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Abstract
We are interested in the persistence in mean and extinction for a stochastic
competitive Gilpin-Ayala system with regime switching. Based on the stochastic
LaSalle theorem and the space-decomposition method, we derive generalized
sufficient criteria on persistence in mean and extinction. By constructing a novel
Lyapunov function we establish sufficient criteria on partial persistence in mean and
partial extinction for the system. Finally, we provide two examples to demonstrate the
feasibility and validity of our proposed methods.
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1 Introduction
Many species live in the same environment, share the basic necessities, and compete for
the limited recourses. This is a common phenomenon in the ecosystem. One of the most
famous models is the classical competitive Lotka-Volterra system

dxi

dt
= xi

(
bi –

n∑
j=1

aijxj

)
, i = 1, 2, . . . , n, (1)

where xi(t) represents the population size of species i at time t, the constant bi is the
growth rate of species i, and aij represents the effect of interspecific (i �= j) or intraspecific
(i = j) interaction. One disadvantage is that the rate of change in the density of each species
is a linear function. It might not describe the interaction behaviors of cross terms. Later
on, to make up for this disadvantage and get more accurate results, Gilpin and Ayala have
made some improvements on (1) and proposed the Gilpin-Ayala system

dxi

dt
= xi

(
bi – aiix

θi
i –

∑
j �=i

aijxj

)
, i = 1, 2, . . . , n, (2)

where θi is the parameter to modify the classical Lotka-Volterra model. It is a nonlinear
function and can better simulate the rate of density change.
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Afterward, the facts have been noticed that the population systems are inevitably af-
fected by the environmental noise. One important type is the telegraph noise, which can
be molded as a switching between two or more environment regimes. It is influenced by
food and environmental factors. The other type is the widely known white noise, which is
simulated by Brownian motion. Perturbed by these two important environmental noises,
system (2) becomes the stochastic competitive Gilpin-Ayala system with regime switching

dxi = xi

(
bi

(
r(t)

)
– aii

(
r(t)

)
xθi

i –
∑
j �=i

aij
(
r(t)

)
xj

)
dt + σi

(
r(t)

)
xi dBi(t),

i = 1, 2, . . . , n. (3)

The stochastic competitive population system has been studied extensively because of
its universal existence and importance (see e.g. [1–4]). The extinction and persistence in
mean are the important and interesting properties of population systems, which mean
that the population system will die out or survive in the future respectively. Therefore
it has attracted considerable attention (see e.g. [5–8]). Li and Mao have investigated the
dynamic behavior of several stochastic competitive Lotka-Volterra systems based on some
novel Lyapunov functions, and some sufficient conditions are obtained in [4, 6, 7], which
insure the stochastic permanence or extinction. More recently, some improved sufficient
conditions on persistence in mean or extinction for stochastic competitive Lotka-Volterra
systems are provided by Liu and Shen [8] based on the space decomposition method. More
details can be referred to [9, 10], and [11].

However, the approaches proposed by these authors (see e.g. [12–14], and [15]) for
Lotka-Volterra systems cannot be easily used in stochastic Gilpin-Ayala systems because
of the nonlinear item. Meanwhile, the methods proposed in [16] and [17] cannot be read-
ily applied to the asymptotic analysis owing to the existence of regime-switching mech-
anism, which can make the problem insolvable. Moreover, to the best of our knowledge,
the stochastic competitive Gilpin-Ayala system with regime switching and its asymptotic
behavior have not been studied yet. The nonlinear item and the regime-switching mecha-
nism exist in the model simultaneously, which might make the problem more complicated
(see e.g. [18, 19], and [17] for more details). Based on this motivation, our aim is to tackle
this issue. We first establish the detailed criteria for whole persistence in mean and whole
extinction. Then we investigate the asymptotic properties for the partial persistence in
mean and partial extinction. Finally, we give two examples to verify the feasibility and va-
lidity of our proposed methods.

2 Notation
Throughout this paper, unless otherwise specified, let (�,F , {Ft}t≥0,P) be a complete
probability space with filtration {Ft}t≥0 satisfying the usual conditions (i.e. it is increas-
ing and right continuous, and F0 contains all P-null sets). Let B(t) = (B1

t , . . . , Bn
t ) be an

n-dimensional Brownian motion defined on the probability space.
Let {r(t), t ≥ 0} be a right-continuous Markovian chain on the probability space taking

values in S = {1, 2, . . . , N} with generator � = (γij)N×N given by

P
{

r(t + �) = j|r(t) = i
}

=

⎧⎨
⎩γij� + o(�), i �= j,

1 + γii� + o(�), i = j,
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where � > 0. Here γij > 0 is the transition rate from i to j, and γii = –
∑

j �=i γij < 0 if i �= j. We
assume that the Markovian chain r(t) is independent of the Brownian motion B(t) and the
Markovian chain has a unique stationary distribution π = (π1,π2, . . . ,πn).

For convenience and simplicity, we define

âij = min
k∈S

aij(k), ǎij = max
k∈S

aij(k), Mij =
ǎij

âjj
, mij =

âij

ǎjj
, i, j = 1, . . . , n.

For the sake of discussion, the whole frame is based on several basic assumptions.

Assumption 1 θi ≥ 1, aii > 0, aij ≥ 0, i, j = 1, 2, . . . , n, i �= j.

Assumption 2
∑

k∈S πk(bi(k) – σ 2
i (k)
2 ) > 0.

Assumption 3
∑

k∈S πk((bi(k) – σ 2
i (k)
2 ) –

∑
j �=i aij(k)( bj(k)–

σ2
j (k)
2

ajj(k) )
1
θj ) > 0, ∀j �= i.

We are motivated in particular by the work of Mao [13] and obtain the existence of a
global positive solution.

Lemma 2.1 ([20]) Under Assumption 1, for any given initial values x0 ∈ Rn
+ and r0 ∈ S,

there are a unique positive solution x(t, x0, r0) of system (3) and a constant Kp > 0 such that

sup
0≤t<+∞

n∑
i=1

Exp
i (t, x0, r0) ≤ Kp, i = 1, 2, . . . , n.

In the following sections, let xi(t) = xi(t, x0, r0) for simplicity.

3 Persistence in mean
In this section, we investigate the persistence in mean.

Definition 1 System (3) is called persistent in mean if there exist constants αi > 0, βi > 0,
and γi ≥ 1 such that

lim sup
t→∞

1
t

∫ t

0
xγi

i (s) ds ≤ αi, lim inf
t→∞

1
t

∫ t

0
xγi

i (s) ds ≥ βi a.s. i = 1, 2, . . . , n.

Consider two auxiliary stochastic differential equations

⎧⎨
⎩dyi = yi(bi(r(t)) – aii(r(t))yθi

i ) dt + σi(r(t))yi dBi(t),

yi(0) = xi(0), r(0) = r0, i = 1, 2, . . . , n;
(4)

⎧⎨
⎩dzi = zi(bi(r(t)) – aii(r(t))zθi

i –
∑

j �=i aij(r(t))yj) dt + σi(r(t))zi dBi(t),

zi(0) = xi(0), r(0) = r0, i = 1, 2, . . . , n.
(5)

Then it follows from the comparison principle (see [21]) that

zi(t) ≤ xi(t) ≤ yi(t), i = 1, . . . , n. (6)
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Lemma 3.1 Let Assumption 1 and the inequality
∑

k∈S πk(bi(k) – σ 2
i (k)
2 ) ≥ 0 hold. Then we

have

lim
t→∞

log yi(t)
t

= 0, i = 1, 2, . . . , n, a.s. (7)

The proof is omitted here; see [7] for more details.

Lemma 3.2 Let Assumptions 1 and 3 and the inequality
∑

k∈S πk(bi(k) – σ 2
i (k)
2 ) ≥ 0 hold.

Then the solution of system (3) satisfies

lim
t→∞

log xi(t)
t

= 0, i = 1, 2, . . . , n, a.s. (8)

Proof By Lemma 3.1 and (6) we have derived lim supt→∞
log xi(t)

t ≤ 0, i = 1, 2, . . . , n, a.s. Thus
we still need to prove that lim inft→∞ log xi(t)

t ≥ 0, i = 1, 2, . . . , n, a.s. It suffices to show that

lim inf
t→∞

log zi(t)
t

≥ 0, i = 1, 2, . . . , n, a.s. (9)

Applying Itô’s formula to zθi
i (t), we can readily verify that

1
zθi

i (t)
=

1
xθi

i (0)
exp

{(
σ 2

i (r(t))
2

– bi
(
r(t)

))
θit + θi

∑
j �=i

∫ t

0
aij

(
r(t)

)
yj(s) ds

}

– θiσi
(
r(t)

)
Bi(t) + aii

(
r(t)

)
θi

∫ t

0
exp

{(
σ 2

i (r(t))
2

– bi
(
r(t)

))
θi(t – s)

– θiσi
(
r(t)

)(
Bi(t) – Bi(s)

)
+ θi

∑
j �=i

∫ t

s
aij

(
r(t)

)
yj(τ ) dτ

}
ds

:= Ei1 + Ei2. (10)

A simple computation from (4) shows that

∫ t

s
yθi

i (τ ) dτ

=
bi(r(t))
aii(r(t))

(t – s) +
σi(r(t))
aii(r(t))

(
Bi(t) – Bi(s)

)
+

1
aii(r(t))

(
ln yi(s) – ln yi(t)

)
=: ci(t – s) + mi

(
Bi(t) – Bi(s)

)
+ di

(
log yi(s) – log yi(t)

)
, i = 1, 2, . . . , n. (11)

The Hölder inequality then gives

∫ t

s
yi(τ ) dτ ≤ (t – s)1– 1

θi

(∫ t

s
yθi

i (τ ) dτ

) 1
θi

= (t – s)1– 1
θi
(
ci(t – s) + mi

(
Bi(t) – Bi(s)

)
+ di

(
log yi(s) – log yi(t)

)) 1
θi ,

i = 1, 2, . . . , n. (12)
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It follows from the inequality (a + b + c)p ≤ 3(p–1)∨0(ap + bp + cp) that

∫ t

s
yi(τ ) dτ

≤ (t – s)1– 1
θi
(
c

1
θi
i (t – s)

1
θi + m

1
θi
i

(
Bi(t) – Bi(s)

) 1
θi + d

1
θi
i

(
log yi(s) – log yi(t)

) 1
θi
)
,

i = 1, 2, . . . , n. (13)

For i = 1, 2, . . . , n, we define

B∗
i (t) := Bi(t) – min

0≤s≤t
Bi(s),

ξi(t) := max
0≤s≤t

log yi(s) – log yi(t).

Substituting the previous inequality into (10) yields

Ei1 ≤ 1
xθi

i (0)
exp

{(
σ 2

i (r(t))
2

– bi
(
r(t)

))
θit – θiσi

(
r(t)

)
Bi(t)

+ θi
∑
j �=i

aij
(
r(t)

)
(t – s)

1– 1
θj
(

c
1
θj
j (t – s)

1
θj

+ m
1
θj
j

(
Bj(t) – min

0≤s≤t
Bj(s)

) 1
θj + d

1
θj
j

(
max
0≤s≤t

log yj(s) – log yj(t)
) 1

θj
)}

≤ 1
xθi

i (0)
exp

{(
σ 2

i (r(t))
2

– bi
(
r(t)

))
θit + θiσi

(
r(t)

)(
max
0≤s≤t

Bi(s) – Bi(t)
)

+ θi
∑
j �=i

aij
(
r(t)

)
t

1– 1
θj
(
c

1
θj
j t

1
θj + m

1
θj
j

(
B∗

j (t)
) 1

θj + d
1
θj
j

(
ξj(t)

) 1
θj
)}

≤ 1
xθi

i (0)
exp

{(
σ 2

i (r(t))
2

– bi
(
r(t)

)
+

∑
j �=i

aij
(
r(t)

)
c

1
θj
j

)
θit

+ θiσi
(
r(t)

)(
max
0≤s≤t

Bi(s) – Bi(t)
)

+ θi
∑
j �=i

aij
(
r(t)

)
t

1– 1
θj
(
m

1
θj
j

(
B∗

j (t)
) 1

θj + d
1
θj
j

(
ξj(t)

) 1
θj
)}

, i = 1, 2, . . . , n. (14)

In the same way, we get

Ei2 ≤ aii
(
r(t)

)
θi

∫ t

0
exp

{(
σ 2

i (r(t))
2

– bi
(
r(t)

))
θi(t – s)

– θiσi
(
r(t)

)(
Bi(t) – Bi(s)

)
+ θi

∑
j �=i

aij
(
r(t)

)
(t – s)

1– 1
θj
(

c
1
θj
j (t – s)

1
θj

+ m
1
θj
j

(
Bj(t) – min

0≤s≤t
Bj(s)

) 1
θj + d

1
θj
j

(
max
0≤s≤t

log yj(s) – log yj(t)
) 1

θj
)}

ds
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≤ aii
(
r(t)

)
θi

∫ t

0
exp

{(
σ 2

i (r(t))
2

– bi
(
r(t)

)
+

∑
j �=i

aij
(
r(t)

)
c

1
θj
j

)
θi(t – s)

+ θiσi
(
r(t)

)(
max
0≤s≤t

Bi(s) – Bi(t)
)

+ θi
∑
j �=i

aij
(
r(t)

)
t

1– 1
θj
(
m

1
θj
j

(
B∗

j (t)
) 1

θj + d
1
θj
j

(
ξj(t)

) 1
θj
)}

ds, i = 1, 2, . . . , n. (15)

Substituting this into (10) yields

1
zθi

i (t)
≤

{
1

xθi
i (0)

exp

(
σ 2

i (r(t))
2

– bi
(
r(t)

)
+

∑
j �=i

aij
(
r(t)

)
c

1
θj
j

)
θit

+ aii
(
r(t)

)
θi

∫ t

0
exp

[(
σ 2

i (r(t))
2

– bi
(
r(t)

)
+

∑
j �=i

aij
(
r(t)

)
c

1
θj
j

)
θi(t – s)

]
ds

}

× exp

{
θiσi

(
r(t)

)(
max
0≤s≤t

Bi(s) – Bi(t)
)

+ θi
∑
j �=i

aij
(
r(t)

)
t

1– 1
θj
(
m

1
θj
j

(
B∗

j (t)
) 1

θi + d
1
θj
j

(
ξj(t)

) 1
θj
)}

:= φ–1
i (t) exp

{
θiσi

(
r(t)

)(
max
0≤s≤t

Bi(s) – Bi(t)
)

+ θi
∑
j �=i

aij
(
r(t)

)
t

1– 1
θj
(
m

1
θj
j

(
B∗

j (t)
) 1

θj + d
1
θj
j

(
ξj(t)

) 1
θj
)}

, i = 1, 2, . . . , n, (16)

where φi(t) satisfies the system

⎧⎨
⎩φ̇i(t) = θiφi(bi(r(t)) – σ 2

i (r(t))
2 –

∑
j �=i aij(r(t))c

1
θj
j – aii(r(t))φi(t)),

φi(0) = xθi
i (0), i = 1, 2, . . . , n.

It follows from (16) that

log zi(t)
t

≥ logφi(t)
θit

–
max0≤s≤t Bi(s) – Bi(t)

t
σi

(
r(t)

)

–
∑
j �=i

(mjB∗
j (t)

t

) 1
θj

–
∑
j �=i

(
djξj(t)

t

) 1
θj

, a.s. i = 1, 2, . . . , n. (17)

The Brownian motion implies

lim
t→∞

max0≤s≤t Bi(s) – Bi(t)
t

= 0,

lim
t→∞

Bj(t) – min0≤s≤t Bj(s)
t

= 0, i = 1, 2, . . . , n.
(18)

When bi(r(t)) – σ 2
i (r(t))

2 –
∑

j �=i aij(r(t))c
1
θj
j > 0, from (16) we can easily see that

lim
t→∞

logφi(t)
t

= 0, a.s. i = 1, 2, . . . , n. (19)
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Note that Lemma 3.1 implies

lim
t→∞

max0≤s≤t log yj(s) – log yj(t)
t

= 0 a.s., i = 1, 2, . . . , n. (20)

From (17) along with (18)-(20) we can verify that

lim inf
t→∞

log zi(t)
t

≥ 0, lim sup
t→∞

log zi(t)
t

≤ 0 a.s., i = 1, 2, . . . , n, (21)

as desired. �

Remark 1 The convergence of (8) plays a prominent role in analyzing the asymptotic
behavior for stochastic population systems. The property for stochastic Lotka-Volterra
systems was discussed in [7], and the property for stochastic Gilpin-Ayala systems was
studied in [18] as well. We discuss the system with highly nonlinear item and regime
switching. These two factors limit the effectiveness, so the approach used in [7] and [18] is
not applicable to system (3). By utilizing some novel techniques the asymptotic behavior
for stochastic Gilpin-Ayala systems with regime switching has been studied, which might
have a wider application.

Theorem 3.1 Let system (3) satisfy the hypotheses of Assumptions 1-3. Then it is said to
be persistent in mean, that is,

lim inf
t→∞

1
t

∫ t

0
xθi

i (s, x0, r0) ds

≥ 1
ǎii

(∑
k∈S

πk

(
bi(k) –

σ 2
i (k)
2

)
–

∑
j �=i

ǎij

(
1
âjj

∑
k∈S

πk

(
bj(k) –

σ 2
j (k)
2

)) 1
θj
)

,

lim sup
t→∞

1
t

∫ t

0
xθi

i (s, x0, r0) ds ≤ 1
âii

∑
k∈S

πk

(
bi(k) –

σ 2
i (k)
2

)
a.s., i = 1, 2, . . . , n.

Proof Our proof is adapted from the works [8] and [18]. It follows by Itô’s formula that

log yi(t) = log yi(0) +
∫ t

0

(
bi

(
r(s)

)
–

σ 2
i (r(s))

2

)
ds

–
∫ t

0
aii

(
r(s)

)
yθi

i (s) ds +
∫ t

0
σi

(
r(s)

)
dBi(s) a.s., i = 1, 2, . . . , n.

Thus, it satisfies

1
t

∫ t

0
aii

(
r(s)

)
yθi

i (s) ds =
1
t
(
log yi(0) – log yi(t)

)

+
1
t

∫ t

0

(
bi

(
r(s)

)
–

σ 2
i (r(s))

2

)
ds +

1
t

∫ t

0
σi

(
r(s)

)
dBi(s)

a.s., i = 1, 2, . . . , n. (22)
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Note that, for i = 1, 2, . . . , n, 1
T

∫ T
0 σi(r(s)) ds < ∞. By the strong law of large numbers for

martingales we get

lim
t→∞

1
t

∫ t

0
σi

(
r(s)

)
dBi(s) = 0 a.s.,

lim
t→∞

1
t

∫ t

0

(
bi

(
r(s)

)
–

σ 2
i (r(s))

2

)
ds =

∑
k∈S

πk

(
bi(k) –

σ 2
i (k)
2

)

a.s., i = 1, 2, . . . , n. (23)

By Lemma 3.1 we obtain from (22) that

lim
t→∞

1
t

∫ t

0
aii

(
r(s)

)
yθi

i (s) ds =
∑
k∈S

πk

(
bi(k) –

σ 2
i (k)
2

)

a.s., i = 1, 2, . . . , n. (24)

Therefore, for i = 1, 2, . . . , n, we have

lim sup
t→∞

1
t

∫ t

0
xθi

i (s) ds ≤ lim sup
t→∞

1
t

∫ t

0
yθi

i (s) ds

≤ 1
âii

lim sup
t→∞

1
t

∫ t

0
aii

(
r(s)

)
yθi

i (s) ds

=
1

âii

∑
k∈S

πk

(
bi(k) –

σ 2
i (k)
2

)
a.s.

Applying Itô’s formula to zθi
i (t) yields

log zi(t) = log zi(0) +
∫ t

0

(
bi

(
r(s)

)
–

σ 2
i (r(s))

2

)
ds –

∫ t

0
aii

(
r(s)

)
zθi

i (s) ds

–
∫ t

0

∑
j �=i

aij
(
r(s)

)
yj(s) ds +

∫ t

0
σi

(
r(s)

)
dBi(s)

a.s., i = 1, 2, . . . , n. (25)

The well-known Hölder inequality then gives

1
t

∫ t

0
xi ds ≤

(
1
t

∫ t

0
xθi

i (s)
) 1

θi
, i = 1, 2, . . . , n.

Using Lemma 3.2 along with the Hölder inequality and the ergodic property of r(t), we
have

1
t

∫ t

0
aii

(
r(s)

)
zθi

i (s) ds

=
1
t
(
log zi(0) – log zi(t)

)
+

1
t

∫ t

0

(
bi

(
r(s)

)
–

σ 2
i (r(s))

2

)
ds
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–
1
t

∫ t

0

∑
j �=i

aij
(
r(s)

)
yj(s) ds +

1
t

∫ t

0
σi

(
r(s)

)
dBi(s)

≥ 1
t
(
log zi(0) – log zi(t)

)
+

1
t

∫ t

0

(
bi

(
r(s)

)
–

σ 2
i (r(s))

2

)
ds

–
∑
j �=i

ǎij

(
1
t

∫ t

0
yθj

j (s) ds
) 1

θj
+

1
t

∫ t

0
σi

(
r(s)

)
dBi(s)

≥
∑
k∈S

πk

(
bi(k) –

σ 2
i (k)
2

)
–

∑
j �=i

ǎij

(
1
âjj

∑
k∈S

πk

(
bj(k) –

σ 2
j (k)
2

)) 1
θj

. (26)

We therefore have

lim inf
t→∞

1
t

∫ t

0
xθi

i (s) ds

≥ lim inf
t→∞

1
t

∫ t

0
zθi

i (s) ds ≥ 1
ǎii

lim sup
t→∞

1
t

∫ t

0
aii

(
r(s)

)
zθi

i (s) ds

≥ 1
ǎii

(∑
k∈S

πk

(
bi(k) –

σ 2
i (k)
2

)
–

∑
j �=i

ǎij

(
1
âjj

∑
k∈S

πk

(
bj(k) –

σ 2
j (k)
2

)) 1
θj
)

,

as desired. For i = 1, 2, . . . , n, system (3) is persistent in mean. �

Remark 2 When θi = 1, i = 1, 2, . . . , n, system (3) reduces to the stochastic competitive
Lotka-Volterra systems with regime switching, the conditions on persistence in mean are
in accordance with the results in [8].

4 Extinction
In this section, we verify that the system will become extinct if the noise is sufficiently
large.

Theorem 4.1 Suppose that Assumption 1 holds and there exists an integer m ≤ n such
that

∑
k∈S

πk

(
bi(k) –

σ 2
i (k)
2

)
< 0, i = 1, 2, . . . , m,

∑
k∈S

πk

(
bi(k) –

σ 2
i (k)
2

)
= 0, i = m + 1, . . . , n.

(27)

Then we have
(i) The previous m species of system (3) are almost surely exponentially extinct with the

exponential rate of the ith species –
∑

k∈S πk( σ 2
i (k)
2 – bi(k)), that is,

lim
t→∞

log xi(t, x0, r0)
t

= –
∑
k∈S

πk

(
σ 2

i (k)
2

– bi(k)
)

a.s. (28)

(ii) The following n – m species will extinct with zero exponential rate, that is,

lim
t→∞ x(t, x0, r0) = 0 a.s. (29)
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Proof We begin by proving the exponential extinction for the top m species of system (3)
when

∑
k∈S πk(bi(k)– σ 2

i (k)
2 ) < 0, i = 1, 2, . . . , m. The next goal is to show the zero exponential

extinction for the bottom n – m species when
∑

k∈S πk(bi(k) – σ 2
i (k)
2 ) = 0, i = m + 1, . . . , n.

Step 1. We aim to prove assertion (28). By Itô’s formula we get

log xi(t) = log xi(0) +
∫ t

0

(
bi

(
r(s)

)
–

σ 2
i (r(s))

2

)
ds

–
∫ t

0

(
aii

(
r(s)

)
xθi

i (s) +
∑
j �=i

aij
(
r(s)

)
xj(s)

)
ds + Mi(t),

i = 1, 2, . . . , n,

where Mi(t) =
∫ t

0 σi(r(s)) dBi(s), i = 1, 2, . . . , n. Dividing both sides by t yields

log xi(t)
t

=
log xi(0)

t
+

1
t

∫ t

0

(
bi

(
r(s)

)
–

σ 2
i (r(s))

2

)
ds

–
1
t

∫ t

0

(
aii

(
r(s)

)
xθi

i (s) +
∑
j �=i

aij
(
r(s)

)
xj(s)

)
ds +

Mi(t)
t

,

i = 1, 2, . . . , n. (30)

By the strong law of large numbers for martingales (see [20]) we derive limt→∞ 1
t ×∫ t

0 σi(r(s)) dBi(s) = 0 a.s., i = 1, 2, . . . , n. For i = 1, 2, . . . , m, letting t → ∞ on both sides of
(30), we have

lim sup
t→∞

log xi(t)
t

≤ –
∑
k∈S

πk

(
σ 2

i (k)
2

– bi(k)
)

< 0, i = 1, 2, . . . , m, a.s. (31)

By (31), for any 1 ≤ i ≤ k and ε ∈ (0, min1≤i≤k
∑

k∈S πk( σ 2
i (k)
2 – bi(k))), we can select a ran-

dom variable T(ε) such that

xi(t) ≤ exp

(
–

∑
k∈S

πk

(
σ 2

i (k)
2

– bi(k)
)

t + εt
)

, ∀t > T(ε), i = 1, 2, . . . , m, a.s. (32)

Thus it follows that

xθi
i (t) ≤ exp

(
–θi

∑
k∈S

πk

(
σ 2

i (k)
2

– bi(k)
)

t + θiεt
)

, ∀t > T(ε), i = 1, 2, . . . , m, a.s.

Then we can readily verify that

∫ ∞

0

(
aii

(
r(s)

)
xθi

i (s) +
∑
j �=i

aij
(
r(s)

)
xj(s)

)
ds < ∞, i = 1, 2, . . . , m, a.s. (33)

By (30) and (33) we have

lim
t→∞

log xi(t)
t

= –
∑
k∈S

πk

(
σ 2

i (k)
2

– bi(k)
)

, i = 1, 2, . . . , m, a.s.
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Step 2. We only need to show assertion (29). Applying Itô’s formula to log xθi
i (t), we get

log xi(t)
t

=
log xi(0)

t
–

1
t

∫ t

0
aii

(
r(s)

)
xθi

i (s) ds

–
1
t

n∑
j=1,j �=i

∫ t

0
aij

(
r(s)

)
xi(s) ds +

1
t

∫ t

0
σi dBi(s). (34)

Based on the convergence of the integral
∫ ∞

0 xi(s) ds, the sample space � can be decom-
posed into two mutually exclusive events

Gi1 =
{
ω :

∫ ∞

0
xi(s) ds < ∞

}
and Gi2 =

{
ω :

∫ ∞

0
xi(s) ds = ∞

}
.

Furthermore, we can also divide � into three mutually exclusive events

�i1 =
{
ω : lim sup

t→∞
xi(t) ≥ lim inf

t→∞ xi(t) = γi > 0
}

,

�i2 =
{
ω : lim sup

t→∞
xi(t) > lim inf

t→∞ xi(t) = 0
}

, and

�i3 =
{
ω : lim

t→∞ xi(t) = 0
}

.

The proof of limt→∞ xi(t) = 0 a.s. is equivalent to showing that Gi1 ⊂ �i3 and Gi2 ⊂ �i3

a.s. The following is an outline of the proof.
First, using stochastic LaSalle methods proposed in [22], we prove that Gi1 ⊂ �i3. Sec-

ond, using the novel techniques, we show that P(Gi2 ∩�i1) = 0 and P(Gi2 ∩�i2) = 0, which
means that Gi2 ⊂�i3 a.s. Now we map out our strategy.

Case 1: The continuity of xi(t) and definition of Gin imply that P(Gi1 ∩�i1) = 0. Now we
prove it by a contradiction.

Now let us show that Gi1 ⊂ �i3. Clearly, xi(t) ∈ C(R+, R) a.s. It is easy to check from Gi1

that lim inft→∞ xi(t) = 0 a.s. Therefore, we obtain that P(Gi1 ∩�i1) = 0. The only thing that
remains to show is P(Gi1 ∩ �i2) = 0. If P(Gi1 ∩ �i2) > 0, then there exists a real number
ε > 0 such that

P(Q1 ∩ Gi1) ≥ 2ε, (35)

where Q1 = {lim supt→∞ xi(t) > 2ε}. Define the sequence of stopping times

τ1 = inf
{

t ≥ 0 : xi(t) ≥ 2ε
}

, τ2k = inf
{

t ≥ τ2k–1 : xi(t) ≤ ε
}

,

τ2k+1 = inf
{

t ≥ τ2k : xi(t) ≥ 2ε
}

, k = 1, 2, . . . .

We have E(IGi1

∫ ∞
0 xi(s) ds) < ∞ from Gi1. Then we compute and rearrange

E
(

IGi1

∫ ∞

0
xi(s) ds

)
≥

∞∑
k=1

E
(

I{τ2k–1<∞,τ2k <∞}∩Gi1

∫ τ2k

τ2k–1

xi(s) ds
)

≥ ε

∞∑
k=1

E
(
I{τ2k–1<∞}∩Gi1 (τ2k – τ2k–1)

)
,
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where IA is the indicator function. Since τ2k < ∞ whenever τ2k–1 < ∞, by the above formula
we have

ε

∞∑
k=1

E
(
I{τ2k–1<∞}∩Gi1 (τ2k–1 – τ2k)

)
< ∞. (36)

Integrating equation (3), we have

xi(t) = xi(0) +
∫ t

0
σixi(s) dBi(s)

+
∫ t

0
xi(s)

(
bi

(
r(s)

)
– aii

(
r(s)

)
xθi

i (s) –
n∑

j=1,j �=i

aij
(
r(s)

)
xj(s)

)
ds. (37)

Compute and rearrange

E

{
x2

i (s) ·
(

bi
(
r(s)

)
– aii

(
r(s)

)
xθi

i (s) –
n∑

j=1,j �=i

aij
(
r(s)

)
xj(s)

)2}

≤ 1
2

E
(
x4

i (s)
)

+
1
2

E

(
bi

(
r(s)

)
– aii

(
r(s)

)
xθi

i (s) –
n∑

j=1,j �=i

aij
(
r(s)

)
xj(s)

)4

≤ 1
2

E
(
x4

i (s)
)

+
1
2

E

(
b4 + a4

iix
4θi
i +

n∑
j=1,j �=i

a4
ijx

4
j + 4a3

iix
3θi
i

n∑
j=1,j �=i

aijxj + 4aiix
θi
i

n∑
j=1,j �=i

a3
ijx

3
j

+ 6b2a2
iix

2θi
i + 6b2

n∑
j=1,j �=i

a2
ijx

2
j + 6a2

iix
2θi
i

n∑
j=1,j �=i

a2
ijx

2
j + 12b2aiix

θi
i

n∑
j=1,j �=i

aijxj

)

≤ 1
2

K4 +
1
2

(
b4

i + a4
iiK4θi +

n∑
j=1,j �=i

a4
ijK4 + 4a3

iiK3θi

n∑
j=1,j �=i

aijK1 + 4aiiKθi

n∑
j=1,j �=i

a3
ijK3

+ 6b2a2
iiK2θi + 6b2

n∑
j=1,j �=i

a2
ijK2 + 6a2

iiK2θi

n∑
j=1,j �=i

a2
ijK2 + 12b2aiiKθi

n∑
j=1,j �=i

aijK1

)

=: U2
i

and

E
(
σ 2

i · x2
i (s)

)
= σ 2

i · E
(
x2

i (s)
) ≤ σ 2

i · K2 =: V 2
i ,

where K1, K2, K3, K4 and Kθi , K2θi , K3θi , K4θi are defined in Lemma 2.1. By the BDG in-
equality (see [20]) and the Hölder inequality we compute

E
(

I{τ2k–1<∞}∩Gi1 sup
0≤t≤T

∣∣xi(τ2k–1 + t) – xi(τ2k–1)
∣∣2

)

≤ 2E

{
I{τ2k–1<∞}∩Gi1 sup

0≤t≤T

∣∣∣∣∣
∫ τ2k–1+t

τ2k–1

xi(s)

(
bi

(
r(s)

)
– aii

(
r(s)

)
xθi

i (s)

–
n∑

j=1,j �=i

aij
(
r(s)

)
xj(s)

)
ds

∣∣∣∣∣
2}
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+ 2E
(

I{τ2k–1<∞}∩Gi1 sup
0≤t≤T

∣∣∣∣
∫ τ2k–1+t

τ2k–1

(
σi · xi(s)

)
dBi(s)

∣∣∣∣
2)

≤ 2TE

{
I{τ2k–1<∞}∩Gi1

∫ τ2k–1+T

τ2k–1

x2
i (s)

(
bi

(
r(s)

)
– aii

(
r(s)

)
xθi

i (s)

–
n∑

j=1,j �=i

aij
(
r(s)

)
xj(s)

)2

ds

}

+ 8E
(

I{τ2k–1<∞}∩Gi1

∫ τ2k–1+T

τ2k–1

(
σ 2

i · x2
i (s)

)
ds

)

≤ 2T
(
U2

i + 4V 2
i
)
. (38)

Choosing T = T(ε) > 0 sufficiently small for 2T(U2
i + 4V 2

i ) ≤ ε3, from (38) we have

P
({τ2k–1 < ∞} ∩ {Hk ∩ Ji1}

) ≤ 2(T + 4)T(U2
i + V 2

i )
ε2 ≤ ε, (39)

where Hk = {sup1≤t≤T |xi(τ2k–1 + t) – xi(τ2k–1)| ≥ ε}, k = 1, 2, . . . . Noting that τk < ∞ for
k = 1, 2, . . . whenever ω ∈ Q1, we further compute

P
({τ2k–1 < ∞} ∩ {

Hc
k ∩ Gi1

})
= P

({τ2k–1 < ∞} ∩ Gi1
)

– P
({τ2k–1 < ∞} ∩ {Hk ∩ Gi1}

)
≥ 2ε – ε = ε.

Note that if ω ∈ {τ2k–1 < ∞} ∩ {Hc
k ∩ Gi1}, then

τ2k(ω) – τ2k–1(ω) ≥ T . (40)

We obtain from (36) and (40) that

∞ > ε

∞∑
k=1

E
[
I{τ2k–1<∞}∩Gi1 (τ2k – τ2k–1)

]

≥ ε

∞∑
k=1

E
[
I{τ2k–1<∞}∩{Hc

k∩Gi1}(τ2k–1 – τ2k)
]

≥ εT
∞∑

k=1

P
({τ2k–1 < ∞} ∩ {

Hc
k ∩ Gi1

})

≥ εT
∞∑

k=1

ε = ∞, (41)

which is a contraction. So P(Gi1 ∩�i2) = 0 holds, and we derive that Gi1 ⊂�i3.
Case 2. It remains to prove Gi2 ⊂ �i3 a.s. We need only to show that P(Gi2 ∩ �i1) = 0

and P(Gi2 ∩�i2) = 0. We prove it by a contradiction. If P(Gi2 ∩�i1) > 0, then for any ω ∈
Gi2 ∩�i1, ε0 ∈ (0, γi

2 ), there exists T = (ε0,ω) such that

xi(t) > γi – ε0 >
γi

2
, ∀t > T , a.s.
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Then it follows that

1
t

∫ t

0
xi(s) ds =

1
t

∫ T

0
xi(s) ds +

1
t

∫ t

T
xi(s) ds

≥ 1
t

∫ T

0
xi(s) ds +

t – T
t

γi

2
a.s.

Letting t → ∞, we get

lim inf
t→∞

1
t

∫ t

0
xi(s) ds >

γi

2
> 0 a.s.

This implies

lim sup
t→∞

log xi(t)
t

≤ –
n∑

j=1

aij
γi

2
< 0 a.s.,

which contradicts the definition of Ji2 and �i1. So P(Gi2 ∩ �i1) = 0 must be established.
We proceed to show that P(Gi2 ∩�i2) > 0 is false. We need several notations:

�ε
t (i) :=

{
0 ≤ s ≤ t : xi(s) ≥ ε

}
,

δε
t (i) :=

m(�ε
t (i))
t

,

δε(i) := lim inf
t→∞ δε

t i,

�ε(i) :=
{
ω ∈ Ji2 ∩�i2 : δε(i) > 0

}
,

where m(�ε
t (i)) denotes the length of �ε

t (i). It is easy to see that �0(i) = Gi2 ∩ �i2. Note
that, for any ε1 < ε2,

�
ε1
t (i) ⊃ �

ε2
t (i), m

(
�

ε1
t (i)

) ≥ m
(
�

ε2
t (i)

)
,

δ
ε1
t (i) =

m(�ε1
t )(i)
t

≥ δ
ε2
t (i) =

m(�ε2
t )(i)
t

,

which implies

δε2 (i) ≤ δε1 (i), �ε2 (i) ⊂ �ε1 (i), ∀ε1 < ε2.

By the continuity of probability we have

P
(
�ε(i)

) → P
(
�0(i)

)
= P(G2 ∩�2) as ε → 0.

If P(Gi2 ∩�i2) > 0, then there exists ε > 0 such that P(Dε) > 0. For any ω ∈ �ε(i), we have

1
t

∫ t

0
xi(s) ds =

1
t

∫
�ε

t (i)
xi(s) ds +

1
t

∫
[0,t]\�ε

t

xi(s) ds

≥ 1
t

∫
�ε

t (i)
xi(s) ds a.s.
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Letting t → ∞, we get

lim inf
t→∞

1
t

∫ t

0
xi(s) ds ≥ lim inf

t→∞
1
t

∫
�ε

t

xi(s) ds ≥ δε(i)ε a.s. (42)

Substituting (42) into (29), we have

lim sup
t→∞

log xi(t)
t

≤ –
n∑

j=1

aijδ
ε(i)ε < 0 a.s.

This contradicts the definitions of Gi2 and �i2. Consequently, we conclude that P(Gi2 ∩
�i2) = 0. Combining the facts Gi1 ⊂ �i3, P(Ji2 ∩ �i1) = 0, and P(Gi2 ∩ �i2) = 0, we de-
rive

lim
t→∞ xi(t) = 0 a.s.,

as desired. �

Remark 3 The difficulties come from the nonlinearities and regime switching. Based on
stochastic LaSalle theorem and the space-decomposition method (see [8] and [22]), we
overcome the difficulties. If system (3) does not contain parametric switching and θi = 1,
i = 1, 2, . . . , n, it happens to be the result in [7]. Therefore, Theorem 4.1 generalizes the
results in [7] and [8].

5 Partial persistence in mean and partial extinction
We will discuss the partial persistence in mean and partial extinction on certain conditions
later. Define the auxiliary stochastic differential equation:

⎧⎨
⎩dui(t) = ui(bi(r(t)) – aii(r(t))uθi

i –
∑m

j=1,j �=i aij(r(t))uj) dt + σi(r(t)) dBi(t),

ui(0) = xi(0), r(0) = r0, i = 1, 2, . . . , m.
(43)

Theorem 5.1 Suppose that Assumption 1 holds and there exists an integer 1 ≤ m ≤ n such
that

∑
k∈S

πk

(
bi(k) –

σ 2
i (k)
2

)
> 0, aii(k) –

m∑
j=1,j �=i

aji(k) > 0, ∀k ∈ S, i = 1, 2, . . . , m,

∑
k∈S

πk

((
bi(k) –

σ 2
i (k)
2

)
–

m∑
j=1,j �=i

aij(k)
ajj(k)

(
bj(k) –

σ 2
j (k)
2

))
> 0,

i = 1, 2, . . . , m, (44)

∑
k∈S

πk

(
bi(k) –

σ 2
i (k)
2

)
< 0, i = m + 1, . . . , n. (45)

Then we have
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(i) For i = 1, 2, . . . , m, the solution xi(t, x0, r0) to system (3) satisfies

lim inf
t→∞

1
t

∫ t

0
xθi

i (s) ds

≥ 1
ǎii

{∑
k∈S

πk

(
bi(k) –

σ 2
i (k)
2

)
(46)

–
∑
j �=i

ǎij

(
1
âjj

∑
k∈S

πk

(
bj(k) –

σ 2
j (k)
2

)) 1
θj
}

a.s.

lim sup
t→∞

1
t

∫ t

0
xθi

i (s) ds ≤ 1
âii

∑
k∈S

πk

(
bi(k) –

σ 2
i (k)
2

)
a.s. (47)

That is, the species i is persistent in mean for each i = 1, 2, . . . , m;
(ii) For i = m + 1, . . . , n, the solution xi(t, x0, r0) to system (3) satisfies

lim sup
t→∞

log xi(t)
t

≤
∑
k∈S

πk

(
bi(k) –

σ 2
i (k)
2

)
a.s., (48)

that is, system (3) will become extinct.

Proof The proof is divided into two steps. The first step is to show the persistence in mean
of the previous m species. The second step is to show the extinction of the following n – m
species.

Step 1. We analyze the convergence of xθi
i (t) – uθi

i (t) as t → ∞, where ui(t) is the solution
to equation (43). Applying Itô’s formula to system (43) yields

d
(
log ui(t)

)
=

(
bi

(
r(t)

)
– aii

(
r(t)

)
uθi

i –
m∑

j=1,j �=i

aij
(
r(t)

)
uj

)
dt + σi

(
r(t)

)
dBi(t). (49)

For i = 1, 2, . . . , m, we have

d
(
log xi(t) – log ui(t)

)
= –

m∑
j=1,j �=i

aij
(
r(t)

)
(xj – uj) dt –

n∑
j=m+1

aij
(
r(t)

)
xj dt

– aii
(
r(t)

)(
xθi

i – uθi
i
)
. (50)

Applying Itô’s formula to V (t) =
∑m

i=1 | log xθi
i (t) – log uθi

i (t)| yields

D+V (t) =
m∑

i=1

sign
(
xθi

i (t) – uθi
i (t)

)(
d log xθi

i (t) – d log uθi
i (t)

)

= –
m∑

i=1

sign
(
xθi

i (t) – uθi
i (t)

)

·
( m∑

j=1,j �=i

aij
(
r(t)

)(
xθi

j – uθi
j
)

dt +
n∑

j=m+1

aij
(
r(t)

)
xθi

j dt + aii
(
r(t)

)(
xθi

i – uθi
i
))
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≤ –
m∑

i=1

aii
(
r(t)

)∣∣xθi
i – uθi

i
∣∣dt +

m∑
i=1

m∑
j=1,j �=i

aij
(
r(t)

)∣∣xθi
j – uθi

j
∣∣dt

+
m∑

i=1

n∑
j=m+1

aij
(
r(t)

)
xθi

j dt

= –
m∑

i=1

aii
(
r(t)

)∣∣xθi
i – uθi

i
∣∣dt +

m∑
j=1

m∑
i=1,i�=j

aji
(
r(t)

)∣∣xθi
i – uθi

i
∣∣dt

+
m∑

i=1

n∑
j=m+1

aij
(
r(t)

)
xθi

j dt

≤ –
m∑

i=1

aii
(
r(t)

)∣∣xθi
i – uθi

i
∣∣dt +

m∑
i=1

m∑
j=1,j �=i

aji
(
r(t)

)∣∣xθi
i – uθi

i
∣∣dt

+
m∑

i=1

n∑
j=m+1

aij
(
r(t)

)
xθi

j dt

= –
m∑

i=1

(
aii

(
r(t)

)
–

∑
j �=i

aji
(
r(t)

))∣∣xθi
i (t) – uθi

i (t)
∣∣dt

+
m∑

i=1

n∑
j=m+1

aij
(
r(t)

)
xθi

j (t) dt.

Then we have

D+V (t) ≤ –μ

m∑
i=1

∣∣xθi
i (t) – uθi

i (t)
∣∣dt +

n∑
j=m+1

αjx
θi
j (t) dt, a.s. i = 1, 2, . . . , m, (51)

where μ = min1≤i≤m(aii(r(t)) –
∑

j �=i aji(r(t))) > 0 and αj =
∑m

i=1 aij(r(t)) ≥ 0. Therefore it
satisfies

V (t) + μ

∫ t

0

m∑
i=1

∣∣xθi
i (s) – uθi

i (s)
∣∣ds ≤ V (0) +

n∑
j=m+1

αj

∫ t

0
xθi

j (s) ds

a.s. i = 1, 2, . . . , m. (52)

Letting t → ∞, we get

∫ ∞

0

∣∣xθi
i (s) – uθi

i (s)
∣∣ds ≤

∫ ∞

0

m∑
i=1

∣∣xθi
i (s) – uθi

i (s)
∣∣ds

≤ 1
μ

(
V (0) +

n∑
j=m+1

αj

∫ ∞

0
xθi

j (s) ds

)
. (53)

Note that by Theorem 4.1 and (45)

∫ ∞

0
xθi

j (s) ds < +∞ a.s. j = m + 1, . . . , n. (54)
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By (54), the inequality (53) satisfies

∫ ∞

0

∣∣xθi
i (s) – uθi

i (s)
∣∣ds < +∞ a.s. i = 1, 2, . . . , m. (55)

Thus by Lemmas 5.1 and 5.2 (see [8] for more details) we have

lim
t→+∞

(
xθi

i (s) – uθi
i (s)

)
= 0 a.s. i = 1, 2, . . . , m. (56)

It follows from Theorem 3.1 that system (43) is persistent in mean, namely,

lim inf
t→∞

1
t

∫ t

0
uθi

i (s) ds

≥ 1
ǎii

{∑
k∈S

πk

(
bi(k) –

σ 2
i (k)
2

)
–

∑
j �=i

ǎij

(
1
âjj

∑
k∈S

πk

(
bj(k) –

σ 2
j (k)
2

)) 1
θj
}

,

lim sup
t→∞

1
t

∫ t

0
uθi

i (s) ds ≤ 1
âii

∑
k∈S

πk

(
bi(k) –

σ 2
i (k)
2

)
,

a.s. i = 1, 2, . . . , n.

(57)

For i = 1, 2, . . . , m, note that (57) implies

lim inf
t→∞

1
t

∫ t

0
xθi

i (s) ds

= lim inf
t→∞

1
t

∫ t

0

(
xθi

i (s) – uθi
i (s)

)
ds + lim inf

t→∞
1
t

∫ t

0
uθi

i (s) ds

≥ 1
ǎii

{∑
k∈S

πk

(
bi(k) –

σ 2
i (k)
2

)
–

∑
j �=i

ǎij

(
1
âjj

∑
k∈S

πk

(
bj(k) –

σ 2
j (k)
2

)) 1
θj
}

a.s. i = 1, 2, . . . , m, (58)

lim sup
t→∞

1
t

∫ t

0
xθi

i (s) ds

= lim sup
t→∞

1
t

∫ t

0

(
xθi

i (s) – uθi
i (s)

)
ds + lim sup

t→∞
1
t

∫ t

0
uθi

i (s) ds

≤ 1
âii

∑
k∈S

πk

(
bi(k) –

σ 2
i (k)
2

)
a.s., i = 1, 2, . . . , m. (59)

For i = 1, 2, . . . , m, the solution xi(t) is persistent in mean.
Step 2. For i = m + 1, . . . , n, applying Itô’s formula to log xθi

i (t) yields

log xi(t)
t

=
log x(0)

t
+

1
t

∫ t

0

(
bi

(
r(s)

)
–

σ 2
i (r(s))

2

)
ds

–
1
t

∫ t

0
aii

(
r(s)

)
xθi

i (s) ds –
1
t

∫ t

0

m∑
j=1

aij
(
r(s)

)
xj(s) ds +

Mi(t)
t

–
1
t

∫ t

0

n∑
j=m+1,j �=i

aij
(
r(s)

)
xj(s) ds a.s. i = m + 1, . . . , n. (60)
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It follows from Theorem 4.1 and (33) that

lim
t→∞

1
t

∫ t

0

n∑
j=m+1,j �=i

aij
(
r(s)

)
xj(s) ds = 0 a.s.

By Theorem 3.1, we obtain that xi(t) is persistent in mean, which means that 1
t ×∫ t

0
∑m

j=1 aij(r(s))xj(s) ds must be bounded. Letting t → ∞ on both sides of (60), we have

lim sup
t→∞

log xi(t)
t

≤
∑
k∈S

πk

(
bi(k) –

σ 2
i (k)
2

)
a.s. (61)

as desired. �

Remark 4 Compared to the whole persistence in mean and whole extinction, there is
little literature on partial persistence in mean and partial extinction. By constructing a
novel Lyapunov function we derive sufficient conditions for partial persistence in mean
and partial extinction, which generalize the results in [8].

6 Examples
Example 6.1 Consider a two-dimensional stochastic Gilpin-Ayala system with regime
switching in random environments

⎧⎨
⎩dx1 = x1(b1(r(t)) – 0.6x1.5

1 – 0.5x2) dt + σ1(r(t))x1 dB1(t),

dx2 = x2(b2(r(t)) – 0.3x1 – x1.2
2 ) dt + σ2(r(t))x2 dB2(t),

(62)

where r(t) ∈ {1, 2} is generated by

Q =

(
–1 1

1
3 – 1

3

)
,

and π = (π1,π2) = (0.25, 0.75), b1(1) = 0.9, b1(2) = 1.2, b2(1) = 1.0, b2(2) = 1.4. The initial
data can be assumed to be x1(0) = 0.6, x2(0) = 0.4, r0 = 1, and we simulate the solution with
different values of σi(k).

(i) σ1(1) = 0.2, σ1(2) = 1.0, σ2(1) = 0.2, σ2(2) = 0.5. We have

∑
k∈S

πk

(
b1(k) –

σ 2
1 (k)
2

)
= 0.7450 > 0,

∑
k∈S

πk

(
b2(k) –

σ 2
2 (k)
2

)
≈ 1.2013 > 0,

∑
k∈S

πk

((
b1(k) –

σ 2
1 (k)
2

)
–

a12

a22

(
b2(k) –

σ 2
2 (k)
2

))
≈ 0.1444 > 0,

∑
k∈S

πk

((
b2(k) –

σ 2
2 (k)
2

)
–

a21

a11

(
b1(k) –

σ 2
1 (k)
2

))
≈ 0.8288 > 0.

System (62) is persistent in mean, and it is completely consistent by Theorem 3.1.
The results are presented clearly in Figures 1 and 2. We draw the stochastic
trajectories of log x1(t)

t and log x2(t)
t by data simulating. The figures shows that Heun’s

method for time step � = 2–5 on [0, 200] is superior to others.



He et al. Advances in Difference Equations  (2017) 2017:392 Page 20 of 23

Figure 1 Stochastic trajectory of x1(t) for system (61) with σ1(1) = 0.2, σ1(2) = 1.0, σ2(1) = 0.2,
σ2(2) = 0.5.

Figure 2 Stochastic trajectory of x2(t) for system (61) with σ1(1) = 0.2, σ1(2) = 1.0, σ2(1) = 0.2,
σ2(2) = 0.5.

(ii) σ1(1) = σ1(2) = 2,σ2(1) = σ2(2) = 1.8. Note that

∑
k∈S

πk

(
b1(k) –

σ 2
1 (k)
2

)
= –0.8750 < 0,

∑
k∈S

πk

(
b2(k) –

σ 2
2 (k)
2

)
= –0.3200 < 0.

Equation (62) is exponentially extinct, and it is completely consistent by
Theorem 4.1 for any initial condition x0 > 0. The sample trajectories of log x1(t)

t and
log x2(t)

t are drawn in Figures 3 and 4, and they are generated by the Heun scheme for
time step � = 2–5 on [20, 200], respectively.

Example 6.2 Consider the three-dimensional stochastic Gilpin-Ayala system with
Markovian switching

⎧⎪⎪⎨
⎪⎪⎩

dx1 = x1(b1(r(t)) – 0.7x1.1
1 – 0.4x2 – 0.3x3) dt + σ1(r(t))x1 dB1(t),

dx2 = x2(b2(r(t)) – 0.3x1 – x1.5
2 – 0.3x3) dt + σ2(r(t))x2 dB2(t),

dx3 = x3(b3(r(t)) – 0.6x1 – 0.4x2 – x1.2
3 ) dt + σ3(r(t))x3 dB3(t),

(63)

where the Markovian chain r(t) and generator Q are defined in the previous example, and
b1(1) = 1, b1(2) = 1.3, b2(1) = 1, b2(2) = 1.5, b3(1) = 1, b3(2) = 0.9, σ1(1) = 0.6, σ2(1) =

√
5,
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Figure 3 Stochastic trajectory of x1(t)
t for system (61) with σ1(1) = σ1(2) = 2, σ2(1) = σ2(2) = 1.8.

Figure 4 Stochastic trajectory of x2(t)
t for system (61) with σ1(1) = σ1(2) = 2, σ2(1) = σ2(2) = 1.8.

σ3(1) = 2, σ1(2) = 0.4, σ2(2) =
√

2, σ3(2) = 2. The initial data x1(0) = 0.4 and x2(0) = 0.6
are given. We can show that the conditions of Theorem 5.1 are met exactly. A simple
computation yields

∑
k∈S

πk

(
b1(k) –

σ 2
1 (k)
2

)
= 1.12 > 0,

∑
k∈S

πk

(
b2(k) –

σ 2
2 (k)
2

)
= 0,

∑
k∈S

πk

(
b3(k) –

σ 2
3 (k)
2

)
= –1.075 < 0,

a(11) – a(21) = 0.4 > 0, a(22) – a(12) = 0.6 > 0,

lim sup
t→∞

1
t

∫ t

0
xθ1

1 (s) ds = 1.60, lim sup
t→∞

log x2(t)
t

≤ 0,

lim sup
t→∞

log x3(t)
t

≤ –1.075.

The species 1 is persistent in mean, and species 2 and 3 are exponentially extinct by The-
orem 5.1. The system is tested in detail by the Heun method in Figures 5, 6, and 7, and the
data simulating results validate the correctness and effectiveness of the proposed meth-
ods.
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Figure 5 Stochastic trajectory of x1(t) for system (62).

Figure 6 Stochastic trajectory of x2(t) for system (62).

Figure 7 Stochastic trajectory of x3(t) for system (62).

7 Conclusions
The asymptotic behavior for stochastic competitive Gilpin-Ayala systems with regime
switching has been investigated. Firstly, generalized criteria on persistence in mean are es-
tablished by utilizing stochastic comparison principle and novel analysis techniques. Sec-
ondly, sufficient criteria on extinction are obtained by the space-decomposition method
and the stochastic LaSalle theorem. Thirdly, sufficient conditions for partial persistence in
mean and partial extinction are derived based on the criteria and a novel Lyapunov func-
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tion. Two numerical examples are provided to illustrate the superiority and effectiveness
of the proposed approaches.
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