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Abstract
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1 Introduction
In this paper, we study the existence of extremal solutions of the following fractional differ-
ential systems involving the p-Laplacian operator and Riemann-Liouville integral bound-
ary conditions:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

–Dα(φp(–Dβx(t))) = f (t, x(t), Dβx(t)), 0 < t < 1,

Dβx(0) = 0, (φp(–Dβx(0)))′ = 0,

Dγ (φp(–Dβx(1))) = Iν(φp(–Dβx(η))) =
∫ η

0 (η – s)ν–1φp(–Dβx(s)) ds,

x(0) = 0, Dβ–1x(1) = Iωg(ξ , x(ξ )) + k = 1

(ω)

∫ ξ

0 (ξ – s)ω–1g(s, x(s)) ds + k,

(1.1)

where Dα , Dβ , and Dγ are the standard Riemann-Liouville fractional derivatives, Iν and
Iω are the Riemann-Liouville fractional integrals, and 0 < γ < 1 < β < 2 < α < 3, ν,ω > 0,
0 < η, ξ < 1, k ∈R, f ∈ C([0, 1] ×R×R,R), g ∈ C([0, 1] ×R,R). The p-Laplacian operator
is defined as φp(t) = |t|p–2t, p > 1, and (φp)–1 = φq, 1

p + 1
q = 1.

The study of boundary value problems in the setting of fractional calculus has received
a great attention in the last decade, and a variety of results concerning the of existence of
solutions, based on various analytic techniques, can be found in the literature [1–10]. In
particular, much effort has been made toward the study of the existence of solutions for
fractional differential equations involving p-Laplacian operators; see [11–14]. Using the
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monotone iteration method, Ding [15] investigated a fractional boundary value problem
with p-Laplacian operator

⎧
⎨

⎩

Dβ (φp(Dαu(t))) = f (t, u(t), Dαu(t)), t ∈ (0, 1],

t
1–β
p–1 Dαu(t)|t=0 = 0, g (̃u(0), ũ(1)) = 0,

(1.2)

where 0 < α,β ≤ 1, 1 < α + β ≤ 2, and Dα is the standard Riemann-Liouville fractional
derivative, and established the existence and uniqueness of extremal solutions for the BVP
(1.2) under the condition that the nonlinear functions f and g are continuous and satisfy
certain growth conditions. Zhang [16] considered the following nonlinear fractional inte-
gral boundary value problem:

⎧
⎪⎪⎨

⎪⎪⎩

CDαu(t) = f (t, u(t), u(θ (t)), n < α ≤ n + 1, n ≥ 2, t ∈ [0, 1],

u′(0) = u′′(0) = u′′′(0) = · · · = un(0) = 0,

u(0) =
∫ 1

0 g(s, u(s)) ds + λ,

(1.3)

where λ ≥ 0, CDα is the Caputo fractional derivative, and f and g are continuous functions.
The authors constructed two well-defined monotone iterative sequences of upper and
lower solutions and proved that they converge uniformly to the actual solution of problem
(1.3). A numerical iterative scheme is also introduced to obtain an accurate approximate
solution for the problem.

In this paper, we consider a kind of fractional differential equations involving p-
Laplacian operators and nonlocal boundary conditions based on the Riemann-Liouville
integral. To the best of our knowledge, little work has been conducted to deal with this
kind of problem, and no work has been done concerning the maximal and minimal solu-
tions of (1.1) by using the method of upper and lower solutions and the monotone iteration
technique.

The rest of this paper is organized as follows. In Section 2, we give some useful prelim-
inaries and lemmas. In Section 3, the main result and proof are given, and an example is
presented to illustrate the main results.

2 Preliminaries
In this section, we deduce some preliminary results that will be used in the next section
to attain existence results for the nonlinear system (1.1)

Lemma 2.1 Assume that h(t) ∈ C[0, 1], l ∈R. Then the fractional value boundary problem

⎧
⎨

⎩

–Dαv(t) = h(t), 0 < t < 1,

v(0) = 0, v′(0) = 0, Dγ v(1) = l,
(2.1)

has a unique solution

v(t) =
∫ 1

0
G(t, s)h(s) ds +


(α – γ )ltα–1


(α)
,
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where

G(t, s) =

⎧
⎨

⎩

tα–1(1–s)α–γ –1–(t–s)α–1


(α) , 0 ≤ s ≤ t ≤ 1,
tα–1(1–s)α–γ –1


(α) , 0 ≤ t ≤ s ≤ 1.

Proof We can transform the equation –Dαv(t) = h(t) to the equivalent integral equation

v(t) = –Iαh(t) + C1tα–1 + C2tα–2 + C3tα–3.

Noting that v(0) = 0 and v′(0) = 0, we have C2 = C3 = 0. Consequently, we have the form

v(t) = –Iαh(t) + C1tα–1 (2.2)

and

Dγ v(t) = –Dγ Iαh(t) + C1Dγ tα–1

= –Iα–γ h(t) + C1Dγ tα–1

= –
1


(α – γ )

∫ t

0
(t – s)α–γ –1h(s) ds + C1


(α)

(α – γ )

tα–1.

So,

Dγ v(1) = –
1


(α – γ )

∫ 1

0
(1 – s)α–γ –1h(s) ds + C1


(α)

(α – γ )

. (2.3)

On the other hand, Dγ v(1) = l, and combining with (2.3), we obtain

C1 =
1


(α)

∫ 1

0
(1 – s)α–γ –1h(s) ds +


(α – γ )

(α)

l.

Therefore, the unique solution of problem (2.1) is

v(t) = –
1


(α)

∫ t

0
(t – s)α–1h(s) ds +

tα–1


(α)

∫ 1

0
(1 – s)α–γ –1h(s) ds +


(α – γ )ltα–1


(α)

=
∫ 1

0
G(t, s)h(s) ds +


(α – γ )ltα–1


(α)
.

The proof is completed. �

Lemma 2.2 ([17]) Assume that z(t) ∈ C[0, 1], λ, k ∈ R, and 
(β + ω) �= λξβ+ω–1. Then the
fractional boundary value problem

⎧
⎨

⎩

–Dβx(t) = z(t), 0 < t < 1,

x(0) = 0, Dβ–1x(1) = λIωx(ξ ) + k,
(2.4)

has a unique solution

x(t) =
∫ 1

0
H(t, s)z(s) ds +

k
(β + ω)tβ–1


(β)[
(β + ω) – λξβ+ω–1]
,
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where

H(t, s) =
1



⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
(β + ω) – λ(ξ – s)β+ω–1]tβ–1

– [
(β + ω) – λξβ+ω–1](t – s)β–1, s ≤ t, s ≤ ξ ,


(β + ω)tβ–1 – λ(ξ – s)β+ω–1tβ–1, t ≤ s ≤ ξ ,


(β + ω)[tβ–1 – (t – s)β–1] + λξβ+ω–1(t – s)β–1, ξ ≤ s ≤ t,


(β + ω)tβ–1, s ≥ t, s ≥ ξ ,

and 
 = 
(β)[
(β + ω) – ληβ+ω–1].

Lemma 2.3 ([17]) Suppose that λ ≥ 0 and 
(β + ω) > λξβ+ω–1. Then the functions
G(t, s) and H(t, s) are continuous, and 0 ≤ G(t, s) ≤ tα–1(1–s)α–γ –1


(α) and 0 ≤ H(t, s) ≤

(β+ω)


(β)[
(β+ω)–λξβ+ω–1] (1 + tβ–1) for (t, s) ∈ [0, 1] × [0, 1].

Lemma 2.4 If v(t) ∈ C[0, 1] satisfies

⎧
⎨

⎩

–Dαv(t) ≥ 0, 0 < t < 1,

v(0) = 0, v′(0) = 0, Dγ v(1) ≥ 0,
(2.5)

then v(t) ≥ 0 for t ∈ [0, 1].

Proof By Lemma 2.1 we know that (2.1) has a unique solution

v(t) =
∫ 1

0
G(t, s)h(s) ds +


(α – γ )ltα–1


(α)
.

In view of Lemma 2.3, we have G(t, s) ≥ 0 for t, s ∈ [0, 1]. Let h(t) ≥ 0 and l ≥ 0. Then we
obtain (2.5) and v(t) ≥ 0 for t ∈ [0, 1]. �

Lemma 2.5 Let λ ≥ 0 and 
(β + ω) > λξβ+ω–1. If x(t) ∈ C[0, 1] satisfies

⎧
⎨

⎩

–Dβx(t) ≥ 0, 0 < t < 1,

x(0) = 0, Dβ–1x(1) ≥ λIωx(ξ ),
(2.6)

then x(t) ≥ 0 for t ∈ [0, 1].

Proof We can easily prove Lemma 2.5 similarly to Lemma 2.4. �

Lemma 2.6 Assume that h(t) ∈ C[0, 1] and 
(β +ω) �= λξβ+ω–1. Then the following bound-
ary value problem

⎧
⎪⎪⎨

⎪⎪⎩

–Dα(φp(–Dβx(t))) = h(t), 0 < t < 1,

Dβx(0) = 0, (φp(–Dβx(0)))′ = 0, Dγ (φp(–Dβx(1))) = l,

x(0) = 0, Dβ–1x(1) = λIωx(ξ ) + k,

(2.7)
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has a unique solution

x(t) =
∫ 1

0
H(t, s)φq

(∫ 1

0
G(s, τ )h(τ ) dτ +


(α – γ )lsα–1


(α)

)

ds

+
k
(β + ω)tβ–1


(β)[
(β + ω) – λξβ+ω–1]
.

Proof Let φp(–Dβx(t)) = v(t) and consider the boundary value problem

⎧
⎨

⎩

–Dαv(t) = h(t), 0 < t < 1,

v(0) = 0, v′(0) = 0, Dγ v(1) = l.
(2.8)

By Lemma 2.1 we obtain

v(t) =
∫ 1

0
G(t, s)h(s) ds +


(α – γ )ltα–1


(α)
.

Noting that φp(–Dβx(t)) = v(t) and –Dβx(t) = φq(v(t)), we get that the boundary problem
(2.7) is equivalent to the following problem:

⎧
⎨

⎩

–Dβx(t) = φq(v(t)), 0 < t < 1,

x(0) = 0, Dβ–1x(1) = λIωx(ξ ) + k.
(2.9)

By Lemma 2.2 the solution of (2.9) can be written as

x(t) =
∫ 1

0
H(t, s)φq

(
v(s)

)
ds +

k
(β + ω)tβ–1


(β)[
(β + ω) – λξβ+ω–1]
. (2.10)

Combining with (2.8) and (2.9), we assert that the boundary problem (2.7) has a unique
solution

x(t) =
∫ 1

0
H(t, s)φq

(∫ 1

0
G(s, τ )h(τ ) dτ +


(α – γ )lsα–1


(α)

)

ds

+
k
(β + ω)tβ–1


(β)[
(β + ω) – λξβ+ω–1]
. �

3 Main results
Let E = {x : x ∈ C[0, 1], Dβx(t) ∈ C[0, 1]} be endowed with the norm ‖x‖β = ‖x‖ + ‖Dβx‖,
where ‖x‖ = max0≤t≤1 |x(t)| and ‖Dβx‖ = max0≤t≤1 |Dβx(t)|. Then (E,‖ · ‖β ) is a Banach
space.

Definition 3.1 We say that x(t) ∈ E is a lower solution of problem (1.1), if

⎧
⎪⎪⎨

⎪⎪⎩

–Dα(φp(–Dβx(t))) ≤ f (t, x(t), Dβx(t)), 0 < t < 1,

Dβx(0) = 0, (φp(–Dβx(0)))′ = 0, Dγ (φp(–Dβx(1))) ≤ Iν(φp(–Dβx(η))),

x(0) = 0, Dβ–1x(1) ≤ Iωg(ξ , x(ξ )) + k,

and it is an upper solution of (1.1) if the above inequalities are reversed.
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We further need the following assumptions.

(H1) x0, y0 ∈ E are lower and upper solutions of problem (1.1), respectively, and x0(t) ≤
y0(t) and Dβy0(t) ≤ Dβx0(t) for t ∈ [0, 1].

(H2) The function f ∈ C([0, 1] ×R×R,R) satisfies

f
(
t, y, Dβy

) ≥ f
(
t, x, Dβx

)

if x0(t) ≤ x(t) ≤ y(t) ≤ y0(t) and Dβy0(t) ≤ Dβy(t) ≤ Dβx(t) ≤ Dβx0(t) for t ∈ [0, 1].
(H3) There exists a constant λ ≥ 0 such that 
(β + ω) > λξβ+ω–1 and

g(t, y) – g(t, x) ≥ λ(y – x)

if x0(t) ≤ x(t) ≤ y(t) ≤ y0(t) for t ∈ [0, 1].

Theorem 3.1 Suppose that (H1)-(H3) hold. Then boundary value problem (1.1) has an
extremal solution x∗, y∗ ∈ [x0, y0]. Moreover,

x0(t) ≤ x∗(t) ≤ y∗(t) ≤ y0(t)

and

Dβy0(t) ≤ Dβy∗(t) ≤ Dβx∗(t) ≤ Dβx0(t) for t ∈ [0, 1].

Proof For n = 0, 1, 2 . . . , we define

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

–Dα(φp(–Dβxn+1(t))) = f (t, xn(t), Dβxn(t)), 0 < t < 1,

Dβxn+1(0) = 0, (φp(–Dβxn+1(0)))′ = 0,

Dγ (φp(–Dβxn+1(1))) = Iν(φp(–Dβxn(η))),

xn+1(0) = 0, Dβ–1xn+1(1) = Iω{g(ξ , xn(ξ )) + λ[xn+1(ξ ) – xn(ξ )]} + k,

(3.1)

and

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

–Dα(φp(–Dβyn+1(t))) = f (t, yn(t), Dβyn(t)), 0 < t < 1,

Dβyn+1(0) = 0, (φp(–Dβyn+1(0)))′ = 0,

Dγ (φp(–Dβyn+1(1))) = Iν(φp(–Dβyn(η))),

yn+1(0) = 0, Dβ–1yn+1(1) = Iω{g(ξ , yn(ξ )) + λ[yn+1(ξ ) – yn(ξ )]} + k.

(3.2)

By Lemma 2.6 we know that (3.1) and (3.2) have unique solutions

xn+1(t) =
∫ 1

0
H(t, s)φq

(∫ 1

0
G(s, τ )f

(
τ , xn(τ ), Dβxn(τ )

)
dτ

+

(α – γ )sα–1Iν(φp(–Dβxn(η)))


(α)

)

ds

+

(β + ω)tβ–1{Iω[g(ξ , xn(ξ )) – λxn(ξ )] + k}


(β)[
(β + ω) – λξβ+ω–1]
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and

yn+1(t) =
∫ 1

0
H(t, s)φq

(∫ 1

0
G(s, τ )f

(
τ , yn(τ ), Dβyn(τ )

)
dτ

+

(α – γ )sα–1Iν(φp(–Dβyn(η)))


(α)

)

ds

+

(β + ω)tβ–1{Iω[g(ξ , yn(ξ )) – λyn(ξ )] + k}


(β)[
(β + ω) – λξβ+ω–1]
.

First, we show that x0(t) ≤ x1(t) ≤ y1(t) ≤ y0(t), and Dβy0 ≤ Dβy1(t) ≤ Dβx1(t) ≤ Dβx0(t),
t ∈ [0, 1]. Let ε(t) = φp(–Dβx1(t)) – φp(–Dβx0(t)). From (3.1) and (H1) we obtain

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

–Dαε(t) = –Dα(φp(–Dβx1(t))) + Dα(φp(–Dβx0(t)))

≥ f (t, x0(t), Dβx0(t)) – f (t, x0(t), Dβx0(t)) = 0,

ε(0) = 0, ε′(0) = 0,

Dγ ε(1) = Dγ (φp(–Dβx1(t))) – Dγ (φp(–Dβx0(t)))

≥ Iω(φp(–Dβx0(η))) – Iω(φp(–Dβx0(η))) = 0.

In view of Lemma 2.4, we have φp(–Dβx1(t)) ≥ φp(–Dβx0(t)), t ∈ [0, 1], since φp(x) is non-
decreasing, and thus

Dβx1(t) ≤ Dβx0(t). (3.3)

Let v(t) = x1(t) – x0(t), it follows from (3.1), (3.3) and (H3) that

⎧
⎪⎪⎨

⎪⎪⎩

–Dβv(t) = –Dβx1(t) + Dβx0(t) ≥ 0, t ∈ [0, 1],

v(0) = 0,

Dβ–1v(1) ≥ Iω{g(ξ , x0(ξ )) + λ[x1(ξ ) – x0(ξ )]} – Iωg(ξ , x0(ξ )) ≥ λIωv(ξ ).

According to Lemma 2.5, we have x1(t) ≥ x0(t) for t ∈ [0, 1].
Using similar reasoning, we can show that y0(t) ≥ y1(t) and Dβy0(t) ≤ Dβy1(t). Now, we

let w(t) = φp(–Dβy1(t)) – φp(–Dβx1(t)). From (H1) and (H2) we have

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

–Dαw(t) = –Dαφp(–Dβy1(t)) + Dαφp(–Dβx1(t))

= f (t, y0(t), Dβy0(t)) – f (t, x0(t), Dβx0(t)) ≥ 0,

w(0) = 0, w′(0) = 0,

Dγ w(1) = Dγ (φp(–Dβy1(t))) – Dγ (φp(–Dβx1(t)))

= Iν(φp(–Dβy0(η))) – Iν(φp(–Dβx0(η))) ≥ 0.

In view of Lemma 2.4, we have w(t) ≥ 0 for t ∈ [0, 1]. Thus we have φp(–Dβy1(t)) ≥
φp(–Dβx1(t)), that is, Dβy1(t) ≤ Dβx1(t), since φp(x) is nondecreasing. Therefore Dβy0(t) ≤
Dβy1(t) ≤ Dβx1(t) ≤ Dβx0(t) for t ∈ [0, 1]. Let δ(t) = y1(t) – x1(t). From (H3) we get

–Dβδ(t) = –Dβy1(t) + Dβx1(t) ≥ 0.
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Also, δ(0) = 0, and

Dβ–1δ(1) = Iω
{

g
(
ξ , y0(ξ )

)
+ λ

[
y1(ξ ) – y0(ξ )

]}
– Iω

{
g
(
ξ , x0(ξ )

)
+ λ

[
x1(ξ ) – x0(ξ )

]}

= Iω
{

g
(
ξ , y0(ξ )

)
– g

(
ξ , x0(ξ )

)
+ λ

[
y1(ξ ) – y0(ξ )

]
– λ

[
x1(ξ ) – x0(ξ )

]}

≥ Iω
{
λ
[
y0(ξ ) – x0(ξ )

]
+ λ

[
y1(ξ ) – y0(ξ )

]
– λ

[
x1(ξ ) – x0(ξ )

]}

= λIωδ(ξ ).

Moreover, we get y1(t) ≥ x1(t) from Lemma 2.5. Hence, we have the relation x0(t) ≤ x1(t) ≤
y1(t) ≤ y0(t) for t ∈ [0, 1].

In the following, we show that x1(t) and y1(t) are lower and upper solutions of problem
(1.1), respectively. From (3.1)-(3.2) and (H1)-(H3) we get

–Dα
(
φp

(
–Dβx1(t)

))
= f

(
t, x0(t), Dβx0(t)

) ≤ f
(
t, x1(t), Dβx1(t)

)
,

Also,

Dβx1(0) = 0,
(
φp

(
–Dβx0(0)

))′ = 0,

Dγ
(
φp

(
–Dβx1(1)

))
= Iν

(
φp

(
–Dβx0(η)

)) ≤ Iν
(
φp

(
–Dβx1(η)

))
,

and x1(0) = 0,

Dβ–1x1(1) = Iω
{

g
(
ξ , x0(ξ )

)
– g

(
ξ , x1(ξ )

)
+ g

(
ξ , x1(ξ )

)
+ λ

[
x1(ξ ) – x0(ξ )

]}
+ k

≤ Iω
{
λ
[
x0(ξ ) – x1(ξ )

]
+ g

(
ξ , x1(ξ )

)
+ λ

[
x1(ξ ) – x0(ξ )

]}
+ k

= Iβg
(
ξ , x1(ξ )

)
+ k.

This proves that x1(t) is a lower solution of problem (1.1). Similarly, we can obtain that
y1(t) is an upper solution of (1.1).

Using mathematical induction, we see that

x0(t) ≤ x1(t) ≤ · · · ≤ xn(t) ≤ · · · ≤ yn(t) ≤ · · · ≤ y1(t) ≤ y0(t)

and

Dβy0(t) ≤ Dβy1(t) ≤ · · · ≤ Dβyn(t) ≤ · · · ≤ Dβxn(t) ≤ · · · ≤ Dβx1(t) ≤ Dβx0(t)

for t ∈ [0, 1] and n = 1, 2, 3, . . . .
Since the sequence {xn(t)} is nondecreasing and bounded from above, the sequence

{yn(t)} is nonincreasing and bounded from below. By standard argument we know that the
sequences {xn(t)} and {yn(t)} uniformly converge to their limit functions x∗(t) and y∗(t),
respectively, that is,

lim
n→∞ xn(t) = x∗(t), lim

n→∞ yn(t) = x∗(t), ∀t ∈ [0, 1],
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and

lim
n→∞ Dβxn(t) = Dαx∗(t), lim

n→∞ Dβyn(t) = Dαx∗(t), ∀t ∈ [0, 1].

Moreover, from (3.1) and (3.2) we can obtain that x∗(t) and y∗(t) are solutions of problem
(1.1).

Finally, we prove that x∗(t) and y∗(t) are the minimal and maximal solutions of prob-
lem (1.1), respectively. Let x(t) ∈ [x0, y0] be any solution of problem (1.1). We suppose
that, for some n, xn(t) ≤ x(t) ≤ yn(t) and Dβyn(t) ≤ Dβx(t) ≤ Dβxn(t) for t ∈ [0, 1]. Let
p(t) = (φp(–Dβx(t))) – φp(–Dβxn+1(t)) and q(t) = (φp(–Dβyn+1(t))) – φp(–Dβx(t)). Then by
assumption (H2) we see that

⎧
⎪⎪⎨

⎪⎪⎩

–Dαp(t) = f (t, x(t), Dβx(t)) – f (t, xn(t), Dβxn(t)) ≥ 0,

p(0) = 0, p′(0) = 0,

Dγ p(1) = Iν(φp(–Dβx(η))) – Iν(φp(–Dβxn(η))) ≥ 0,

and

⎧
⎪⎪⎨

⎪⎪⎩

–Dαq(t) ≥ 0,

q(0) = 0, q′(0) = 0,

Dγ q(1) ≥ 0.

Using Lemma 2.4, we have

Dβyn+1(t) ≤ Dβx(t) ≤ Dβxn+1(t). (3.4)

Let m(t) = x(t) – xn+1(t) and n(t) = yn+1(t) – x(t). By assumption (H3) and (3.4) we get

⎧
⎪⎪⎨

⎪⎪⎩

–Dβm(t) = –Dβx(t) + Dβxn+1(t) ≥ 0, t ∈ [0, 1],

m(0) = 0,

Dβ–1m(1) = Iω{g(ξ , x(ξ )) – g(ξ , xn(ξ )) – λ[xn+1(ξ ) – xn(ξ )]} ≥ λIωm(ξ ),

and

⎧
⎪⎪⎨

⎪⎪⎩

–Dβn(t) ≥ 0, t ∈ [0, 1],

n(0) = 0,

Dβ–1n(1) ≥ λIωn(ξ ).

These and Lemma 2.5 imply that xn+1(t) ≤ x(t) ≤ yn+1(t), t ∈ [0, 1], so by induction x∗(t) ≤
x(t) ≤ y∗(t) and Dβy∗(t) ≤ Dβx(t) ≤ Dβx∗(t), t ∈ [0, 1], as n → ∞. The proof is complete. �
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Example Consider the following fractional boundary value problem:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

–D 5
2 (φ4(–D 3

2 x(t))) = 1
10 tx – 1

(t+3)2 D 3
2 x(t) + 1

7 t 1
2 , 0 < t < 1,

D 3
2 x(0) = 0, (φ4(–D 3

2 x(0)))′ = 0,

D 1
4 (φp(–D 3

2 x(1))) = I 5
2 (φ4(–D 3

2 x( 1
2 ))),

x(0) = 0, D 1
2 x(1) = I 3

2 g( 1
4 , x( 1

4 )) + 0.1 = 1

( 3

2 )

∫ 1
4

0 ( 1
4 – s) 1

2 (s + 1)x(s) ds + 0.1,

(3.5)

where α = 5
2 , β = 3

2 , γ = 1
4 , ν = 5

2 , ω = 3
2 , η = 1

2 , ξ = 1
4 , k = 0.1, p = 4, and

⎧
⎨

⎩

f (t, x, Dβx) = 1
10 tx – 1

(t+3)2 D 3
2 x(t),

g(t, x) = (t + 1)x.

Take x0(t) = 0 and y0(t) = t 1
2 –

√
�

4 t2 + 2
15

√
�

t 5
2 . Then –1 ≤ –t 1

2 + 1
4 t = Dβy0(t) ≤ Dβx0(t) =

0. It is not difficult to verify that x0, y0 are lower and upper solutions of problem (3.5),
respectively. Moreover,

g(t, y) – g(t, x) = (t + 1)(y – x) ≥ (y – x),

where x0(t) ≤ x ≤ y ≤ y0(t).
For λ = 1, we have


(β + ω) = 


(
3
2

+
3
2

)

= 2 > λξβ+ω–1 = 1 ·
(

1
4

)2

.

All conditions (H1), (H2), and (H3) are satisfied. Therefore by Theorem 3.1 the boundary
value problem (3.5) has extremal solutions in [x0(t), y0(t)].
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