s)�s

z�(t)

)α

,
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i.e.,

ν(t)
(∫ δ(t)

t2

r– 1
α (s)�s

)α

≤ 1. (3.9)

It follows now from (3.8) and (3.9) that

lim sup
t→∞

[
Q(t) + α

∫ ∞

t
δ�(s)r– 1

α
(
δ(s)

)
Q

α+1
α

(
σ (s)

)
�s

](∫ δ(t)

t2

r– 1
α (s)�s

)α

≤ 1,

which contradicts (3.1).
Case 2. Assume now that z(t) satisfies case (II). By virtue of Lemma 2.3, limt→∞ x(t) = 0.

The proof is complete. �

Theorem 3.2 Assume that (1.2) holds. If there exists a positive function β ∈ C1
rd([t0,∞)T,

R) such that, for all sufficiently large t1 ∈ [t0,∞)T and for some t2 ∈ [t1,∞)T,

lim sup
t→∞

∫ t

t2

[
kq(s)β(s)

(
R(δ(s))

R(s)

)α

–
1

(α + 1)α+1
(β�(s))α+1r(s)

βα(s)

]
�s = ∞, (3.10)

then every solution x(t) of (1.1) is either oscillatory or satisfies limt→∞ x(t) = 0.

Proof Let x(t) be a nonoscillatory solution of (1.1) on [t0,∞)T such that x(t) > 0, x(τ (t)) > 0,
and x(δ(t)) > 0 for t ∈ [t1,∞)T. Then, by Lemma 2.2, z(t) satisfies one of the two cases (I)
and (II) for t ∈ [t1,∞)T.

Case 1. Assume that z(t) satisfies case (I). Now, define the Riccati substitution

ω(t) = β(t)
r(t)(z�(t))α

zα(t)
.

It is clear that ω(t) > 0 and

ω�(t) =
[
r(t)

(
z�(t)

)α]� β(t)
zα(t)

+
[
r(t)

(
z�(t)

)α]σ

[
β(t)
zα(t)

]�

≤ –kq(t)β(t)
zα(δ(t))

zα(t)
+

β�(t)
β(σ (t))

ω
(
σ (t)

)
– α

β(t)
βσ (t)

z�(t)
z(t)

ω
(
σ (t)

)

≤ –kq(t)β(t)
zα(δ(t))

zα(t)
+

β�(t)
β(σ (t))

ω
(
σ (t)

)
– α

β(t)
β

α+1
α (σ (t))r 1

α (t)
ω

α+1
α

(
σ (t)

)
.

By Lemma 2.4, we get

ω�(t) ≤ –kq(t)β(t)
(

R(δ(t))
R(t)

)α

+
β�(t)

β(σ (t))
ω

(
σ (t)

)

– α
β(t)

β
α+1
α (σ (t))r 1

α (t)
ω

α+1
α

(
σ (t)

)
. (3.11)

Applying the inequality

Bω – Aω
α+1
α ≤ αα

(α + 1)α+1
Bα+1

Aα
(3.12)
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with

B =
β�(t)

β(σ (t))
and A = α

β(t)
β

α+1
α (σ (t))r 1

α (t)
> 0,

and using (3.11), we conclude that

ω�(t) ≤ –kq(t)β(t)
(

R(δ(t))
R(t)

)α

+
1

(α + 1)α+1
(β�(t))α+1r(t)

βα(t)
. (3.13)

Integrating (3.13) from t2 (t2 ∈ [t1,∞)T) to t, we have

∫ t

t2

[
kq(s)β(s)

(
R(δ(s))

R(s)

)α

–
1

(α + 1)α+1
(β�(s))α+1r(s)

βα(s)

]
�s ≤ ω(t2),

which contradicts (3.10).
Case 2. If z(t) satisfies case (II), then, by Lemma 2.3, limt→∞ x(t) = 0. This completes the

proof. �

Now, to discuss the oscillatory behavior of equation (1.3) under the assumption (1.5)
(which is called a noncanonical neutral differential equation), we need the following
lemma.

Lemma 3.1 Let x(t) be an eventually positive solution of (1.3). Then one of the following
four cases holds for all sufficiently large t:

(i) z(t) > 0, z′(t) > 0, (r(t)(z′(t))α)′ ≤ 0;
(ii) z(t) < 0, z′(t) > 0, (r(t)(z′(t))α)′ ≤ 0;

(iii) z(t) < 0, z′(t) < 0, (r(t)(z′(t))α)′ ≤ 0;
(iv) z(t) > 0, z′(t) < 0, (r(t)(z′(t))α)′ ≤ 0.

Proof The proof is similar to that of [14, Lemma 2.1], and hence is omitted. �

Theorem 3.3 Let conditions (I1)-(I4) be satisfied for T = R and assume that (1.5) and
δ′(t) > 0 hold. Suppose further that there exists a positive function β ∈ C1([t0,∞)T,R) such
that (3.10) holds for T = R, for all sufficiently large t1 ≥ t0 and for some t2 ≥ t1. If

lim sup
t→∞

∫ t

t0

[
kq(s)ϑα(s) –

(
α

α + 1

)α+1 r(δ(s))
r α+1

α (s)(δ′(s))αϑ(s)

]
ds = ∞, (3.14)

where ϑ(t) =
∫ ∞

t r– 1
α (s) ds, then every solution x(t) of (1.3) is either oscillatory or satisfies

limt→∞ x(t) = 0.

Proof Let x(t) be a nonoscillatory solution of (1.3) on [t0,∞) such that x(t) > 0, x(τ (t)) > 0,
and x(δ(t)) > 0 for t ≥ t1. From Lemma 3.1, we have the following four possible cases.

Case 1. z(t) satisfies case (i). Using T = R in the proof of Theorem 3.2, we get a contra-
diction with (3.10).

Case 2. z(t) satisfies case (ii). By Lemma 2.3, we see that limt→∞ x(t) = 0.
Case 3. z(t) satisfies case (iii). Similar analysis to that in [4, Theorem 3, case (jjj)] leads

to the conclusion that limt→∞ x(t) = 0.
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Case 4. z(t) satisfies case (iv). Define

ν(t) =
r(t)(z′(t))α

zα(δ(t))
, t ≥ T1. (3.15)

It is clear that ν(t) < 0. Since (r(t)(z′(t))α)′ ≤ 0, we have, for s ≥ t (s, t ∈ [T1,∞)),

r
1
α (s)z′(s) ≤ r

1
α (t)z′(t),

i.e.,

z′(s) ≤ r
1
α (t)z′(t)

1
r 1

α (s)
.

Integrating the latter inequality from t to l, we obtain

z(l) ≤ z(t) + r
1
α (t)z′(t)

∫ l

t

1
r 1

α (s)
ds.

Letting l → ∞, we get

–1 ≤ r 1
α (t)z′(t)
z(δ(t))

ϑ(t). (3.16)

It follows from (3.15) and (3.16) that

–ν(t)ϑα(t) ≤ 1. (3.17)

On the other hand, we have (3.6) with σ (t) = t, and so

ν ′(t) + kq(t) + αδ′(t)r– 1
α
(
δ(t)

)
ν

α+1
α (t) ≤ 0. (3.18)

Multiplying (3.18) by ϑα(t) and integrating the resulting inequality from T1 to t, we deduce
that

ϑα(t)ν(t) – ϑα(T1)ν(T1) + α

∫ t

T1

r– 1
α (s)ϑα–1(s)ν(s) ds

+ k
∫ t

T1

q(s)ϑα(s) ds + α

∫ t

T1

δ′(s)r– 1
α
(
δ(s)

)
ϑα(s)ν

α+1
α (s) ds ≤ 0. (3.19)

Applying inequality (3.12) with ω = –ν(t), A = αδ′(t)ϑα(t)/r 1
α (δ(t)), and B = αϑα–1(t)/r 1

α (t),
we arrive at

αr– 1
α (t)ϑα–1(t)ν(t) +

αδ′(t)ϑα(t)
r 1

α (δ(t))
ν

α+1
α (t) ≥ –

(
α

α + 1

)α+1 r(δ(t))
r α+1

α (t)(δ′(t))αϑ(t)
. (3.20)

Combining (3.19) and (3.20), we obtain

ϑα(t)ν(t) – ϑα(T1)ν(T1)

+
∫ t

T1

[
kq(s)ϑα(s) –

(
α

α + 1

)α+1 r(δ(s))
r α+1

α (s)(δ′(s))αϑ(s)

]
ds ≤ 0. (3.21)
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Then, by virtue of (3.17) and (3.21),

∫ t

T1

[
kq(s)ϑα(s) –

(
α

α + 1

)α+1 r(δ(s))
r α+1

α (s)(δ′(s))αϑ(s)

]
ds ≤ 1 + ϑα(T1)ν(T1),

which contradicts (3.14). This completes the proof. �

Example 3.1 Assume that T = R. Consider the second-order neutral delay differential
equation

(
t2(z′(t)

)3)′ +
γ

t2 x3
(

t
2

)
= 0, t ≥ 1. (3.22)

Here, α = 3, z(t) = x(t) – x(t/3)/2, γ > 0 is a constant, k = γ , r(t) = t2, q(t) = t–2, and δ(t) =
t/2. Now we have

lim sup
t→∞

[
Q(t) + α

∫ ∞

t
δ�(s)r– 1

α
(
δ(s)

)
Q

α+1
α

(
σ (s)

)
�s

](∫ δ(t)

t0

r– 1
α (s)�s

)α

= lim sup
t→∞

[
γ

t
+ 3γ

4
3

∫ ∞

t

(
1
2

) 1
3

s–2 ds
](∫ t

2

1
s– 2

3 ds
)3

=
27
2

[
γ + 3

(
1
2

) 1
3
γ

4
3

]
.

Therefore, by Theorem 3.1, every solution x(t) of equation (3.22) is oscillatory or satisfies
limt→∞ x(t) = 0 when γ > 0.041. However, [14, Theorem 3.1] yields the same conclusion if
γ > 2/(27k3

0) for some k0 ∈ (0, 1) which means that γ > 2/27 ≈ 0.0741. Hence, Theorem 3.1
improves [14, Theorem 3.1].

Remark 3.1 Oscillation criteria established in this paper for equation (1.3) complement,
on one hand, the results reported by Arul and Shobha [3] and Li et al. [14] because we use
assumption (1.5) rather than

∫ ∞
t0

r– 1
α (s) ds = ∞ and, on the other hand, those by Džurina

and Jadlovská [8] since our criteria can be applied to the case where 0 ≤ p(t) ≤ p0 < 1.

Remark 3.2 As fairly noticed by the referees, technique used in this paper does not allow a
straightforward extension of Theorem 3.3 to equation (1.1); this remains an open problem
for further research.
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