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Abstract
This article uses the extension of the Lie symmetry analysis (LSA) and conservation
laws (Cls) (Singla et al. in Nonlinear Dyn. 89(1):321-331, 2017; Singla et al. in J. Math.
Phys. 58:051503, 2017) for the space-time fractional partial differential equations
(STFPDEs) to analyze the space-time fractional Rosenou-Haynam equation (STFRHE)
with Riemann-Liouville (RL) derivative. We transform the space-time fractional RHE to
a nonlinear ordinary differential equation (ODE) of fractional order using its Lie point
symmetries. The reduced equation’s derivative is in Erdelyi-Kober (EK) sense. We use
the power series (PS) technique to derive explicit solutions for the reduced ODE for
the first time. The Cls for the governing equation are constructed using a new
conservation theorem.

Keywords: space-time fractional RHE; Lie symmetry analysis; RL fractional derivative;
explicit solutions; Cls

1 Introduction
Fractional differential equations (FDEs) are generalizations of classical differential equa-
tions of integer order. FDEs have been studied nowadays to describe several physical as-
pects and procedure in natural conditions [3–19]. However, fractional partial differential
equations (FPDEs) having only time derivative have been analyzed via the Lie symme-
try method [20–26]. Recently, the Lie method has been developed to the systems of time
FPDEs [27]. More recently, the Lie method has been extended for the first time to the
analysis of FPDEs having space and time derivative with fractional order and the systems
of space and time FPDEs in [1, 2]. To the best of our knowledge, application of the Lie
method to the space-time FPDEs and the systems of space-time FPDEs appeared only in
[1, 2]. Therefore, applying this new approach to more space-time FPDEs in order to obtain
lots of solutions will be remarkable contribution to the literature.

The LSA and Cls supply lots of ideas on the systems modeled by the differential equa-
tions. Lie symmetries are a very significant tool in determining exact solutions and Cls of
differential equations. In spite of the significance of Cls in analyzing the integrability and
internal properties and in proving the existence and uniqueness of solutions of differential
equations [28–30], the Cls for PDEs having fractional-order are not investigated in detail.
The generalization for investigating Cls for FDEs was presented in [31, 32]. In recent time,
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the fractional generalized Noether operators have been introduced [30] for FPDEs that do
not have a Lagrangian in order to find Cls using a new conservation theorem [33]. Even
though very few works [34–36] that have to do with Cls of FPDEs can be found, the analysis
of Cls for the STFPDEs has entirely not been investigated in more detail.

In this study, we consider STFRHE given by

∂αu
∂tα

+ u
∂βu
∂xβ

+ uuxxx + 3uxuxx = 0, (1)

where 0 < α ≤ 1 and β < 2. In Eq. (1), ∂αu
∂tα and ∂β u

∂xβ are the RL fractional derivatives of order
α,β > 0, respectively. If β = 1, Eq. (1) becomes

∂αu
∂tα

+ u
∂u
∂x

+ uuxxx + 3uxuxx = 0. (2)

The invariance properties for Eq. (2) that can be used to interpret the formation of patterns
in liquid drops were analyzed and investigated in [37]. If α = 1 and β = 1, Eq. (1) becomes

∂u
∂t

+ u
∂u
∂x

+ uuxxx + 3uxuxx = 0. (3)

Some approximate analytical solutions for Eq. (3) were presented in [38, 39]. Many meth-
ods have been applied to reach analytical solutions for PDEs [40–47].

The aim of this study is to analyze and investigate the LSA, explicit solution via the
power series technique and Cls for Eq. (1).

The outline of the paper is presented in the following way: In Section 2 we present some
preliminaries; in Section 3 we present symmetry analysis and reduction; in Section 4 we
analyze explicit solution for the reduced equation; in Section 5 we construct Cls for the
underlying equation. Finally, concluding remarks are given in Section 6.

2 Preliminaries
Herein, we present some preliminaries. The RL fractional derivative [19, 27] is defined by

Dαf (t) =

⎧
⎨

⎩

dnf
dtn , α = n,
d

dtn In–αf (t), 0 ≤ n – 1 < α < n,
(4)

where n is a natural number and Iμf (t) is given by

Iμf (t) =
1

�(μ)

∫ t

0
(t – s)μ–1f (s) ds, μ > 0, (5)

Iμf (t) = f (t), (6)

and �(z) represents the gamma function.
Consider the following space-time FPDEs:

� = F
(
x, t, u, ∂α

t , ∂β
x , uxx, uxxx, . . .

)
. (7)
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Suppose that a one-parameter group of transformations is given by

t̄ = t + εξ 2(t, x, u) + O
(
ε2),

x̄ = x + εξ 1(t, x, u) + O
(
ε2),

ū = u + εη(t, x, u) + O
(
ε2),

∂αū
∂ t̄

=
∂αu
∂tα

+ εηα,t(t, x, u) + O
(
ε2),

∂β ū
∂ x̄

=
∂βu
∂xβ

+ εηβ ,x(t, x, u) + O
(
ε2),

∂ū
∂ x̄

=
∂u
∂x

+ εηx(t, x, u) + O
(
ε2),

∂2ū
∂ x̄2 =

∂2u
∂x2 + εηxx(t, x, u) + O

(
ε2),

∂3ū
∂ x̄3 =

∂3u
∂x3 + εηxxx(t, x, u) + O

(
ε2),

(8)

where

ηα,t = Dα
t (η) + ξ 1Dα

t (ux) – Dα
t
(
ξ 1ux

)
+ Dα

t
(
u
(
Dtξ

2)) – Dα+1
t (ξu) + ξ 2Dα+1

t (u),

ηβ ,t = Dβ
x (η) + Dβ

x
(
u
(
Dxξ

1)) – Dβ+1
x

(
ξ 1u

)
+ ξDβ+1

x (u) + ξ 2Dβ
t (ut) – Dβ

x
(
ξ 2ut

)
,

ηx = Dx(η) – uxDx
(
ξ 1) – utDt

(
ξ 2),

ηxx = Dx
(
ηx) – uxtDx

(
ξ 1) – uxxDt

(
ξ 2),

ηxxx = Dx
(
ηxx) – uxxtDx

(
ξ 1) – uxxxDt

(
ξ 2),

. . .

(9)

In Eq. (7), Dx and Dt represent the total differential operators defined by

Dx =
∂

∂x
+ ux

∂

∂u
+ uxx

∂

∂ux
+ · · · , (10)

Dt =
∂

∂t
+ ut

∂

∂u
+ utt

∂

∂ut
+ · · · . (11)

The corresponding Lie algebra of symmetries consists of the following vector fields:

X = ξ 1 ∂

∂x
+ ξ 2 ∂

∂t
+ η

∂

∂u
. (12)

The vector field Eq. (12) is a Lie point symmetry of Eq. (7) provided

Pα,β ,3rX(�)|�=0 = 0. (13)

Also, the invariance condition [48] yields

ξ 1(t, x, u)|x=0 = 0, ξ 2(t, x, u)|t=0 = 0, (14)

and the αth and βth extended infinitesimals with Eq. (10) are given as in [19, 27].
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3 Lie symmetries and reduction for Eq. (1)
Suppose that Eq. (1) is an invariant under Eq. (8), we have that

∂αū
∂ t̄α

+ u
∂β ū
∂ x̄β

+ ūūx̄x̄x̄ + 3ūx̄ūx̄x̄ = 0 (15)

so that u = u(x, t) satisfies Eq. (1). Using Eq. (8) in Eq. (15), we get the invariant equation

ηα,t + uηβ ,x + uxxxη + 3uxxη
x + 3uxη

xx + uηxxx = 0. (16)

Putting the values of ηα,t , ηβ ,x, ηx, ηxx and ηxxx into Eq. (16) and isolating coefficients, we
have

∂α
t η – u∂α

t ηu + u∂β
x η – u2∂β

x ηu + uηxxx = 0,
(

α

n

)

∂n
t (η) –

(
α

n + 1

)

Dn+1
t

(
ξ 2) = 0, n = 1, 2, . . . ,

(
β

n

)

∂n
x (η) –

(
β

n + 1

)

Dn+1
x

(
ξ 1) = 0, n = 1, 2, . . . ,

ξ 1
u = ξ 2

u = ξ 1
t = ξ 2

x = ηuu = 0,

uβξ 1
x – αξ 2

t = 0.

Solving these equations, we obtain

ξ 1 = c1 + xαc2, ξ 2 = tβc2, η = αuc2(3 – β),

where c1, c2 represent arbitrary constants. Thus infinitesimal symmetry group for Eq. (1)
is as follows:

X1 =
∂

∂x
, X2 = αx

∂

∂x
+ βt

∂

∂t
+ αu(3 – β)

∂

∂u
. (17)

In particular, for the symmetry X2, we obtain the following similarity transformation
and similarity variable:

dx
αx

=
dt
tβ

=
du

αu(3 – β)
.

Solving the above equations, we get

z1 = xt– α
β , z2 = ut– α(3–β)

β . (18)

Hence, from the symmetry X2, we get the group-invariant solution

u = t
α(3–β)

β f (ξ ), ξ = xt– α
β , (19)

where f is an arbitrary function of ξ .
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Theorem By the similarity transformation, Eq. (19) reduces Eq. (1) to the following:

(
P

1–α+ α
β

(3–β),α
β
α

f
)
(ξ ) + f ξ–β

(
Q–β ,β

1 f
)
(ξ ) + ffξξξ + 3fξ fξξ = 0 (20)

with the left-hand-sided EK fractional differential operator [49, 50]

(
Pξ2,α

δ f
)

=
n–1∏

j=0

(

ξ 2 + j –
1
δ

d
dξ

)
(
K ξ2+α,n–α

δ f
)
(ξ ), (21)

n =

⎧
⎨

⎩

[α] + 1, α �= N,

α, α ∈ N,
(22)

where

(
K ξ2,α

δ f
)
(ξ ) =

⎧
⎨

⎩

1
�(α)

∫ ∞
1 (u – 1)α–1u–(ξ2+α)f (ξu

1
δ ) du, α > 0,

f (ξ ), α = 0.
(23)

The right-hand-sided EK fractional differential operator is given by

(
Qξ2,β

δ f
)

=
n–1∏

j=0

(

ξ 2 + j –
1
δ

d
dξ

)
(
Lξ2+β ,n–β

δ f
)
(ξ ), (24)

n =

⎧
⎨

⎩

[β] + 1, β �= N,

β , β ∈ N,
(25)

where

(
Lξ2,β

δ f
)
(ξ ) =

⎧
⎨

⎩

1
�(β)

∫ 1
0 (1 – u)β–1uξ2 f (ξu

1
δ ) du, β > 0,

f (ξ ), β = 0.
(26)

Proof Let n – 1 < α < 1, n = 1, 2, 3, . . . . In accordance with the RL fractional derivative in
Eq. (15), we get

∂αu
∂tα

=
∂n

∂tn

[
1

�(n – α)

∫ t

1
(t – s)n–α–1s

α(3–β)
β f

(
xs–( α

β
))ds

]

. (27)

Let v = t
s , ds = – t

v2 dv. Thus, Eq. (27) becomes

∂αu
∂tα

=
∂n

∂tn

[

tn–α+ α(3–β)
β

1
�(n – α)

∫ ∞

1
(v – 1)n–α–1v–(n–α+1+ α(3–β)

β
)f

(
ξv

α
β
)

dv
]

. (28)

Applying EK fractional integral operator Eq. (23) to Eq. (28), we get

∂αu
∂tα

=
∂n

∂tn

[
tn–α+ α(3–β)

β
(
K

1+ α(3–β)
β

,n–α

β
α

f
)
(ξ )

]
. (29)

We simplify the right-hand side of Eq. (29). Considering ξ = xt– α
β , φ ∈ (0,∞), we acquire

t
∂

∂t
φ(ξ ) = tx

(

–
α

β

)

t– α
β

–1
φ′(ξ ) = –

α

β
ξ

∂

∂ξ
φ(ξ ). (30)
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Hence,

∂n

∂tn

[
tn–α+ α(3–β)

β
(
K

1+ α(3–β)
β

,n–α

β
α

f
)
(ξ )

]

=
∂n–1

∂tn–1

[
∂

∂t
(
tn–α+ α(3–β)

β
(
K

1+ α(3–β)
β

,n–α

β
α

f
)
(ξ )

)
]

=
∂n–1

∂tn–1

[

tn–α+ α(3–β)
β

–1
(

n –
α

β
–

α

β
ξ

∂

∂ξ

)

× (
K

1+ α(3–β)
β

,n–α

β
α

f
)
(ξ )

]

. (31)

Repeating (n – 1)-times, we have

∂n

∂tn

[
tn–α+ α(3–β)

β
(
K

1+ α(3–β)
β

,n–α

β
α

f
)
(ξ )

]

=
∂n–1

∂tn–1

[
∂

∂t
(
tn–α+ α(3–β)

β
(
K

1+ α(3–β)
β

,n–α

β
α

f
)
(ξ )

)
]

(32)

=
∂n–1

∂tn–1

[

tn–α+ α(3–β)
β

–1
(

n –
α

β
–

α

β
ξ

∂

∂ξ

)

× (
K

1+ α(3–β)
β

,n–α

β
α

f
)
(ξ )

]

...

= t–α+ α(3–β)
β

n–1∏

j=0

[(

1 – α +
α(3 – β)

β
+ j –

α

β
ξ

∂

∂ξ

)

× (
K

1+ α(3–β)
β

,n–α

β
α

f
)
(ξ )

]

. (33)

Applying EK fractional differential operator Eq. (21) to Eq. (33), we obtain that

∂nu
∂tn

[(
tn–α+ α(3–β)

β
(
K

1+ α(3–β)
β

,n–α

β
α

f
)
(ξ )

)]
= t–α+ α(3–β)

β
(
P

1–α+ α(3–β)
β

,α
β
α

f
)
(ξ ). (34)

Substituting Eq. (34) into Eq. (29), we have

∂αu
∂tα

= t–α+ α(3–β)
β

(
P

1–α+ α(3–β)
β

,α
β
α

f
)
(ξ ). (35)

Comparably, βth-order with respect to x can be derived to be the following:

∂βu
∂xβ

= t
α(3–β)

β ξ–β
(
Q–β ,β

1 f
)
(ξ ). (36)

Thus, using Eqs. (35) and (36), we obtain

(
P

1–α+ α
β

(3–β),α
β
α

f
)
(ξ ) + f ξ–β

(
Q–β ,β

1 f
)
(ξ ) + ffξξξ + 3fξ fξξ = 0. (37)

The proof of the theorem is completed. �
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4 Explicit power series solutions for Eq. (37)
We investigate the explicit solutions via the PS method [51, 52]. Let

f (ξ ) =
∞∑

n=0

anξ
n. (38)

From Eq. (38), we can have

f ′ =
∞∑

n=0

nanξ
n–1, f ′′ =

∞∑

n=0

n(n – 1)anξ
n–2, f ′′ =

∞∑

n=0

n(n – 1)(n – 2)anξ
n–3. (39)

Putting Eqs. (38) and (39) in Eq. (37), one obtains

∞∑

n=0

�(2 – α + α(3–β)
β

– nα
β

)

�(2 + α(3–β)
β

– nα
β

)
anξ

n +
∞∑

n=0

anξ
n

∞∑

n=0

�(1 – n)
�(1 – n + β)

anξ
n

+
∞∑

n=0

anξ
n

∞∑

n=0

(n + 3)(n + 2)(n + 1)an+3ξ
n

+ 3
∞∑

n=0

(n + 1)an+1ξ
n

∞∑

n=0

(n + 2)(n + 1)an+2ξ
n = 0. (40)

Comparing coefficients in Eq. (40) when n = 0, we get

a3 =
1

6a0

(
�(2 – α + α(3–β)

β
)

�(2 + α(3–β)
β

)
a0 +

a2
0

�(1 + β)
– 6a1a2

)

, (41)

when n ≥ 1, we have

an+3 =
1

(n + 3)(n + 2)(n + 1)

{
�(2 – α + α(3–β)

β
+ nα

β
)

�(2 + α(3–β)
β

– nα
β

)
an

+
n∑

k=0

�(1 – n – k)
�(1 – n – k + β)

akan–k (42)

– 3
n∑

k=0

(n – k + 2)(n – k + 1)akan–k+2

}

. (43)

Thus, each coefficient an (n ≥ 1) for Eq. (38) is found by the arbitrary constants ai (i =
0, 1, 2). This means that the explicit PS solution for Eq. (37) exists, and its coefficients
depend on Eqs. (41) and (42). Therefore, the PS solution for Eq. (37) can be represented
in the form:

f (ξ ) = a0 + a1ξ + a2ξ
2 + a3ξ

3
∞∑

n=1

an+3ξ
n+3

= a0 + a1ξ + a2ξ
2 +

1
6a0

(
�(2 – α + α(3–β)

β
)

�(2 + α(3–β)
β

)
a0 +

a2
0

�(1 + β)
– 6a1a2

)

ξ 3
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+
∞∑

n=1

1
(n + 3)(n + 2)(n + 1)

{
�(2 – α + α(3–β)

β
+ nα

β
)

�(2 + α(3–β)
β

– nα
β

)
an

+
n∑

k=0

�(1 – n – k)
�(1 – n – k + β)

akan–k

– 3
n∑

k=0

(n – k + 2)(n – k + 1)akan–kan–k+2

}

ξn+3. (44)

Consequently, we acquire the explicit power series given by

u(x, t) = a0t
α(3–β)

β + a1xt
α(2–β)

β + a2xt
α(1–β)

β + a3xt–α +
∞∑

n=1

an+3xt– α(n+β)
β

= a0t
α(3–β)

β + a1xt
α(2–β)

β + a2xt
α(1–β)

β

+
1

6a0

(
�(2 – α + α(3–β)

β
)

�(2 + α(3–β)
β

)
a0 + a2

0ξ
–β�(1 – β) – 6a1a2

)

xt–α

+
∞∑

n=1

1
(n + 3)(n + 2)(n + 1)

{
�(2 – α + α(3–β)

β
+ nα

β
)

�(2 + α(3–β)
β

– nα
β

)
an

+ ξ–β

n∑

k=0

�(1 – β + n – k)
1 – n – k

akan–k

– 3
n∑

k=0

(n – k + 2)(n – k + 1)akan–kan–k+2

}

xt– (n+3)α
β . (45)

In Figures 1-3, we have illustrated the physical features for Eq. (45) with different param-
eter values.

Figure 1 Numerical simulation for the 3D plot of (45). When a0 = a1 = a2 = 6, a3 = 0.5, a4 = 1.7, β = 1.9,
α = 0.5, � = 0.85.
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Figure 2 Numerical simulation for the 3D plot of (45). When a0 = a1 = a2 = 2.6, a3 = 1.25, a4 = 1.7,
β = 1.2, α = 0.85, � = 0.5.

Figure 3 Numerical simulation for the contour plot of (45). When a0 = a1 = a2 = 2.6, a3 = 1.25, a4 = 1.7,
β = 1.5, α = 0.85, � = 0.5.

5 Conservation laws
More details about the description of Cls can be found in [1, 27, 33, 52]. The Lagrangian
is presented by

L = v(x, t)
(

∂αu
∂tα

+ u
∂βu
∂tβ

+ uuxxx + 3uxuxx

)

. (46)
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In Eq. (46) v(x, t) is another dependent variable. The Euler-Lagrange operator [33] is

δ

δu
=

∂

∂u
+

(
Dα

t
)∗ ∂

∂Dα
t u

+
(
Dβ

x
)∗ ∂

∂Dβ
x u

– Dx
∂

∂ux
+ D2

xx
∂

∂uxx
– D3

xxx
∂

∂uxxx
, (47)

where (Dα
t )∗ and (Dβ

t )∗ are the adjoint operators of (Dα
t ) and (Dβ

t ), respectively. The adjoint
equation is given by [33]

F∗ =
δL
δu

= 0. (48)

So, we can have

X̄ + Dt
(
ξ 2)l + Dx

(
ξ 1)l = W

δ

δu
+ DtNt + DxNx. (49)

In Eq. (49) l represents the identity operator, δ
δu is the Euler-Lagrangian operator, Nt and

Nx represent the Noether operators, X̄ is defined by

X̄ = ξ 2 ∂

∂t
+ ξ 1 ∂

∂x
+ η

∂

∂u
+ ηα,t ∂

∂Dα
t u

+ ηβ ,x ∂

∂Dβ
x u

+ ηx ∂

∂ux
+ ηxx ∂

∂uxx
+ ηxxx ∂

∂uxxx
. (50)

With the help of Eqs. (46) and (48), we can write the adjoint equation to Eq. (1) as follows:

F∗ =
(
Dα

t
)∗v + u

(
Dβ

x
)∗v + u(vx + vxxx) = 0. (51)

Next, we look for the differential substitution for nonlinear self-adjointness. Let

v = φ(x, t, u), such that φ(x, t, u) �= 0. (52)

Thus, taking the derivatives of Eq. (52), we have

vx = φx + φuux,

vxx = φxx + 2φxuux + φuuxx + φuuu2
x,

vxxx = φxxx + 3φxxuux + 3φxuuu2
x + 3φxuuxx + 3φuuuxuxx + φuuxxx + φuuuu3

x.

(53)

Inserting Eqs. (52) and (53) into Eq. (51) and solving the results, we obtain

φ(x, t, u) = A1x + A2. (54)

Therefore, the variable v(x, t) = A1x + A2, and it will be used for the analysis of the Cls.
The Lie characteristic function W is given by

W = η – ξ 2ut – ξ 1ux. (55)
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The t component of the conserved vectors is defined by [33, 52]

Nt = ξ 2l +
n–1∑

k=0

(–1)koDα–1–k(W )Dk
t

∂

∂oDα
t u

– (–1)nJ
(

W , Dn
t

∂

∂oDα
t u

)

, (56)

where n = [α] + 1 and J is given by

J(f , g) =
1

�(n – α)

∫ t

0

∫ p

t

f (ξ 2, x)g(x,μ)
(μ – ξ 2)α+1–n dμdt. (57)

Equivalently, the x component of the conserved vectors (CV) can be expressed as

Nx = ξ 1l +
m–1∑

k=0

(–1)koDβ–1–k(W )Dk
x

∂

∂oDβ
x u

– (–1)mJ1

(

W , Dm
x

∂

∂oDβ
x u

)

, (58)

where m = [β] + 1 and J1 is given by

J1(f , g) =
1

�(n – β)

∫ x

0

∫ q

t

f (ξ 1, t)g(μ, t)
(μ – ξ 1)β+1–m dμdt. (59)

The invariance condition for any given generator X of Eq. (1) and its solutions reads as
follows:

(
X̄L + Dt

(
ξ 2)L + Dx

(
ξ 1)L

)|Eq. (1) = 0; (60)

and consequently, the Cls of Eq. (1) can be written as

Dt
(
NtL

)
+ Dx

(
NxL

)
= 0. (61)

Now, we present the Cls for Eq. (1) using the basic definitions presented above. Consider
the following cases.

Case 1. For α ∈ (0, 1), the t components of the CV are

Ct
1 = oDα–1

t (Wi)(A1x + A2) + J(Wi, vt),

Ct
2 = Wi

(
3uxx(A1x + A2) – 3Dt

(
ux(A1x + A2)

)
+ D2

t
(
u(A1x + A2)

))

+ Dt(Wi)
(
3ux – Dt

(
u(A1x + A2)

))
+ D2

t
(
Wiu(A1x + A2)

)
,

where i = 1, 2 and the functions Wi are given by

W1 = ux, W2 = αu(3 – β) – βtut + αxux.

Case 2. For α ∈ (1, 2), the t components of the CV are

Ct
3 = oDα–1

t (Wi)(A1x + A2) + J(Wi, vt) – vtoDα–2
t (Wi) – J(Wi, vtt),

Ct
4 = Wi

(
3uxxv – 3Dtux(A1x + A2) + D2

t
(
u(A1x + A2)

))

+ Dt(Wi)
(
3ux – Dt(uv)

)
+ D2

t (Wi)u(A1x + A2),
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where i = 1, 2 and the functions Wi are given by

W1 = ux, W2 = αu(3 – β) – βtut + αxux.

Case 3. For β ∈ (0, 1), the x components of the CV are

Cx
1 = oDβ–1

x (Wi)(A1x + A2) + J(Wi, vt),

Cx
2 = Wi

(
3uxx(A1x + A2) – 3Dxux(A1x + A2) + D2

xu(A1x + A2)
)

+ Dx(Wi)
(
3ux – Dxu(A1x + A2)

)
+ D2

x(Wi)u(A1x + A2),

where i = 1, 2 and the functions Wi are given by

W1 = ux, W2 = αu(3 – β) – βtut + αxux.

Case 4. For β ∈ (1, 2), the x components of the CV are

Cx
3 = oDβ–1

x (Wi)(A1x + A2) + J(Wi, vt) – vtoDβ–2
x (Wi) – J(Wi, vtt),

Cx
4 = Wi

(
3uxx(A1x + A2) – 3Dxux(A1x + A2) + D2

xu(A1x + A2)
)

+ Dx(Wi)
(
3ux – Dxu(A1x + A2)

)
+ D2

x(Wi)u(A1x + A2),

where i = 1, 2 and the functions Wi are given by

W1 = ux, W2 = αu(3 – β) – βtut + αxux.

6 Concluding remarks
This work used the extension presented in [1, 2] to examine the LSA and Cls for the
space-time fractional Rosenou-Haynam equation (RHE) with RL derivative. The space-
time fractional RHE was a reduced to space-time ODE of fractional order using its Lie
point symmetries with a new dependent variable. We solved the reduced space-time ODE
using the power series method for the first time. Moreover, we constructed Cls for the
governing equation using a new conservation theorem.
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