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1 Introduction

In recent years, the theory of impulsive differential systems has been attracting the at-
tention of many mathematicians, and the interest in the subject is still growing. This is
partly due to broad applications of it in many areas including threshold theory in biology,
ecosystems management and orbital transfer of satellite, see [1]. One effective method for
investigating the properties of solutions to impulsive differential systems is related to the
integral inequalities for discontinuous functions (integro-sum inequalities). Up to now, a
lot of integro-sum inequalities (for example, [2-18] and the references therein) have been
discovered. For example, in 2003, Borysenko [3] considered the following integro-sum
inequality:

x(t) <alt) + /tq(r)x’”(r)dt + Z Bix™(t; —0), m>0,m#1.

to<ti<t

In 2009, Gallo and Piccirillo [8] further discussed the following nonlinear integro-sum
inequality:

x(t) < c(t) + h(t) ftf(s)w(x(b(s))) ds + Z Bix"(t; —0), m>D0.

to<t;<t
In 2012, Wang et al. [17] considered the nonlinear integro-sum inequality as follows:

a(t)

x™(t) < c(t) + 2/ [lel(t, s)u% (s) + Niga (¢, s)um(s)] ds

a(to)

+2 f t[Myfz(t, ) (s) + Nogo(t,5)u (s) ] ds + > Bt -0), m>0.

0 to<ti<t
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Very recently, in 2016, Zheng et al. [18] considered the following nonlinear integro-sum
inequality under the condition p > g > 0:

N ¢
0 <a)+ 13 [ g (0i9) s
P I

L t s
+ Z/ bj(s)/ cj(0)x? (w/(s)) do ds + Z Bix"(t; - 0).
j=1 to to

to<ti<t

Motivated by [3, 8,17, 18], in this paper, we investigate some new integro-sum inequality
with mixed nonlinearities under the condition p >0, g >0 (p # q):

xP(t) §a(t)+/fl(s)xq(s)ds+/f2(s)/ gi()xP(r)dr ds
+/f3(s)f &(1)x(t)dr ds + c(t) Z Bix™(t; — 0)

and the more general form

t L t s
xP(t) < a(t) + / f$)x(s)ds + Z/ bj(s)/ g(t)af(r)drds
to j=1 to to

M ot s
+> / ci(s) / Ok(r)x(x)dr ds+d(t) Y B (t:—0).
k=1 "% to

to<ti<t

We also discuss some nonlinear integro-sum inequality with positive and negative coeffi-
cients under the condition0<g<p<r:

xP(t) < a(t) + b(t) /t[f(s)x”(s) + g(s)x(s) - h(s)x'(s)] ds

to

re®) Y B (- 0),

to<ti<t

and the more general form under the condition 0 <g; <p <r; (j=1,2,...,L):

t L ¢ L ¢
*(t) < alt) + / fe)aP(s)ds+ Yy / g(s)x%(s)ds— ) / hy(s)x"7 (s) ds
to 1':1 to j:1 to

+e(t) Y B (t:-0).

fo<ti<t

Based on these inequalities, we provide explicit bounds for unknown functions concerned
and then apply the results to research the qualitative properties of solutions of certain
impulsive differential equations.

2 Preliminaries
Throughout the present paper, R denotes the set of real numbers; R, = [0, +00) is the sub-
set of R; C(D, E) denotes the class of all continuous functions defined on the set D with

range in the set E.
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Lemma 2.1 ([19]) Assume that the following conditions for t > ty hold:
(i) xo is a nonnegative constant,
(i t
x(t) < xo + / [e(s)x(s) + I(s)x* (s)] ds,

to

where x, e and | are nonnegative continuous functions and o # 1 is a positive

constant.

¥

t
1+(1- a)xgx-“/

to

I(s)exp ((a -1) fs e(1) dr) ds>0

0

holds, then

x(t) < xo exp( / t e(s) ds>

X {1 +(1 —a)xg“‘l)/tl(s)exp<(a - 1)/Se(t)dr> ds}la, t>to.

Lemma 2.2 ([20]) Let x be a nonnegative function, 0 <g<p<r,c; >0,k >0, ¢, >0 and
ki1 >0. Then

c1x? — cox” < (ki — k)P + 01(p, q, c1, k1) + 62(p, 7, €2, ko),

where

P

p
— p—q P -4 — r-p P _r_
61(p,q,c1, k1) :=I%(g> U, Oy(prca k) i= rp(’;) e Thky ”

3 Main results
Theorem 3.1 Suppose that x is a nonnegative piecewise continuous function defined on
[t0, 00) with discontinuities of the first kind in the points t; (i = 1,2,...) and satisfies the

integro-sum inequality

xp(t)fa(t)+/fl(s)xq(s)ds+/f2(s)/ ga(t)af(r)dr ds

t s
o [ 56 [ gewiodrds e Y -0, 1zt (3.1)
to to to<ti<t
where 0 < g <ty <ty <---, lim;_, ot = 00, functions a(t) > 0 and c(t) > 0 are defined

on [ty,00), fi,f2. /381,82 € CR,R,), Bi > 0(i=1,2,...),p>0,9g>0, p #q and m > 0 are

constants. If

— ar t _ s
1+p qrip (t)/ l(s)exp(u/ e(t)dt)ds>0, i=12,...,
p i1 p ti-1
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then, for t > ty, the following estimates hold:

x(t) =< Vl(t)r te [tO! tl];

x(t) =< Vl'(t)» te (ti—lrti]ri =2, 3;'“:

where

vi(t) = ri’% (t)exp (; /t:l e(s) ds)

1

_g
x{1+p - t)/ ls)exp(q p/ e(T)dT> }pq’ i=12,...
p p ti1

o(t) = (1) f a@dn, 10 =A0+A0 f o) dr,

r1(t) = max h(t) = max |
fo<t=<t to<t=<t

Fn(6) = ri0) + / AV ds + / (fz(s) / fgﬂr)vf(r)dr)ds

+/ (fg(S / J:9) T)V (t)dr) ds+h(t)pivi"(t; —0), i=1,2,....

Proof From (3.1) and (3.5), we have, for t € Iy = [ty, 1],

£) <r(¢ /fl (s)xl(s ds+/fz / 7)drds
/fg / )x%(r)dr ds

Page 4 of 16

(3.2)
(3.3)

(3.4)

(3.5)

(3.6)

and ry(t) is non-decreasing on [ty, 00). Take any fixed T € [y, #1], and for arbitrary ¢ €

[0, T'], we have
xp(t)frl(T)+/fl(s)xq(s)ds+/f2(s)/ gi()xP(r)dr ds

+ f A6 / (00 (2) dr ds.

Let u(t) = x7(t). Inequality (3.7) is equivalent to
u(t)frl(T)+/fl(s)ug(s)ds+/fz(s)/ a(tu(r)drds

+/f3(5)/ gz(f)uiz’(r)dtds.

Let
V(t):rl(T)+/ﬁ(s)u%(s)ds+/ﬁ(s)/ ga(tu(r)drds

+/f3(s)f gz(T)ug(T)drds.

(3.7)

(3.8)

(3.9)
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It follows from (3.8) and (3.9) that
u(t) < V(@) V(to) = n(T), (3.10)

V(#) is non-decreasing and
V(O = Fi0ub () + (0 ] a@u()d + £ lotgz(f)uz(f)df- (3.11)
Since V/(¢) is non-decreasing, from (3.11) we have
V(O <AOVE©O +50) /t:glmvu)dr +A(0) /t:gzu)v% (v)dr
< AOVH©) + £ /totgur)drvm () /t:gz(r)drvfﬂ(t)
< e(t)V(E) + 1OV (2), (3.12)
where e(¢) and (¢) are defined as in (3.4). Integrating (3.12) from fo to ¢ yields

V() <rn(T) + /t[e(s) Vi(s) + l(s)Vg(s)] ds.

From the above and Lemma 2.1, we get

V() < rl(T)exp(/te(s)ds){1+p;qr;%p(T)/tl(s)eXp<qp%p fse(r)dr> ds}p_q,

and then from (3.10) and the assumption u(f) = x”(£), we have

1 1 ¢
x(t) < rf(T) exp(}—o /t e(s) ds)

0

p-q % ! q-p (° =
x{1+ » r (T)/tol(s)exp( » /;Oe(t)dt>ds} .

Since the above inequality is true for any ¢ € [ty, T'], we obtain

1 1 1T
x(T) <rf (T) exp<; /to e(s) ds)

—g T _ s L
X {1 +p qu” (T)/ l(s)exp(u/ e(f)dr)ds}p q.
p to 17 to
Replacing T by ¢ yields

x(t) < rl‘% () exp(}o /te(s) ds)

p=a % [ a-p [° =
x{1+ » r (t)/tol(s)exp( » /t()e(t)d'l:)ds}

= Vl(t), tely= [to, tl]. (313)

This means that (3.1) is true.
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Fort e = (t1,t,], from (3.1), (3.2), (3.5) and (3.13), we get
(0 <) + /t:fl(s)xq(s) ds+ /totfz(S) ft:gl(r)x”(r)drds
+ /totfg(s) /t:gg(‘c)xq(r)d‘( ds + h(t) B1x™ (t1 - 0)
—n()+ f " fo(s) ds + / :ﬁ(s>xq<s)ds ; / ") ft:gl(rwmdr s
; /t:fz(S) / (0 (1) de ds + / ") /t:gz(f)xq(f)dfds
o :fs(s) / @OW()de ds + WO (6~ 0)
<n()+ /:fl@)xq(s) ase [ :ﬁ(s)x%s) ds + /t:fz(S) / " (o) dr ds
; ft:fz(s) / ! (0w (0) dr ds + /t:fz(S) f;gl(r)x%)drds
; /:fs(s) / ! ga(0(0) dr ds + /t:fs(S) /:gz(f)xq(f)df ds
" /t:f?’(s) /tlsgz(f)xq(f)df ds + h(t)1a" (1, - 0)
<n(®)+ f " A ds + / A ds + / e / @@ (D) dr ds
fﬁ(S)/ al t)drds+ffz / 1 ()P () dr ds
+/t~0 fB(S)/tO gZ(T)Vl(r)deS+l1ﬁ(S)A) o r)vl(r)dtds
+ ft:fs(s) / ' (00(2) de ds + KO (G ~0)
()4 / " fioits) ds + / A1) ds + / £ / GO0 dr ds
/ £ / a0 (0)drds + / s / (V) dr ds
; /tlfg(s) / o(O9(2) de ds + KO (6 ~0)
—ro)s [ :fl<s>xq(s) ass [ :fz(S) / :gl(nxp(r) dr ds
+ /t: fi(s) /t: 2(1)x(7) dr ds. (3.14)

Inequality (3.14) is the same as (3.6) if we replace r;(¢) and ¢, with r,(¢) and £ in (3.6),
respectively. Thus, by (3.14), we have, for t € I; = (1, %],

x(t) < rz‘% () exp(}% /te(s) ds)

x {1+p P (0) / l(s)exp( / e(l’)d‘f) }” = 1),
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Suppose that

x(t) < ri% () exp(l /[ e(s) ds)
Py,

1

x {1 Nl (t)/t Z(S)exP(u / e(f)df) ds}” v (3.15)
P ti1 p ti—1

holds for t € I;_1 = (t;_1,t:],i=2,3,.... Then, for t € I; = (t;, £;11], from (3.1), (3.2), (3.5) and
(3.15) we obtain

xP(2) §r1(t)+/ﬁ(s)xq(s)ds+/ﬁ(s)/ g(m)xf(r)drds

+fﬁ(s)/ £(0)x1(r)dr ds + h(t) Z Bix™ (t; - 0)

to<ti<t

i-1 7381 t
=r®)+Y | fils)x(s)ds + / Sils)x(s) ds
k=0 *' % g
1o s t s
+ fo(8) | @) (r)drds+ | fols) | g(r)xP(z)drds
kX:o: . 2 /to 1 /tl 2 /to 1

i-1 teel s t s
+ () | gr)xi(z)drds+ | f3(s) | ga(r)xi(r)drds
), w0 50 [

+h(t) D B (t:—0)

fo<t;<t

1 g .
<n@+ Y [ Ao [ AT ds
k=0 7t L

i1 7351 k tj1
+ Z/ (fZ(S) Z/ gl(r)xp(r)dr) ds
k=0 7% t

j=0 4

t 1 et t s
+ fa(s) g (‘E)xp(l’)dl’> ds+ | fals) | g@(v)x’(r)drds
L(z > [ [0 a
g k tjs1
+> / (fg(s) > / gz(r)xq('c)> dr ds
k=0 Yk j=0 Y
t 1 ot t s
+ f3(s) Z g (t)x(7) dt) ds+ | fa(s) | ga(r)xi(r)drds

i =0 VY
+h(t) D B (t: - 0)

fo<ti<t

i-1 7381 t
<n@®+Y [ AV (s)ds+ / Fi(s)x9(s) ds
k=0 7k fi

i—

k1 k b1
+ /tkk (fz(s);/tj gl(r)%(f))dm

k=0
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/ (fz S)thﬁlgﬂf dr) ds+/f2 s)/ a(0)x(r)dr ds

+ka”(f3 S)Z/ o0y +1(r)> de ds

/ (fs Z f " o0 dr) ds + / A6 f (1) dr ds

+h(e) Y Bt - 0)

=1t /fl (s)x4(s ds+/fz / xP(t)dt ds
+/tif?,(s)/ti & (1)x(t)dr ds. (3.16)

Inequality (3.16) is the same as (3.6) if we replace r;(¢) and £ with r;,1(£) and ¢; in (3.6),
respectively. Thus, by (3.16), we have, for t € I; = (¢;, £;41],

1 1 [t
x(t) <rf, () exp(;/ti e(s) ds)

X{ b4 :rl (t) l(S)eXp<q p/ e(r)dr> ds}pq.
p t; P t;

By induction, we know that (3.3) holds for ¢ € (¢, £;,1], for any nonnegative integer i. This

completes the proof of Theorem 3.1. d

Theorem 3.2 Suppose that x is a nonnegative piecewise continuous function defined on
[t0, 00) with discontinuities of the first kind in the points t; (i = 1,2,...) and satisfies the
integro-sum inequality

t L ¢ s
X(t) < alt) + / fexi(s)ds+H / bi(s) / g(0)*¥(r)dr ds
to j=1 vt to

M
Y / ci(s) / ()i (z)drds+d(t) Y Ba™(t:—=0), t>ty,  (3.17)

to<ti<t

where 0 <ty <ty <tp <---, limt; = 00, a(t) > 0 is defined on [ty,0), f € C(R,,R,),
bj,g € CR,RY) (j=1,2,...,L),¢;,6, € CR,R,) (=1,2,...,M), ;=0 (i=1,2,...), p>0,

q>0,p+#q,and m >0 are constants. If

q—r s
1+p P(t)/ l(s)exp( /e(r)dr)ds>0, i=1,2,...,
p ti-1

then, for t > ty, the following estimates hold.:

x(t) = Vl(t)r te [t01t1], (318)

x(t) = Vi(t)! le (ti—lx ti])i =2,3,..., (319)
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where

vi(t) = ri’% (¢) exp(é -/t, t e(s) ds)
{1t

1

7pt)/ ls)exp( /e(t)dt) }pq,

i=12,...,
e(t) = Zb(t / gmydr, IO =f)+ Y al) / O (t)de,
r1(0) = max |a( ) = max |d(

ti Lo ot 4
riat) = r(6) + / foreas+y [ (b,(s) / g,(r)vf(r)dr)ds
ti-1 j=1 Vi1

ti-1

+ Z/t 1 (Ck(S) /;"l Qk(r)vf(r)dr> ds+h(OBV"(t;—0), i=1,2,....

The proof is similar to that of Theorem 3.1, and we omit these details.

Theorem 3.3 Suppose that x is a nonnegative piecewise continuous function defined on
[t, 00) with discontinuities of the first kind in the points t; (i = 1,2,...) and satisfies the
integro-sum inequality:

xP(t) < a(t) + b(t) /t[f(s)xp(s) +g(s)x(s) - h(s)x’(s)] ds

to

re(t) Y p™(ti=0), >t (3.20)

to<ti<t

where 0 <ty <ty <ty <---,lim 0t = 00, a(t) is defined on [ty, 00) and a(ty) #0, b(t) > 0
and c(t) > 0 are defined on [ty,0), f,g € C(R,,R,), h € C(R,,(0,+0)),0<g<p<r, ;>0
(i=1,2,...) and m > 0 are constants.

Then, for any continuous functions ky(t) > 0 and ky(t) > 0 on [y, 00) satisfying k(t) =
ki(t) — ko(t) > 0, the following estimates hold:

x(t) <wi(t), telto,tl, (3.21)
x(t) = Vi(t)r le (ti—l’ ti]ri =23,..., (322)
where
1 1 t )
vi(t) = r] (¢) exp{ —e(t)/ [f(s) + k(s)] ds}, i=1,2,..., (3.23)
p ti-1
d(t) = trr<1a)<;t|a(1:)|, e(t) = max, I(t) = max. (3.24)
r1(t) = d(¢) + e(t)w(?),
(3.25)

w(t) = / [61(p: 9,8(5), k1(5)) + 02 (p, 7 1(s), ka(s)) ] ds,

to
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L

01(p, 3, 2(5), ki (5)) = ’% (g) KT (5), (3.26)
0 p. 1 (5) Kals) = =2 (’f) K (5, (3:27)
rie1(8) = ri(t) + e(2) /ti [f(s) + k(s)]vf(s) ds+I(@)BvI"(E;—0), i=12,.... (3.28)

Proof From (3.20) and (3.24), we obtain, for ¢ € Iy = [£y, t1],
*P () < d(t) + e(t) /:o t [ ()" (s) + g(s)x(s) — h(s)x"(s)] ds. (3.29)
From Lemma 2.1, (3.24)-(3.27) and (3.29), we have
(0 = d(O) +el0) /t:[[f(s) F KOO +61(9. 0.8 ki (9) + 63 0, 1O, Kal) ] ds
= d(e) + e(t) / 161 (50,861 (9) + 63 S) Kols) ] ds
vetd) [ TF6) + KO]2(6) ds
- () +eput) +t0) [ 16 + KO (5) ds

=ri(t) + e(t)f [f(s) +k(s)]xp(s) ds, (3.30)

r1(t) and e(t) are non-decreasing on [£y, 00). Take any fixed T € [ty, 1], and for arbitrary
t € [ty, T], we have

() = 1y (T) + e(T) / 17(6) + k)0 ds. (3:31)
0
Let u(z) = #*(¢). Inequality (3.31) is equivalent to
u(t) < ri(T) +e(T) /t t[f(S) + k(s)]u(s) ds. (3.32)
0
Define a function V(£) by the right-hand side of (3.32). Then V(¢) is positive and

Vit) =ri(T),  u(t) < V() (3.33)

V'(6) = e(T)[f(6) + k(@) |u(t) < e(T)[f(t) + k)| V(£), t€ [to, T

We have
V(t) < V() exp{e(T)/ [f(s) + k(s)] ds}

=ri(T) exp{e(T)/ [f(s) + k(s)] ds}, (3.34)



Liu Advances in Difference Equations (2018) 2018:22 Page 11 of 16

and then, from (3.33), (3.34) and the assumption u(t) = x”(£), we get
1 1 t
x(t) <rf (T) exp{ —e(T)/ [f(s) + k(s)] ds}.
p to
Since the above inequality is true for any ¢ € [¢, T], we obtain
1 1 T
*(T) <rf(T) exp{l—ae(T)'/ [f(s) + k(s)] ds}.
]
Replacing T by ¢ yields
1 1 t
x(t) <rf (2) exp{]—je(t)/ [f(s) + k(s)] ds} =), tely=I[tyt1]. (3.35)
to

This means that (3.21) is true for ¢ € [ty, 1].
For t € I = (t1,t,], from Lemma 2.1 and (3.20), (2.24)-(2.27) and (3.35), we obtain

aP(8) < d(t) +e() / [f($)27 (s) + g(s)x7(s) = ()" (s)] ds + () prx™ (11 = O)

<d@)+ e(t)/ [[£ () + k()]s (s) + 61 (1, 4, (), k1 (5)) + 62 (p, 7, F(s), ka(s)) | ds
+1t)pv"(t - 0)

= d(t) + e(t) / [61(, 2,2(9), k1(5)) + 6a(p, 7, 1(5), ea(s)) | s + U8) 1! (11 — )
+ e(t)/ [f(s) + k(s)]x”(s)ds
<d(t) + e(t)w(t) + {({£) p1vV"(t1 - 0) + e(t)/ 1 [f(s) + k(s)]v’f(s) ds

+e(t) /t[f(s) + k(s)]xp(s) ds
= r1(t) + () BV (t1 - 0)

+e(t) / 1 [f(s) + k(s)]v’f(s) ds + e(t) / [f(s) + k(s)]xp(s) ds
=ry(t) + e(t)/ [f(s) +k(s)]x”(s) ds. (3.36)

Inequality (3.36) is the same as (3.30) if we replace r;(¢) and ¢, with r,(£) and ¢, in (3.36),
respectively. Thus, by (3.35) and (3.36), we get, for ¢t € I; = (1, 2],

x(t) < rz’% () exp{ée(t)/ [f(s) + k(s)] ds} = vy(t).

Suppose that

t

x(t) < ri}’ () exp{}ﬂe(t) [f(s) + k(s)] ds}

i1

= Vi(t) holds for ¢ € Ii 1= (ti—h tl'], i=23,.... (337)
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Then, for ¢t € I; = (¢, t;;1], from Lemma 2.1 and (3.20), (3.24)-(3.27) and (3.37), we have

xP(t) <d(t) +e t)/ s)x” s) +g(s)x(s) — h(s)x’(s) ds + I(t) Z Bix"(t; — 0)

to<t;<t

= d() +e(t) / [[f(s) + k(s) ] (s) + 61 (p, 0, g(5), K (5)) + 62 (p, 7, F(s), Ka(s)) ] ds

1) Y Bvi'(ti-0)

to<ti<t

i-1 t
=d(t) + e(t)w(t) + e(t Z f(s + k(s)]x"’(s) ds + e( )[ [f(s) + k(s)]xp(s) ds

k=0 ¥tk

1) Y Bt 0)

to<ti<t

< ri(t) +e(t) Z/ (s) + k( s) k+1(S) ds + e(t)/ (s) + k(s)]x”(s) ds

1) ) Bvi'(ti-0)

to<ti<t

< ri1(t) +e(t) /t[f(s) + k(s)]xp(s) ds. (3.38)

Inequality (3.38) is the same as (3.30) if we replace r;(¢) and o with r;,;(¢) and ¢ in (3.38),
respectively. Thus, by (3.35) and (3.38), we have, for t € I; = (t;, £;,1],

1

x(t) < ri’_il(t) exp{;e(t) /t[f(s) + k(s)] ds}.

ti

By induction, we know that (3.30) holds for ¢ € (¢, ¢;.1], for any nonnegative integer i. This
completes the proof of Theorem 3.3. d

Theorem 3.4 Suppose that x is a nonnegative piecewise continuous function defined on
[to0, 00) with discontinuities of the first kind in the points t; (i = 1,2,...) and satisfies the
integro-sum inequality

t L ¢ L ¢
*(t) < a(t) + / f)x(s)ds + / g($)al(s)ds - / hy(s)xi (s) ds
to 1'=1 to j=1 to

re®) Y B (6i-0), t=t,

to<ti<t

where 0 <ty <ty <ty <---,lim 0t = 00, a(t) is defined on [ty, 00) and a(ty) #0, b(¢) > 0
and c(t) > 0 are defined on [ty, ), f,g € C(R,,R,), h € C(R,,(0,+00)),0<gj<p<rj(j =
1,2,...,L),8;>0,i=1,2,...,and m > 0 are constants.

Then, for any continuous functions ki(t) > 0 and ko(t) > 0 on [ty, 00) satisfying k(t) =
ki(t) — ko(t) > 0, the following estimates hold:

x(t) < Vl(t), te [to,tl],

x(t) = Vi(t)! te (ti—lx ti])i = 2) 3;-~~1
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where

vi(t) = ri’% (t)exp{}? /titl [f(s) +Lk(s)] ds}, i=12,...,

da(t) = trgggt|a(r)|, It) = trr<latv<<t|6(f) , () =d) +w(),

L t
w®)= 3 [ (0064919, 509) + 5 .61, ko) &,
j=1 V10

L p -q

~4i  p—a: D—a:

0(p> 4j,8(5), ki (s)) = p/’(fj) gk (), =120
]

y _

- ri— = 71’ 7/
91([97 r]’)hj(s)’kZ(s)) = ]r‘p (?) / h 7 (S) p(s)r j: 1,2,...,L,
J J

ti
rie1(t) = ri(8) +/ [f(s) + Lk(s )]1/;( Yds+ I(t)Bvi(t;i —0), i=1,2,....
i1
The proof is similar to that of Theorem 3.3, and we omit these details.

4 Application
In this section, we will apply the results which we have established above to the estimates
of solutions of certain impulsive differential equations.

Example 4.1 Consider the following impulsive differential equation:

0 _ F(t,x(0), [! Gls,t,x(s)) ds), £ 71t

de
AX|p=y, = d(t) Bix™(t; - 0), (4.1)
x(to) = xo,

where p > 0, m > 0 are constants, the functions d(t) > 0, £ € [£y,00), F € C(R x R x R,R})
and G € C(R x R x R,R,) satisfy the following conditions:

|F(t,u,v)| <f©)ul? + V], (4.2)
L M

’G(s, t,w Z 0)gi(s)|lwl’ + ch )0k (s)|w|?, (4.3)
j=1 k=1

where g > 0 (¢ # p) is a constant, and f(¢£), gi(¢), b;(¢) (j = 1,2,...,L), ci(t), 6;(t) (j =
1,2,...,M) are defined as in Theorem 3.2. If

1+pp TP(t)/. l(s)exp(qpp/tlle(t)dr>ds>0 i=1,2,

then for t > ¢y, every solution x(¢) of Eq. (4.1) satisfies the following estimates:

|x(0)] <vi(0), teltotil, (4.4)

|x(O)] <vi®), te(tint]i=2,3,. (4.5)

where [(¢), e(t), r;(t) and v;(¢) (i = 1,2,...) are defined as in Theorem 3.2.
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Proof The solution x(¢) of Eq. (4.1) satisfies the following equivalent equation:

xP(t) = xh + /tF(r,x(r),fr G(s,r,x(s)) ds) dr +d(t) Z Bix™(t; - 0).

0 to<t;<t

From conditions (4.2) and (4.3), it is easy to have

t
lx@®)|” < Ixol? + / de

F(r,x(r),/I G(s, ,x(s)) ds)
+c(t) Z Bilx(t: - 0)|™

to<t;<t

t L t T
< |x0|p+/f(t)’x(t)’qdr +Z/ b,(r)/ gj(s)‘x(s)‘p dsdr
to j=1 to to

m
’

t>tp.

M t T
£y /t c(2) / Ok(s)|x(s)| " dsdr +d(t) Y Bilx(t:—0)
k=1 *t0 to

to<t;<t
By using Theorem 3.2, we easily obtain estimates (4.4) and (4.5) of solutions of Eq. (4.1). (0

Example 4.2 Consider the following impulsive differential equation:

% = f(Ox(0) + g(Ox3 (2) - (D>, tH1;
Doy, = a(t) Bix®(t; - 0), (4.6)

x(tO) = X0,

where 0 <tg<ty <ty <.+, limont; =00, f,g € C(R,,R,), h € C(R,,(0,+00)), a(t) > 0 is
defined on [ty, 00) and B; > 0 (i = 1,2,...) are constants. Then, for any continuous functions

ki(t) > 0 and k(¢) > 0 on [£y, 00) satisfying k(¢) = k1(£) — ko(¢) > 0, the following estimates

hold:
x(@)] <ni(0), teltnl (4.7)
|x(t)| <v(t), te(tii,t],i=23,..., (4.8)
where
vi(t) = ri(t) exp{/t [f(s) + k(s)] ds}, i=12,..., (4.9)
r1(¢) = |xo| + w(t) w(t) = /t|: 2 g%(s)k_%(s) + lh_l(s)kZ(s)] ds (4.10)
1 0 ) 373 1 4 2 ) .
ris1(8) = ri(8) + /tf [f(s) + k(s)]vi(s)ds +IOBVI(t;—0), i=12,..., (4.11)

and [(f) = trr<1a)<(t{a(t) | (4.12)
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Proof The solution x(¢) of Eq. (4.6) satisfies the following equivalent equation:

x(t) = %0 + / (f(5)x(s) + g()%3 (s) = () (s)) ds + a(z) > Bixd(ti-0).

to<ti<t

From the assumptions of f, g and 4, it follows

|x(6)] < Ixol + / (f(s)|x(s)| +g(s)|x(s)|% — h(s)|x(s)[*) ds

3
’ L= 1.

valt) Y Bil(ti-0)

to<t;<t

By using Theorem 3.3, we easily obtain estimates (4.7) and (4.8) of solutions of Eq. (4.6). [
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