RESEARCH

Open Access

A new result on the existence of periodic solutions for Rayleigh equation with a singularity

Yuanzhi Guo^{*}, Yajiao Wang and Dongxue Zhou

Correspondence: 1029158296@qq.com College of Math & Statistics, Nanjing University of Information Science & Technology, 210044, Nanjing, China

Abstract

In this paper, we study the existence of periodic solutions for Rayleigh equation with a singularity of repulsive type

$$x''(t) + f(x'(t)) + \varphi(t)x(t) - \frac{1}{x^{\alpha}(t)} = p(t),$$

where $\alpha \ge 1$ is a constant, and φ and p are T-periodic functions. The proof of the main result relies on a known continuation theorem of coincidence degree theory. The interesting point is that the sign of the function $\varphi(t)$ is allowed to change for $t \in [0, T]$.

Keywords: second order differential equation; continuation theorem; singularity; periodic solution

1 Introduction

Singular differential equations arise in many disciplines such as physics, fluid dynamics, and ecology (see [1–6] and the references therein). In recent years, the periodic problem of second-order differential equations with singularities has been widely studied. The first study in this area seems to be the paper of Nagumo [7] in 1944. After some works of Forbat and Huaux [8], the interest increased with the pioneering paper of Lazer and Solimini [9]. They considered the existence of periodic solutions suggested by the two fundamental examples ($\alpha > 0$, and $h : R \rightarrow R$ is a continuous *T*-periodic function)

$$x''(t) + \frac{1}{x^{\alpha}(t)} = h(t)$$
(1.1)

(the singularity of attractive type) and

$$x''(t) - \frac{1}{x^{\alpha}(t)} = h(t)$$
(1.2)

(the singularity of repulsive type). By using topological degree methods they obtained that a necessary and sufficient condition for the existence of positive periodic solutions for equation (1.1) is $\overline{h} > 0$, and if we assume in addition that $\alpha \ge 1$, then a necessary and

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

sufficient condition for the existence of positive periodic solutions for equation (1.2) is $\overline{h} < 0$. After that, some methods associated with nonlinear functional analysis theory have been widely applied to the studied problem in many papers such as the variational methods used in [10–13], fixed point theorems used in [14–19], upper and lower solutions methods used in [20, 21], and continuation theorems of coincidence degree used in [22–31]. For example, Torres [14] studied the periodic problem for the equation with singularity of repulsive type

$$x'' + \varphi(t)x - \frac{b(t)}{x^{\mu}} = h(t), \tag{1.3}$$

where φ , b, $h \in L^1[0, T]$, and $\mu > 0$ is a constant. The function φ is required to satisfy

$$\varphi(t) \ge 0 \quad \text{for all } t \in [0, T]. \tag{1.4}$$

This is due to the fact that (1.4), together with some other conditions, can guarantee the Green function G(t, s) associated with the boundary value problem for Hill's equation

$$x'' + \varphi(t)x = h(t), \qquad x(0) = x(T), \qquad x'(0) = x'(T), \tag{1.5}$$

satisfying $G(t,s) \ge 0$ for all $(t,s) \in [0,T] \times [0,T]$; then, the solution to problem (1.5) is given by

$$x(t) = \int_0^T G(t,s)h(s) \, ds.$$
(1.6)

Formula (1.6) is crucial in [14–17] for applying some fixed point theorems on cones. Wang [25] studied the problem of periodic solutions for the singular delay Liénard equation of repulsive type

$$x''(t) + f(x(t))x'(t) + \varphi(t)x(t-\tau) - \frac{1}{x^{\mu}(t-\tau)} = h(t),$$
(1.7)

where $f : [0, +\infty) \to R$ is continuous, $\varphi : R \to R$ is continuous *T*-periodic, and $\tau > 0$ and $\mu \ge 1$ are constants. To balance the forces of $\varphi(t)x$ at $x = +\infty$ and $\frac{1}{x^{\mu}}$ at x = 0, φ is also required to satisfy

$$\varphi(t) \ge 0 \quad \text{for all } t \in [0, T]. \tag{1.8}$$

In [26, 28], the authors studied the periodic problem of the equation

$$x'' + f(x)x' + \varphi(t)x - \frac{1}{x^{\mu}} = h(t).$$
(1.9)

In (1.9), the function φ is required to satisfy $\int_0^T \varphi(s) \, ds > 0$, which means that the sign of the function φ is allowed to change. Now, the question is that how to investigate the existence of *T*-periodic solutions for a Rayleigh equation with a singularity of repulsive type

$$x''(t) + f(x'(t)) + \varphi(t)x(t) - \frac{1}{x^{\alpha}(t)} = p(t),$$
(1.10)

where $f : R \to R$ is continuous with f(0) = 0, $\alpha \ge 1$, and φ , $p : R \to R$ are continuous and *T*-periodic.

Motivated by this, the aim of this paper is to search for positive *T*-periodic solutions for (1.10). Using a known continuation theorem of theorem of coincidence degree theory (see [32, 33], and [34]), we obtain a new result on the existence of positive periodic solutions for equation (1.10). In present paper, the sign of φ in (1.10) is allowed to change for $t \in [0, T]$. Although this condition is the same as that in [26, 28], for studying the periodic problem of (1.9), the methods used in [26, 28] for estimating a priori bounds of positive *T*-periodic solutions to (1.9) cannot be directly applied to (1.10). This is due to the fact that mechanism of the first-order derivative term f(x'(t)) influencing a priori bounds of positive *T*-periodic solutions to (1.10) is different from the corresponding ones of f(x(t))x'(t) in (1.10). For example, if x(t) is a positive *T*-periodic function such that $x \in C^1(R, R)$, then $\int_0^T f(x(t))x'(t) dt = 0$, but, generally, $\int_0^T f(x'(t)) dt \neq 0$.

2 Preliminary lemmas

Let $C_T = \{x \in C(R, R) : x(t + T) = x(t), \forall t \in R\}$ with the norm $|x|_{\infty} = \max_{t \in [0,T]} |x(t)|$, and let $C_T^1 = \{x' \in C^1(R, R) : x'(t + T) = x'(t), \forall t \in R\}$ with the norm $||x|| = \max\{|x|_{\infty}, |x'|_{\infty}\}$. Clearly, C_T and C_T^1 are both Banach spaces. For any *T*-periodic solution $\varphi(t)$ with $\varphi \in C_T$, by $\varphi_+(t)$ and $\varphi_-(t)$ we denote $\max\{\varphi(t), 0\}$ and $-\min\{\varphi(t), 0\}$, respectively, and $\overline{\varphi} = \frac{1}{T} \int_0^T \varphi(s) ds$. Then $\varphi(t) = \varphi_+(t) - \varphi_-(t)$ for all $t \in R$, and $\overline{\varphi} = \overline{\varphi_+} - \overline{\varphi_-}$. Furthermore, for each $u \in C_T$, let $||u||_p := (\int_0^T |u(s)|^p ds)^{1/p}$, $p \in [1, +\infty)$.

The following result can be easily obtained by using Theorem 4 in [32], Chapter 6 of [33], and Theorem 3.1 in [34].

Lemma 2.1 Assume that there exist positive constants N_0 , N_1 , and N_2 with $0 < N_0 < N_1$ such that the following conditions hold.

1. For each $\lambda \in (0, 1]$, each possible positive *T*-periodic solution *x* to the equation

$$u'' + \lambda f(u') + \lambda \varphi(t)u - \frac{\lambda}{u^{\alpha}} = \lambda p(t)$$

satisfies the inequalities $N_0 < x(t) < N_1$ and $|x'(t)| < N_2$ for all $t \in [0, T]$.

2. Each possible solution c to the equation

$$\frac{1}{c^{\alpha}} - c\overline{\varphi} + \overline{p} = 0$$

satisfies the inequality $N_0 < c < N_1$.

3. The inequality

$$\left(\frac{1}{N_0^{\alpha}} - N_0\overline{\varphi} + \overline{p}\right) \left(\frac{1}{N_1^{\alpha}} - N_1\overline{\varphi} + \overline{p}\right) < 0$$

holds.

Then equation (1.10) has at least one positive *T*-periodic solution *u* such that $N_0 < u(t) < N_1$ for all $t \in [0, T]$.

Now, we list the following assumptions, which will be used in Section 3 for investigating the existence of positive T-periodic solutions to (1.10).

[*H*₁] There exist constants L > 0, $\sigma > 0$, and $n \ge 1$ such that

$$\left|\int_{0}^{T} f(x'(t)) dt\right| \leq L \int_{0}^{T} |x'(t)| dt, \quad \forall x \in C_{T}^{1}$$

$$(2.1)$$

and

$$yf(y) \ge \sigma |y|^{n+1}, \quad \forall y \in R.$$
 (2.2)

[*H*₂] The function φ satisfies $\overline{\varphi_+} > \overline{\varphi_-}$;

 $[H_3] \ \|\varphi\|_2 < \sigma \, T^{-\frac{1}{2}} \text{ and } (LT^{-\frac{1}{2}} + T^{\frac{1}{2}}\overline{\varphi_+}) \|\varphi\|_2 < \sigma(\overline{\varphi_+} - \overline{\varphi_-}).$

Remark 2.1 If assumption $[H_2]$ holds, then there are constants D_1 and D_2 with $0 < D_1 < D_2$ such that

$$\frac{1}{x^{\alpha}} - \overline{\varphi}x + \overline{p} > 0 \quad \text{for all } x \in (0, D_1)$$

and

$$\frac{1}{x^{\alpha}} - \overline{\varphi}x + \overline{p} < 0 \quad \text{for all } x \in (D_2, \infty).$$

Now, we embed equation (1.10) into the following equations family with parameter $\lambda \in (0, 1]$:

$$x'' + \lambda f(x') + \lambda \varphi(t) x - \frac{\lambda}{x^{\alpha}} = \lambda p(t), \quad \lambda \in (0, 1].$$
(2.3)

Let

$$\Omega = \left\{ x \in C_T : x'' + \lambda f(x') + \lambda \varphi(t) x - \frac{\lambda}{x^{\alpha}} = \lambda p(t), \lambda \in (0, 1]; x(t) > 0, \forall t \in [0, T] \right\}, \quad (2.4)$$

and let

$$M_0 = \max\left\{1, \frac{LT^{\frac{-1}{n+1}} + T^{\frac{n}{n+1}}\overline{\varphi_+}}{\overline{\varphi_+} - \overline{\varphi_-}}B + \frac{1+\overline{p}}{\overline{\varphi_+} - \overline{\varphi_-}}\right\},\tag{2.5}$$

where *B* will be determined by (2.13). Clearly, M_0 is independent of $(\lambda, x) \in (0, 1] \times \Omega$.

Lemma 2.2 Assume that assumptions $[H_1]$ - $[H_3]$ hold. Then for each function $x \in \Omega$, there exists a point $t_0 \in [0, T]$ such that

$$x(t_0) \leq M_0$$
,

where M_0 is defined by (2.5)

Proof If the conclusion does not hold, then there is a function $x_0 \in \Omega$ satisfying

$$x_0(t) > M_0$$
 for all $t \in [0, T]$. (2.6)

From (2.4) we get

$$x_0'' + \lambda f(x_0') + \lambda \varphi(t) x_0 - \frac{\lambda}{x_0^{\alpha}} = \lambda p(t).$$
(2.7)

Integrating (2.7) over the interval [0, T], we get

$$\int_0^T f(x'_0(t)) dt + \int_0^T \varphi_+(t) x_0(t) dt$$

= $\int_0^T \varphi_-(t) x_0(t) dt + \int_0^T \frac{1}{x_0^{\alpha}(t)} dt + \int_0^T p(t) dt,$

that is,

$$\int_0^T \varphi_+(t) x_0(t) dt$$

= $-\int_0^T f(x'_0(t)) dt + \int_0^T \varphi_-(t) x_0(t) dt + \int_0^T \frac{1}{x_0^{\alpha}(t)} dt + \int_0^T p(t) dt.$

Since $\varphi_+(t) \ge 0$ and $\varphi_-(t) \ge 0$ for all $t \in [0, T]$, it follows from the integral mean value theorem and condition (2.1) in $[H_1]$ that there are two points $\xi, \zeta \in [0, T]$ such that

$$x_0(\xi)T\overline{\varphi_+} \leq L \int_0^T \left| x_0'(t) \right| dt + x_0(\zeta)T\overline{\varphi_-} + M_0^{-\alpha}T + T\overline{p},$$

which, together with the fact of $M_0 \ge 1$ in (2.5), yields

$$x_0(\xi)T\overline{\varphi_+} \leq L \int_0^T \left| x_0'(t) \right| dt + |x_0|_{\infty}T\overline{\varphi_-} + T + T\overline{p},$$

that is,

$$x_{0}(\xi) \leq \frac{LT^{\frac{-1}{n+1}}}{\overline{\varphi_{+}}} \left(\int_{0}^{T} \left| x_{0}'(t) \right|^{n+1} dt \right)^{\frac{1}{n+1}} + \frac{\overline{\varphi_{-}}}{\overline{\varphi_{+}}} |x_{0}|_{\infty} + \frac{1+\overline{p}}{\overline{\varphi_{+}}}.$$
(2.8)

Since

$$|x_0|_{\infty} \le x_0(\xi) + T^{\frac{n}{n+1}} \left(\int_0^T \left| x_0'(s) \right|^{n+1} ds \right)^{\frac{1}{n+1}},$$
(2.9)

it follows from (2.8), (2.9), and $[H_2]$ that

$$|x_{0}|_{\infty} \leq \frac{LT^{\frac{-1}{n+1}} + T^{\frac{n}{n+1}}\overline{\varphi_{+}}}{\overline{\varphi_{+}} - \overline{\varphi_{-}}} \left(\int_{0}^{T} \left| x_{0}'(s) \right|^{n+1} ds \right)^{\frac{1}{n+1}} + \frac{1+\overline{p}}{\overline{\varphi_{+}} - \overline{\varphi_{-}}}.$$
(2.10)

On the other hand, multiplying both sides of (2.7) by $x'_0(t)$ and integrating it over the interval [0, T], we get

$$\lambda \int_0^T f(x'_0(t)) x'_0(t) dt = -\lambda \int_0^T \varphi(t) x_0(t) x'_0(t) dt + \lambda \int_0^T p(t) x'_0(t) dt.$$

From condition (2.2) in $[H_1]$ we have

$$\sigma \int_{0}^{T} |x'_{0}(t)|^{n+1} dt$$

$$\leq -\int_{0}^{T} \varphi(t)x_{0}(t)x'_{0}(t) dt + \int_{0}^{T} p(t)x'_{0}(t) dt$$

$$\leq |x_{0}|_{\infty} \int_{0}^{T} |\varphi(t)| |x'_{0}(t)| dt + \int_{0}^{T} |p(t)| |x'_{0}(t)| dt$$

$$\leq |x_{0}|_{\infty} \left(\int_{0}^{T} |x'_{0}(t)|^{n+1} dt\right)^{\frac{1}{n+1}} \left(\int_{0}^{T} |\varphi|^{\frac{n+1}{n}} dt\right)^{\frac{n}{n+1}}$$

$$+ \left(\int_{0}^{T} |x'_{0}(t)|^{n+1} dt\right)^{\frac{1}{n+1}} \left(\int_{0}^{T} |p(t)|^{\frac{n+1}{n}} dt\right)^{\frac{n}{n+1}},$$

that is,

$$\int_{0}^{T} |x_{0}'(t)|^{n+1} dt \leq \sigma^{-1} |x_{0}|_{\infty} \|\varphi\|_{\frac{n+1}{n}} \left(\int_{0}^{T} |x_{0}'(t)|^{n+1} dt \right)^{\frac{1}{n+1}} + \sigma^{-1} \|p\|_{\frac{n+1}{n}} \left(\int_{0}^{T} |x_{0}'(t)|^{n+1} dt \right)^{\frac{1}{n+1}}.$$
(2.11)

We infer from (2.10) and (2.11) that

$$\int_{0}^{T} |x_{0}'(t)|^{n+1} dt \\
\leq \frac{LT^{\frac{-1}{n+1}} + T^{\frac{n}{n+1}}\overline{\varphi_{+}}}{\sigma(\overline{\varphi_{+}} - \overline{\varphi_{-}})} \|\varphi\|_{\frac{n+1}{n}} \left(\int_{0}^{T} |x_{0}'(t)|^{n+1} dt\right)^{\frac{2}{n+1}} \\
+ \sigma^{-1} \left(\frac{1+\overline{p}}{\overline{\varphi_{+}} - \overline{\varphi_{-}}} \|\varphi\|_{\frac{n+1}{n}} + \|p\|_{\frac{n+1}{n}}\right) \left(\int_{0}^{T} |x_{0}'(t)|^{n+1} dt\right)^{\frac{1}{n+1}}.$$
(2.12)

According to (2.12), we list two cases.

Case 1: If n > 1, then we see that there exists $B_0 > 0$ such that $(\int_0^T |x'_0(t)|^{n+1} dt)^{\frac{1}{n+1}} \le B_0$; Case 2: If n = 1, then by assumption $[H_3]$ there exists $B_1 > 0$ such that $(\int_0^T |x'_0(t)|^2 dt)^{\frac{1}{2}} \le B_1$.

Letting $B = \max\{B_0, B_1\}$, it follows from Case 1 or Case 2 that

$$\left(\int_{0}^{T} \left|x'_{0}(t)\right|^{n+1} dt\right)^{\frac{1}{n+1}} \leq B.$$
(2.13)

Substituting (2.13) into (2.10), we have

$$|x_0|_{\infty} \leq \frac{LT^{\frac{-1}{n+1}} + T^{\frac{n}{n+1}}\overline{\varphi_+}}{\overline{\varphi_+} - \overline{\varphi_-}}B + \frac{1+\overline{p}}{\overline{\varphi_+} - \overline{\varphi_+}}.$$

By the definition of M_0 in (2.5) we have

$$|x_0|_{\infty} \leq M_0,$$

that is,

$$x_0(t) \leq M_0$$
 for all $t \in [0, T]$,

which contradicts (2.6). This contradiction proves Lemma 2.2.

Lemma 2.3 Assume that $[H_2]$ holds. Then there exists a positive constant $\gamma > 0$ such that, for each $x \in \Omega$, there is a point $t_1 \in [0, T]$ satisfying

$$x(t_1) \geq \gamma$$
.

Proof Let $x(t_1) = \max_{t \in [0,T]} x(t)$. Then $x''(t_1) \le 0$ and $x'(t_1) = 0$, which, together with (2.3), yields

$$\lambda f(0) + \lambda \varphi(t_1) x(t_1) - rac{\lambda}{x^{lpha}(t_1)} \ge \lambda p(t_1).$$

Since f(0) = 0, we have

$$x(t_1) \max_{t \in [0,T]} \varphi(t) - \frac{1}{x^{\alpha}(t_1)} \ge p(t_1) \ge -|p|_{\infty}.$$
(2.14)

Multiplying both sides of (2.14) by $x^{\alpha}(t_1)$, we get

$$x^{\alpha+1}(t_1) \max_{t \in [0,T]} \varphi(t) + x^{\alpha}(t_1) |p|_{\infty} - 1 \ge 0.$$
(2.15)

Set $S(u) = u^{\alpha+1} \max \varphi(t) + u^{\alpha} |p|_{\infty} - 1$ for $u \in [0, +\infty)$. By assumption $[H_2]$ we have

$$S(0) = -1 < 0,$$
$$\lim_{u \to +\infty} S(u) = +\infty.$$

So S(u) has zero points on $(0, +\infty)$. Let γ be the minimum zero point of S(u) on $(0, +\infty)$. Then $S(\gamma) = 0$. It follows from (2.15) that

 $x(t_1) \geq \gamma$.

The proof is complete.

3 Main result

Theorem 3.1 Assume that $[H_1]$ - $[H_3]$ hold. Then equation (1.10) has at least one positive *T*-periodic solution.

Proof Firstly, we will show that there exist $N_1 > 0$ and $N_2 > 0$ such that each positive *T*-periodic solution x(t) of equation (2.3) satisfying

$$x(t) < N_1$$
 and $|x'(t)| < N_2$ for all $t \in [0, T]$. (3.1)

Suppose that x is an arbitrary positive T-periodic solution of equation (2.3). Then

$$x'' + \lambda f(x') + \lambda \varphi(t)x - \frac{\lambda}{x^{\alpha}} = \lambda p(t), \quad \lambda \in (0, 1].$$
(3.2)

This implies that $x \in \Omega$. So by Lemma 2.2 there exists a point $t_0 \in [0, T]$ such that

$$x(t_0) \leq M_0,$$

and then

$$|x|_{\infty} \le M_0 + T^{\frac{n}{n+1}} \left(\int_0^T \left| x'(s) \right|^{n+1} ds \right)^{\frac{1}{n+1}}.$$
(3.3)

Integrating (3.2) over the interval [0, T], we get

$$\int_0^T f(x'(t)) dt + \int_0^T \varphi(t)x(t) dt - \int_0^T \frac{1}{x^{\alpha}(t)} dt = \int_0^T p(t) dt.$$
(3.4)

On the other hand, similarly to the proof of (2.11), we have

$$\int_{0}^{T} |x'(t)|^{n+1} dt \leq \sigma^{-1} |x|_{\infty} \|\varphi\|_{\frac{n+1}{n}} \left(\int_{0}^{T} |x'(t)|^{n+1} dt \right)^{\frac{1}{n+1}} + \sigma^{-1} \|p\|_{\frac{n+1}{n}} \left(\int_{0}^{T} |x'(t)|^{n+1} dt \right)^{\frac{1}{n+1}}.$$
(3.5)

Substituting (3.3) into (3.5), we have

$$\begin{split} &\int_{0}^{T} \left| x'(t) \right|^{n+1} dt \\ &\leq \sigma^{-1} \|\varphi\|_{\frac{n+1}{n}} T^{\frac{n}{n+1}} \left(\int_{0}^{T} \left| x'(t) \right|^{n+1} dt \right)^{\frac{2}{n+1}} \\ &+ \left(\sigma^{-1} \|\varphi\|_{\frac{n+1}{n}} M_{0} + \sigma^{-1} \|p\|_{\frac{n+1}{n}} \right) \left(\int_{0}^{T} \left| x'(t) \right|^{n+1} dt \right)^{\frac{1}{n+1}}. \end{split}$$
(3.6)

According to (3.6), we list two cases.

Case 1: If n > 1, then there exists $\rho_0 > 0$ such that $(\int_0^T |x'(t)|^{n+1} dt)^{\frac{1}{n+1}} \le \rho_0$; Case 2: If n = 1, then by assumption $[H_3]$ there exists $\rho_1 > 0$ such that $(\int_0^T |x'(t)|^2 dt)^{\frac{1}{2}} \le \rho_1$.

Letting $\rho = \max\{\rho_0, \rho_1\}$, it follows from Case 1 or Case 2 that

$$\left(\int_{0}^{T} \left|x'(t)\right|^{n+1} dt\right)^{\frac{1}{n+1}} \le \rho,$$
(3.7)

and according to (3.3), we have

$$x(t) \le M_0 + T^{\frac{n}{n+1}}\rho := N_1 \quad \text{for all } t \in [0, T].$$
(3.8)

Clearly, there is a point $t_2 \in [0, T]$ such that $x'(t_2) = 0$. Multiplying both sides of (3.2) by x'(t) and integrating it over the interval $[t_2, t]$, we get

$$\int_{t_2}^{t} x''(t)x'(t) dt$$

= $\lambda \int_{t_2}^{t} \left[-f(x'(t))x'(t) - \varphi(t)x(t)x'(t) + \frac{x'(t)}{x^{\alpha}(t)} + p(t)x'(t) \right] dt$
for all $t \in [t_2, t_2 + T]$,

and then

$$\frac{|x'(t)|^2}{2} \leq \lambda |x'|_{\infty} \left[|x|_{\infty} \int_{t_2}^{t_2+T} |\varphi(t)| dt + \int_{t_2}^{t_2+T} \frac{1}{x^{\alpha}(t)} dt + \int_{t_2}^{t_2+T} |p(t)| dt \right]$$

= $\lambda |x'|_{\infty} \left[|x|_{\infty} \int_{0}^{T} |\varphi(t)| dt + \int_{0}^{T} \frac{1}{x^{\alpha}(t)} dt + \int_{0}^{T} |p(t)| dt \right]$
= $\lambda |x'|_{\infty} \left[N_1 T \overline{|\varphi|} + \int_{0}^{T} \frac{1}{x^{\alpha}(t)} dt + T \overline{|p|} \right] \text{ for all } t \in [t_2, t_2 + T].$ (3.9)

Since

$$|x'|_{\infty} = \max_{t \in [0,T]} |x'(t)| = \max_{t \in [t_2, t_2+T]} |x'(t)|,$$

it follows from (3.9) that

$$\frac{|x'|_{\infty}^2}{2} \leq \lambda |x'|_{\infty} \left[N_1 T \overline{|\varphi|} + \int_0^T \frac{1}{x^{\alpha}(t)} dt + T \overline{|p|} \right],$$

that is,

$$\frac{|x'|_{\infty}}{2} \leq \lambda \bigg[N_1 T \overline{|\varphi|} + \int_0^T \frac{1}{x^{\alpha}(t)} dt + T \overline{|p|} \bigg],$$

which implies that

$$\frac{|x'(t)|}{2} \le \frac{|x'|_{\infty}}{2} \le \lambda \left[N_1 T \overline{|\varphi|} + \int_0^T \frac{1}{x^{\alpha}(t)} dt + T \overline{|p|} \right] \quad \text{for all } t \in [0, T].$$
(3.10)

On the other hand, from (3.4) and condition (2.1) in $[H_1]$ we have

$$\begin{split} \int_0^T \frac{1}{x^{\alpha}(t)} \, dt &= \int_0^T f(x'(t)) \, dt + \int_0^T \varphi(t) x(t) \, dt - \int_0^T p(t) \, dt \\ &\leq L \int_0^T \left| x'(t) \right| \, dt + N_1 \, T \overline{|\varphi|} + T \overline{|p|} \\ &\leq L \rho \, T^{\frac{n}{n+1}} + N_1 \, T \overline{|\varphi|} + T \overline{|p|}, \end{split}$$

where ρ is determined in (3.7). Substituting this formula into (3.10), we obtain

$$\left|x'(t)\right| \le \lambda \left[2L\rho T^{\frac{n}{n+1}} + 4N_1 T\overline{|\varphi|} + 4T\overline{|p|}\right] := \lambda N_2 \quad \text{for all } t \in [0, T].$$

$$(3.11)$$

So we have

$$\left|x'(t)\right| \le N_2 \quad \text{for all } t \in [0, T]. \tag{3.12}$$

We further show that there exists a constant $\gamma_0 \in (0, \gamma)$ such that each positive T = periodic solution of (2.3) satisfies

$$x(t) > \gamma_0 \quad \text{for all } t \in [0, T]. \tag{3.13}$$

In fact, suppose that x(t) is an arbitrary positive *T*-periodic solution of (2.3). Then

$$x'' + \lambda f(x') + \lambda \varphi(t)x - \frac{\lambda}{x^{\alpha}} = \lambda p(t), \quad \lambda \in (0, 1].$$
(3.14)

By Lemma 2.3 we see that there is a point $t_1 \in [0, T]$ such that

 $x(t_1) \geq \gamma$.

For $t \in [t_1, t_1 + T]$, multiplying both sides of (3.14) with x'(t) and integrating it over the interval $[t_1, t]$ (or $[t, t_1]$), we get

$$\frac{|x'(t)|^2}{2} - \frac{|x'(t_1)|^2}{2} + \lambda \int_{t_1}^t f(x') x' \, dt = \lambda \int_{t_1}^t \frac{1}{x^{\alpha}} x' \, dt - \lambda \int_{t_1}^t \varphi(t) x x' \, dt + \lambda \int_{t_1}^t p(t) x' \, dt,$$

which results in

$$\lambda \int_{x(t_1)}^{x(t)} \frac{1}{s^{\alpha}} ds$$

= $\frac{|x'(t)|^2}{2} - \frac{|x'(t_1)|^2}{2} + \lambda \int_{t_1}^t f(x'(s))x'(s) ds + \lambda \int_{t_1}^t \varphi(s)x(s)x'(s) ds - \lambda \int_{t_1}^t p(s)x'(s) ds,$

that is,

$$\lambda \int_{x(t)}^{x(t_1)} \frac{1}{s^{\alpha}} \, ds = -\frac{|x'(t)|^2}{2} + \frac{|x'(t_1)|^2}{2} - \lambda \int_{t_1}^t f(x'(s)) x'(s) \, ds$$
$$-\lambda \int_{t_1}^t \varphi(s) x(s) x'(s) \, ds + \lambda \int_{t_1}^t p(s) x'(s) \, ds.$$

According to (2.2) in $[H_1]$, we get $\int_{t_1}^t f(x'(s))x'(s) ds \ge 0$. Thus, it follows from the last formula that

$$\begin{split} \lambda \int_{x(t)}^{x(t_1)} \frac{1}{s^{\alpha}} \, ds &\leq -\frac{|x'(t)|^2}{2} + \frac{|x'(t_1)|^2}{2} - \lambda \int_{t_1}^t \varphi(s) x(s) x'(s) \, ds + \lambda \int_{t_1}^t p(s) x'(s) \, ds \\ &\leq |x'|_{\infty}^2 + \lambda \int_0^T |\varphi(s) x(s) x'(s)| \, ds + \lambda \int_0^T |p(s) x'(s)| \, ds, \end{split}$$

which, together with (3.8) and (3.11), yields

$$\lambda \int_{x(t)}^{x(t_1)} \frac{1}{s^{\alpha}} \, ds \leq \lambda^2 N_2^2 + \lambda^2 N_1 N_2 T \overline{|\varphi|} + \lambda^2 N_2 T \overline{|p|},$$

that is,

$$\int_{x(t)}^{x(t_1)} \frac{1}{s^{\alpha}} \, ds \le N_2^2 + N_1 N_2 T \overline{|\varphi|} + N_2 T \overline{|p|} := N_3. \tag{3.15}$$

Since $\alpha \ge 1$, it follows that there exists $\gamma_0 \in (0, \gamma)$ such that

$$\int_{\eta}^{\gamma} \frac{1}{x^{\alpha}(t)} \, dt > N_3 \quad \text{for all } \eta \in (0, \gamma_0),$$

which, together with (3.15), implies that

$$x(t) > \gamma_0$$
 for all $t \in [0, T]$.

So (3.13) holds.

Let $n_0 = \min\{D_1, \gamma_0\}$ and $n_1 \in (N_1 + D_2, +\infty)$ be two constants. Then from (3.8), (3.12), and (3.13) we see that each possible positive *T*-periodic solution *x* to (2.3) satisfies

$$n_0 < x(t) < n_1, \qquad |x'(t)| < N_2.$$

This implies that condition 1 and condition 2 of Lemma 2.1 hold. In addition, from Remark 2.1 we can infer that

$$\frac{1}{c^{\alpha}} - c\overline{\varphi} + \overline{p} > 0 \quad \text{for } c \in (0, n_0]$$

and

$$\frac{1}{c^{\alpha}} - c\overline{\varphi} + \overline{p} < 0 \quad \text{for } c \in [n_1, +\infty),$$

which results in

$$\left(\frac{1}{n_0^\alpha}-n_0\overline{\varphi}+\overline{p}\right)\left(\frac{1}{n_1^\alpha}-n_1\overline{\varphi}+\overline{p}\right)<0.$$

Therefore, condition 3 of Lemma 2.1 holds. Thus, by Lemma 2.1 we see that equation (1.10) has at least one positive *T*-periodic solution. The proof is complete. \Box

Example 3.1 Consider the equation

$$x''(t) + 10x'(t) - \frac{(x'(t))^3}{1 + (x'(t))^2} + a(1 + 2\sin t)x(t) - \frac{1}{x^2(t)} = \cos t,$$
(3.16)

where $a \in (0, \infty)$. Corresponding to (1.10), we see that $f(x) = 10x - \frac{x^3}{1+x^2}$, $\varphi(t) = a(1+2\sin t)$, $p(t) = \cos t$, and $T = 2\pi$.

Firstly, from (3.16) we see that f(0) = 0 and

$$\overline{\varphi_+} = \frac{1}{T} \int_0^T \varphi_+(t) dt = \frac{\frac{2\pi}{3} + \sqrt{3}}{\pi} a, \qquad \overline{\varphi_-} = \frac{1}{T} \varphi_-(t) dt = \frac{-\frac{\pi}{3} + \sqrt{3}}{\pi} a.$$

Obviously, $[H_2]$ is satisfied. Secondly, integrating f(x') over the internal [0, T], we get

$$\begin{aligned} \left| \int_{0}^{T} f(x') dt \right| &= \left| \int_{0}^{T} \left[10x'(t) - \frac{(x'(t))^{3}}{1 + (x'(t))^{2}} \right] dt \right| \\ &= \left| - \int_{0}^{T} \frac{(x'(t))^{3}}{1 + (x'(t))^{2}} dt \right| \\ &= \left| \int_{0}^{T} \frac{|x'(t)|^{3}}{1 + (x'(t))^{2}} dt \right| \\ &\leq \int_{0}^{T} |x'(t)| dt, \end{aligned}$$

which implies that we can chose L = 1 such that assumption $[H_1]$ holds. Besides, from

$$yf(y) = 10y^2 - \frac{y^4}{1+y^2} \ge 9y^2$$

we see that the constant σ can be chosen as $\sigma = 9$ such that assumption [*H*₁] is satisfied. Last, let *L* = 1, $\sigma = 9$, *n* = 1. Then we get

$$\begin{split} &1 - \frac{LT^{\frac{-1}{2}} + T^{\frac{1}{2}}\overline{\varphi_{+}}}{\sigma(\overline{\varphi_{+}} - \overline{\varphi_{-}})} \|\varphi\|_{2} = 1 - \frac{\sqrt{3}}{9} - \frac{18 + 4\sqrt{3}\pi}{27} a > 0, \\ &1 - \sigma^{-1} \|\varphi\|_{2} T^{\frac{1}{2}} = 1 - \frac{2\pi}{3\sqrt{3}} a > 0. \end{split}$$

If

$$a < \frac{27 - 3\sqrt{3}}{18 + 4\sqrt{3}\pi},$$

then $[H_3]$ holds. Thus, by Theorem 3.1 we have that equation (3.16) has at least one positive 2π -periodic solution.

Acknowledgements

The work is sponsored by the talent foundation of NUIST (2012r101).

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

All the authors read and approved the final manuscript.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 8 July 2017 Accepted: 13 December 2017 Published online: 22 December 2017

References

- 1. Yuan, H, Xu, X: Existence and uniqueness of solutions for a class of non-Newtonian fluids with singularity and vacuum. J. Differ. Equ. 245, 2871-2916 (2008)
- 2. Jebelean, P, Mawhin, J: Periodic solutions of singular nonlinear differential perturbations of the ordinary *p*-Laplacian. Adv. Nonlinear Stud. **2**(3), 299-312 (2002)
- 3. Bevc, V, Palmer, JL, Süsskind, C: On the design of the transition region of axi-symmetric magnetically focused beam valves. J. Br. Inst. Radio Eng. 18, 696-708 (1958)

- 4. Ye, Y, Wang, X: Nonlinear differential equations in electron beam focusing theory. Acta Math. Appl. Sin. 1, 13-41 (1978) [In Chinese]
- Huang, J, Ruan, S, Song, J: Bifurcations in a predator-prey system of Leslie type with generalized Holling type III functional response. J. Differ. Equ. 257(6), 1721-1752 (2014)
- 6. Plesset, MS: The dynamics of cavitation bubbles. J. Appl. Mech. 16, 228-231 (1949)
- Nagumo, M: On the periodic solution of an ordinary differential equation of second order. In: Zenkoku Shijou Suugaku Danwakai, pp. 54-61. Springer, Berlin (1944) (in Japanese). English translation in Mitio Nagumo collected papers. 1993
- Forbat, F, Huaux, A: Détermination approchée et stabilité locale de la solution périodique d'une équation différentielle non linéaire. Mém. Public. Soc. Sci., Artts Lettres Hainaut 76, 3-13 (1962)
- Lazer, AC, Solimini, S: On periodic solutions of nonlinear differential equations with singularities. Proc. Am. Math. Soc. 99, 109-114 (1987)
- 10. Tanaka, K: A note on generalized solutions of singular Hamiltonian systems. Proc. Am. Math. Soc. 122, 275-284 (1994)
- 11. Terracini, S: Remarks on periodic orbits of dynamical systems with repulsive singularities. J. Funct. Anal. 111, 213-238 (1993)
- 12. Gaeta, S, Manásevich, R: Existence of a pair of periodic solutions of an ode generalizing a problem in nonlinear elasticity via variational methods. J. Math. Anal. Appl. **123**, 257-271 (1988)
- Fonda, A: Periodic solutions for a conservative system of differential equations with a singularity of repulsive type. Nonlinear Anal. 24, 667-676 (1995)
- 14. Torres, PJ: Weak singularities may help periodic solutions to exist. J. Differ. Equ. 232, 277-284 (2007)
- Jiang, D, Chu, J, Zhang, M: Multiplicity of positive periodic solutions to superlinear repulsive singular equations. J. Differ. Equ. 211, 282-302 (2005)
- Chu, J, Torres, PJ, Zhang, M: Periodic solutions of second order non-autonomous singular dynamical systems. J. Differ. Equ. 239, 196-212 (2007)
- Li, X, Zhang, Z: Periodic solutions for second order differential equations with a singular nonlinearity. Nonlinear Anal. 69, 3866-3876 (2008)
- Cheng, Z, Ren, J: Multiplicity results of positive solutions for fourth-order nonlinear differential equation with singularity. Math. Methods Appl. Sci. 38, 5284-5304 (2016)
- Cheng, Z, Ren, J: Positive solutions for fourth-order singular nonlinear differential equation with variable-coefficient. Math. Methods Appl. Sci. 39, 2251-2274 (2016)
- Hakl, R, Torres, PJ, Zamora, M: Periodic solutions of singular second order differential equations: upper and lower functions. Nonlinear Anal. 74, 7078-7093 (2011)
- Hakl, R, Torres, PJ: On periodic solutions of second-order differential equations with attractive-repulsive singularities. J. Differ. Equ. 248, 111-126 (2010)
- 22. Zhang, M: Periodic solutions of Liénard equations with singular forces of repulsive type. J. Math. Anal. Appl. 203(1), 254-269 (1996)
- Martins, R: Existence of periodic solutions for second-order differential equations with singularities and the strong force condition. J. Math. Anal. Appl. 317, 1-13 (2006)
- 24. Lu, S: Homoclinic solutions for a class of prescribed mean curvature Liénard equations. Adv. Differ. Equ. 2015, 239 (2015). https://doi.org/10.1186/s13662-015-0579-3
- Wang, Z: Periodic solutions of Liénard equation with a singularity and a deviating argument. Nonlinear Anal., Real World Appl. 16(1), 227-234 (2014)
- Hakl, R, Torres, PJ, Zamora, M: Periodic solutions of singular second order differential equations: the repulsive case. Topol. Methods Nonlinear Anal. 39, 199-220 (2012)
- 27. Lu, S, Kong, F: Periodic solutions for a kind of prescribed mean curvature Liéard equation with a singularity and a deviating argument. Adv. Differ. Equ. **2015**, 151 (2015). https://doi.org/10.1186/s13662-015-0474-y
- Lu, S: A new result on the existence of periodic solutions for Liénard equations with a singularity of repulsive type. J. Inequal. Appl. 2017, 37 (2017). https://doi.org/10.1186/s13660-016-1285-8
- Lu, S, Zhong, T, Chen, L: Periodic solutions for *p*-Laplacian Rayleigh equations with singularities. Bound. Value Probl. 2016, 96 (2016). https://doi.org/10.1186/s13661-016-0605-8
- Lu, S, Zhong, T, Gao, Y: Periodic solutions of *p*-Laplacian equations with singularities. Adv. Differ. Equ. 2016, 146 (2016). https://doi.org/10.1186/s13662-016-0875-6
- Lu, S, Wang, Y, Guo, Y: Existence of periodic solutions of a Liénard equation with a singularity of repulsive type. Bound. Value Probl. 2017, 95 (2017). https://doi.org/10.1186/s13661-017-0826-5
- Mawhin, J: Équations intégrales et solutions périodiques des systèmes différentiels non linéaires. Bulletin de la Classe des Sciences de l'Académie Royale de Belgique 55(5), 934-947 (1969)
- Mawhin, J: Topological degree and boundary value for nonlinear differential equations. In: Furi, M, Zecca, P (eds.) Topological Methods for Ordinary Differential Equations. Lecture Notes in Math., vol. 1537, pp. 74-142. Springer, Berlin (1993)
- 34. Manásevich, R, Mawhin, J: Periodic solutions for nonlinear systems with *p*-Laplacian-like operators. J. Differ. Equ. 145, 367-393 (1998)