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Abstract
This paper is concerned with the Lotka-Volterra-like functional differential equations
with impulses and infinite distributed time delays on time scales. By applying a fixed
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1 Introduction
In this article we consider the Lotka-Volterra-like functional differential equations with
impulses and infinite distributed time delays on time scales as follows:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u�
i (t) = ui(t)[ri(t) – Xi(t, u(t), v(t)) – Yi(t, u(t), v(t))], t �= tk , t ∈ T,

ui(t+
k ) = ui(t–

k ) – Iik(u(tk), v(tk)), k = , , . . . ,
v�

j (t) = vj(t)[–dj(t) + X̂j(t, u(t), v(t)) + Ŷj(t, u(t), v(t))], t �= tk , t ∈ T,
vj(t+

k ) = vj(t–
k ) + Îjk(u(tk), v(tk)), k = , , . . . ,

(.)

where i = , , . . . , n; j = , , . . . , m. T is an ω-periodic time scale, ω >  is a constant. We
have

Xi
(
t, u(t), v(t)

)
= Xi

(
t, u

(
t – τi(t)

)
, . . . , un

(
t – τin(t)

)
, v
(
t – σi(t)

)
, . . . , vm

(
t – σim(t)

))
,

X̂j
(
t, u(t), v(t)

)
= X̂j

(
t, u

(
t – τ̂j(t)

)
, . . . , un

(
t – τ̂jn(t)

)
, v
(
t – σ̂j(t)

)
, . . . , vm

(
t – σ̂jm(t)

))
,

Yi
(
t, u(t), v(t)

)
= Yi

(

t,
∫ 

–∞
Ki(s)u(t + s)�s, . . . ,

∫ 

–∞
Kin(s)un(t + s)�s,

∫ 

–∞
Li(s)v(t + s)�s, . . . ,

∫ 

–∞
Lim(s)vm(t + s)�s

)

,
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Ŷj
(
t, u(t), v(t)

)
= Ŷj

(

t,
∫ 

–∞
K̂j(s)u(t + s)�s, . . . ,

∫ 

–∞
K̂jn(s)un(t + s)�s,

∫ 

–∞
L̂j(s)v(t + s)�s, . . . ,

∫ 

–∞
L̂jm(s)vm(t + s)�s

)

.

For each interval I of R, we denote IT = I ∩ T. ui(t+
k ), ui(t–

k ), vj(t+
k ) and vj(t–

k ) represent
the right and the left limit ui(tk) and vj(tk) in the sense of time scales, respectively. In
addition, if tk is right-scattered, then ui(t+

k ) = ui(tk), vj(t+
k ) = vj(tk), whereas, if tk left-

scattered, then ui(t–
k ) = ui(tk), vj(t–

k ) = vj(tk). ri, dj ∈ Crd(T, (,∞)), τil , σij, τ̂jl , σjh ∈ Crd(T,T)
(i, l = , , . . . , n; j, h = , , . . . , m) are ω-periodic functions. Xi, X̂j, Yi, Ŷj ∈ Crd(T×R

m+n,R)
(i = , , . . . , n; j = , , . . . , m) are ω-periodic with respect to their first arguments, respec-
tively. We have Kil, K̂jl, Lij, L̂jh ∈ Crd((–∞, ]T, (,∞)) with

∫ 
–∞ Kil(s)�s =

∫ 
–∞ K̂jl(s)�s =

∫ 
–∞ Lij(s)�s =

∫ 
–∞ L̂jh(s)�s = . Iik , Îjk ∈ C([,∞)n+m, [,∞)). There exists a positive inte-

ger p such that tk+p = tk + ω, Ii,k+p = Iik , Îj,k+p = Ijk , k ∈ Z. Without loss of generality, we also
assume that [,ω)T ∩ {tk : k ∈ Z} = {t, t, . . . , tp}.

System (.) contain many mathematical population models of differential equations and
difference equations. For example, if time scale T = R, some specific models of system (.)
are enumerated as follows: the Lotka-Volterra competition system with impulses and time
delays [–]

{
u′

i(t) = ui(t)[ai(t) –
∑n

j= aij(t)
∫ 

–Tij
Kij(s)uj(t + s) ds], t �= tk , i = , , . . . , n,

ui(t+
k ) = ui(t–

k ) – Iik(ui(tk)), k = , , . . . ,

and
{

u′
i(t) = ui(t)[ai(t) –

∑n
j= aij(t)uj(t) –

∑n
j= bij(t)uj(t – τj(t))], t �= tk , i = , , . . . , n,

ui(t+
k ) = ui(t–

k ) – Iik(ui(tk)), k = , , . . . ,

the following predator-prey delay Lotka-Volterra system with impulses [, ]:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

u′
i(t) = ui(t)[ai(t) –

∑n
l= ail(t)ul(t – σil(t)) –

∑m
j= bij(t)vj(t – τij(t))],

t �= tk , i = , . . . , n,
ui(t+

k ) = ui(t–
k ) – Iik(ui(tk)), k = , , . . . ,

v′
j(t) = vj(t)[–rj(t) –

∑n
l= djl(t)ul(t – δjl(t)) –

∑m
h= ejh(t)vh(t – θjh(t))],

t �= tk , j = , . . . , m,
vj(t+

k ) = vj(t–
k ) + Îjk(vj(tk)), k = , , . . . .

It is well known that the application of theories of functional differential equations in
mathematical ecology has developed rapidly. The Lotka-Volterra system described by
functional differential equations is one of the most famous and important population dy-
namics models. Owing to its theoretical and practical significance, Lotka-Volterra systems
have been studied extensively [–]. However, dynamics in each equally spaced time in-
terval may vary continuously. So it may be more realistic to assume that the population
dynamics involves the hybrid discrete-continuous processes. For example, Gamarra and
Solé pointed out that such hybrid processes appear in the population dynamics of certain
species that feature non-overlapping generations: the change in population from one gen-
eration to the next is discrete and so is modeled by a difference equation, while within-
generation dynamics vary continuously (due to mortality rates, resource consumption,
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predation, interaction, etc.) and thus are described by a differential equation []. How-
ever, it is often difficult to study discrete and continuous differential systems in a unified
way. Fortunately, the theory of calculus on time scales (see [, ] and references cited
therein) proposed by Hilger in his Ph.D. thesis [] can unify continuous and discrete
analysis, and it has become an effective approach to the study of mathematical models
involving the hybrid discrete-continuous processes. There are many achievements in the
study of the hybrid discrete-continuous mathematical models (see [–]).

To the best of our knowledge, few papers have been published on the existence of posi-
tive periodic solutions of system (.). Our main purpose of this paper is by using a fixed
point theorem of strict-set contraction to establish some sufficient conditions to guarantee
the existence of positive periodic solutions of system (.) on time scales.

2 Preliminaries on time scales
In this section, we briefly recall some basic definitions and lemmas on time scales which
are used in what follows. For more details, see [–].

Let T be a nonempty closed subset (time scale) of R. The forward and backward jump
operators σ ,ρ : T→ T and the graininess μ : T →R

+ are defined, respectively, by

σ (t) = inf{s ∈ T : s > t}, ρ(t) = sup{s ∈ T : s < t} and μ(t) = σ (t) – t.

A point t ∈ T is called left-dense if t > infT and ρ(t) = t, left-scattered if ρ(t) < t, right-
dense if t < supT and σ (t) = t, and right-scattered if σ (t) > t. If T has a left-scattered maxi-
mum m, then T

k = T \ {m}; otherwise Tk = T. If T has a right-scattered minimum m, then
Tk = T \ {m}; otherwise T

k = T.
Let ω > . Throughout this paper, the time scale T is assumed to be ω-periodic, that is,

∀t ∈ T implies t + ω ∈ T and μ(t + ω) = μ(t). In particular, the time scale T under consid-
eration is unbounded above and below.

Definition . A function f : T →R is called regulated provided its right-side limits exist
(finite) at all right-side points in T and its left-side limits exist (finite) at all left-side points
in T.

Definition . A function f : T →R is called rd-continuous provided it is continuous at
right-dense point in T and its left-side limits exist (finite) at left-dense points in T. The set
of rd-continuous functions f : T →R will be denoted by Crd = Crd(T) = Crd(T,R).

Definition . Assume f : T →R and t ∈ T
k . Then we define f �(t) to be to be the number

(if it exists) with the property that given any ε >  there exists a neighborhood U of t (i.e.,
U = (t – δ, t + δ) ∩T for some δ > ) such that

∣
∣
[
f
(
σ (t)

)
– f (s)

]
– f �(t)

[
σ (t) – s

]∣
∣ < ε

∣
∣σ (t) – s

∣
∣

for all s ∈ U . we call f �(t) the delta (or Hilger) derivative of f at t. The set of functions
f : T →R that are differentiable and whose derivative is rd-continuous is denoted by C

rd =
C

rd(T) = C
rd(T,R).

If f is continuous, then f is rd-continuous. If f is rd-continuous, the f is regulated. If f
is delta differentiable at t, then f is continuous at t.
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Lemma . Let f be regulated, then there exists a function F which is delta differentiable
with region of differentiation D such that

F�(t) = f (t) for all t ∈ D.

Definition . Assume f : T→R is a regulated function. Any function F as in Lemma .
is called a �-antiderivative of f . We define the indefinite integral of a regulated function
f by

∫

f (t)�t = F(t) + C,

where C is an arbitrary constant and F is a �-antiderivative of f . We define the Cauchy
integral by

∫ b

a
f (s)�s = F(b) – F(a) for all a, b ∈ T.

A function F : T →R is called an antiderivative of f : T→R provided

F�(t) = f (t) for all t ∈ T
k .

Lemma . If a, b ∈ T, α,β ∈R and f , g ∈ C(T,R), then
(i)

∫ b
a [αf (t) + βg(t)]�t = α

∫ b
a f (t)�t + β

∫ b
a g(t)�t;

(ii) if f (t) ≥  for all a ≤ t < b, then
∫ b

a f (t)�t ≥ ;
(iii) if |f (t)| ≤ g(t) on [a, b) := {t ∈ T : a ≤ t < b}, then | ∫ b

a f (t)�t| ≤ ∫ b
a g(t)�t.

Definition . ([]) A time scale T is called periodic if there exists p >  such that if
∀t ∈ T, then t ± p ∈ T. For T �= R, the smallest positive p is called the period of the time
scale T.

Definition . ([]) Let T �= R be a periodic time scale with period p > . The function
f : T → R is called periodic with period ω if there exists a natural number n such that
ω = np, f (t + ω) = f (t) for all t ∈ T and ω is the smallest number such that f (t + ω) = f (t).

If T = R, we say that f is periodic with period ω >  if ω is the smallest positive number
such that f (t + ω) = f (t) for all t ∈R.

A function p : T → R is called regressive if  + μ(t)p(t) �=  for all t ∈ T
k . The set of all

regressive and rd-continuous functions f : T →R will be denoted by R = R(T) = R(T,R).
We define the set R+ of all positively regressive elements of R by R+ = R+(T,R) = {p ∈R :
 + μ(t)p(t) >  for all t ∈ T}. If p is a regressive function, then the generalized exponen-
tial function ep is defined by ep(t, s) = exp{∫ t

s ξμ(τ )(p(τ ))�τ } for s, t ∈ T, with the cylinder
transformation

ξh(z) =

{
Log(+hz)

h , if h �= ,
z, if h = .
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Let p, q : T→R be two regressive functions, we define

p ⊕ q = p + q + μpq, �p = –
p

 + μp
, p � q = p ⊕ p(�q).

The generalized exponential function has the following properties.

Lemma . ([]) Assume that p, q : T →R are two regressive functions, then
() e(t, s) ≡  and ep(t, t) ≡ ;
() ep(σ (t), s) = ( + μ(t)p(t))ep(t, s);
() 

ep(t,s) = e�p(t, s);
() ep(t, s) = 

ep(s,t) = e�p(s, t);
() ep(t, s)ep(s, r) = ep(t, r);
() ep(t, s)eq(t, s) = ep⊕q(t, s);
() ep(t,s)

eq(t,s) = ep�q(t, s);
() [ep(t, s)]� = p(t)ep(t, s);
() [ep(c, ·)]� = –p[ep(c, ·)]σ for c ∈ T;

() d
dz [ez(t, s)] = (

∫ t
s


+μ(τ )z �τ )ez(t, s).

For convenience, we now introduce some notations as follows.

B(, R) =
{

(x, x, . . . , xn+m)T ∈R
n+m :

∥
∥(x, x, . . . , xn+m)

∥
∥≤ R

}
, f M = max

t∈[,ω]T

{
f (t)

}
,

X
i = lim sup

∑n+m
i= xi→

max
t∈[,ω]T

Xi(t, x, x, . . . , xn+m)
∑n+m

i= xi
,

X̂
j = lim sup

∑n+m
i= xi→

max
t∈[,ω]T

X̂j(t, x, x, . . . , xn+m)
∑n+m

i= xi
,

Y 
i = lim sup

∑n+m
i= xi→

max
t∈[,ω]T

Yi(t, x, x, . . . , xn+m)
∑n+m

i= xi
,

Ŷ 
j = lim sup

∑n+m
i= xi→

max
t∈[,ω]T

Ŷj(t, x, x, . . . , xn+m)
∑n+m

i= xi
,

X∞
i = lim inf∑n+m

i= xi→∞
min

t∈[,ω]T

Xi(t, x, x, . . . , xn+m)
∑n+m

i= xi
,

X̂∞
j = lim inf∑n+m

i= xi→∞
min

t∈[,ω]T

X̂j(t, x, x, . . . , xn+m)
∑n+m

i= xi
,

Y ∞
i = lim inf∑n+m

i= xi→∞
min

t∈[,ω]T

Yi(t, x, x, . . . , xn+m)
∑n+m

i= xi
,

Ŷ ∞
j = lim inf∑n+m

i= xi→∞
min

t∈[,ω]T

Ŷj(t, x, x, . . . , xn+m)
∑n+m

i= xi
,

γi = lim sup
∑n+m

i= xi→

∑p
k= Iik(x, x, . . . , xn+m)

∑n+m
i= xi

,

γ̂j = lim sup
∑n+m

i= xi→

∑p
k= Îjk(x, x, . . . , xn+m)

∑n+m
i= xi

,

where i = , , . . . , n, j = , , . . . , m, f is a rd-continuous ω-periodic function.
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Lemma . ([]) Let r : T → R be right-dense continuous and regressive. For a ∈ T and
ya ∈R, the unique solution of the initial value problem

y�(t) = r(t)y(t) + h(t), y(a) = ya,

is given by

y(t) = er(t, a)ya +
∫ t

a
er
(
t,σ (s)

)
h(s)�s.

The existence of periodic solutions of system (.) is equivalent to the existence of peri-
odic solutions of the corresponding integral system. So the following lemma is important
in our discussion.

Lemma . x(t) = (u(t), v(t))T = (u(t), . . . , un(t), v(t), . . . , vm(t))T is an ω-periodic solution
of (.) is equivalent to x(t) is an ω-periodic solution of the following integral system:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ui(t) =
∫ t+ω

t Gi(t, s)ui(s)[Xi(s, u(s), v(s)) + Yi(s, u(s), v(s))]�s
+
∑

tk∈[t,t+ω)T Gi(t, tk)eri (σ (tk), tk)Iik(u(tk), v(tk)), i = , , . . . , n,
vj(t) =

∫ t+ω

t Ĝj(t, s)vj(s)[X̂j(s, u(s), v(s)) + Ŷj(s, u(s), v(s))]�s
+
∑

tk∈[t,t+ω)T Ĝj(t, tk)e(–dj)(σ (tk), tk)Îjk(u(tk), v(tk)), j = , , . . . , m,

(.)

here

Gi(t, s) =
eri (t,σ (s))

 – eri (,ω)
, s ∈ [t, t + ω]T, i = , , . . . , n, (.)

and

Ĝj(t, s) =
e(–dj)(t,σ (s))

e(–dj)(,ω) – 
, s ∈ [t, t + ω]T, j = , , . . . , m. (.)

Proof If x(t) is an ω-periodic solution of (.), ∀t ∈ T, there exists k ∈ N
+ such that tk is

the first impulsive point after t. By applying Lemma . and the first equation of (.), for
s ∈ [t, tk]T, we have

ui(s) = eri (s, t)ui(t) –
∫ s

t
eri

(
s,σ (τ )

)
ui(τ )

[
Xi
(
τ , u(τ ), v(τ )

)
+ Yi

(
τ , u(τ ), v(τ )

)]
�τ ,

then

ui(tk) = eri (tk , t)ui(t) –
∫ tk

t
eri

(
tk ,σ (τ )

)
ui(τ )

[
Xi
(
τ , u(τ ), v(τ )

)
+ Yi

(
τ , u(τ ), v(τ )

)]
�τ .

Again using Lemma ., for s ∈ (tk , tk+]T, then

ui(s) = eri (s, tk)ui
(
t+
k
)

–
∫ s

tk

eri

(
s,σ (τ )

)
ui(τ )

[
Xi
(
τ , u(τ ), v(τ )

)
+ Yi

(
τ , u(τ ), v(τ )

)]
�τ

= eri (s, tk)ui(tk) –
∫ s

tk

eri

(
s,σ (τ )

)
ui(τ )

[
Xi
(
τ , u(τ ), v(τ )

)
+ Yi

(
τ , u(τ ), v(τ )

)]
�τ

– eri (s, tk)Iik
(
u(tk), v(tk)

)
.
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Thus, for s ∈ [t, tk+]T, we get

ui(s) = eri (s, t)ui(t) –
∫ s

t
eri

(
s,σ (τ )

)
ui(τ )

[
Xi
(
τ , u(τ ), v(τ )

)
+ Yi

(
τ , u(τ ), v(τ )

)]
�τ

– eri (s, tk)Iik
(
u(tk), v(tk)

)
.

Repeating the above process for s ∈ [t, t + ω]T, we obtain

ui(s) = eri (s, t)ui(t) –
∫ s

t
eri

(
s,σ (τ )

)
ui(τ )

[
Xi
(
τ , u(τ ), v(τ )

)
+ Yi

(
τ , u(τ ), v(τ )

)]
�τ

–
∑

tk∈[t,t+ω)T

eri (s, tk)Iik
(
u(tk), v(tk)

)
.

Let s = t + ω in the above equality and notice that ui(t) = ui(t + ω), eri (t, t + ω) = eri (,ω),
eri (t + ω,σ (τ )) = eri (t,σ (τ ))eri (t + ω, t), eri (t, tk) = eri (t,σ (tk))eri (σ (tk), tk) and eri (t, t + ω) ×
eri (t + ω, t) = , we have

ui(t) = ui(t + ω)

= eri (t + ω, t)ui(t)

–
∫ t+ω

t
eri

(
t + ω,σ (τ )

)
ui(τ )

[
Xi
(
τ , u(τ ), v(τ )

)
+ Yi

(
τ , u(τ ), v(τ )

)]
�τ

–
∑

tk∈[t,t+ω)T

eri (t + ω, tk)Iik
(
u(tk), v(tk)

)

= eri (ω, )ui(t)

–
∫ t+ω

t
eri

(
t,σ (τ )

)
eri (ω, )ui(τ )

[
Xi
(
τ , u(τ ), v(τ )

)
+ Yi

(
τ , u(τ ), v(τ )

)]
�τ

–
∑

tk∈[t,t+ω)T

eri

(
t,σ (tk)

)
eri (ω, )eri

(
σ (tk), tk

)
Iik
(
u(tk), v(tk)

)
,

which implies that

ui(t) =
∫ t+ω

t
Gi(t, τ )ui(τ )

[
Xi
(
τ , u(τ ), v(τ )

)
+ Yi

(
τ , u(τ ), v(τ )

)]
�τ

+
∑

tk∈[t,t+ω)T

Gi(t, tk)eri

(
σ (tk), tk

)
Iik
(
u(tk), v(tk)

)
.

In like manner, one has

vj(t) =
∫ t+ω

t
Ĝj(t, τ )vj(τ )

[
X̂j
(
τ , u(τ ), v(τ )

)
+ Ŷj

(
τ , u(τ ), v(τ )

)]
�τ

+
∑

tk∈[t,t+ω)T

Ĝj(t, tk)e(–dj)
(
σ (tk), tk

)
Îjk
(
u(tk), v(tk)

)
.

Thus, we conclude that x(t) satisfies (.).
Let x(t) be an ω-periodic solution of (.), noting that the above reduction is completely

reversible, we know that x(t) is also an ω-periodic solution of (.). This completes the
proof of Lemma .. �
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Throughout this paper, we assume that

(H) supt∈[,ω]T{μ(t)dj(t)} < , j = , , . . . , m.

Lemma . If the condition (H) holds, then Gi(t, s) (i = , , . . . , n) and Ĝj(t, s)
(j = , , . . . , m) defined by (.) and (.) satisfy the following:

() σi
–σi

≤ Gi(t, s) ≤ 
–σi

, ∀s ∈ [t, t + ω]T, where σi = eri (,ω), i = , , . . . , n;

() 
σ̂j– ≤ Ĝj(t, s) ≤ σ̂j

σ̂j– , ∀s ∈ [t, t + ω]T, where σ̂j = e(–dj)(,ω), j = , , . . . , m;

() Gi(t + ω, s + ω) = Gi(t, s), i = , , . . . , n, Ĝj(t + ω, s + ω) = Ĝj(t, s), j = , , . . . , m.

Proof According to the condition (H) and μ(t) = σ (t) – t ≥ , ri(t), dj(t) > , we have
 + μ(t)ri(t) > ,  <  – μ(t)dj(t) < . In addition, in the light of the definitions of the gen-
eralized exponential function, we get

 < σi = eri (,ω) < , σ̂j = e(–dj)(,ω) > , i = , , . . . , n, j = , , . . . , m.

Noticing that t ≤ s ≤ σ (s) ≤ t + ω, we have

σi

 – σi
=

eri (t, t + ω)
 – σi

≤ Gi(t, s) ≤ eri (t, t)
 – σi

=


 – σi
,


σ̂j – 

=
e(–dj)(t, t)

σ̂j – 
≤ Ĝj(t, s) ≤ e(–dj)(t, t + ω)

σ̂j – 
=

σ̂j

σ̂j – 
.

Thus, the assertions () and () hold. Now we show that the assertion () holds too. Indeed,
by σ (t + ω) = σ (t) + ω and the integration by substitution, we have

Gi(t + ω, s + ω) =
eri (t + ω,σ (s + ω))

 – eri (,ω)
=

eri (t + ω,σ (s) + ω)
 – eri (,ω)

=
eri (t,σ (s))

 – eri (,ω)
= Gi(t, s).

Similarly one shows that Ĝj(t + ω, s + ω) = Ĝj(t, s). The proof of Lemma . is complete. �

For the sake of obtaining the existence of a periodic solution of system (.), we need the
following preparations.

Let X be a real Banach space, and K a closed, nonempty subset of X. Then K is a cone
provided

(i) kα + lβ ∈ K for all α,β ∈ K and all k, l ≥ ;
(ii) α, –α ∈ K imply α = θ , here θ is the zero element of X .

Let E be a Banach space and K be a cone in E. The semi-order induced by the cone K
is denoted by ≤. That is, x ≤ y if and only if y – x ∈ K . In addition, for a bounded subset
A ⊂ E, let αE(A) denote the (Kuratowski) measure of non-compactness defined by

αE(A) = inf
{
δ >  : A admits a finite cover by subsets of Ai ⊂ A

such that diam(Ai) ≤ δ
}

,

where diam(Ai) denotes the diameter of the set Ai.
Let E, F be two Banach spaces and D ⊂ E, a continuous and bounded map � : � → F is

called k-set contractive if for any bounded set S ⊂ D, we have

αF
(
�(S)

)≤ kαE
(
�(S)

)
.



Zhao Advances in Difference Equations  (2017) 2017:328 Page 9 of 21

� is called strict-set contractive if it is k-set contractive for some  ≤ k < . Particularly,
completely continuous operators are -set contractive.

The following lemma is useful for the proofs of our main results of this paper.

Lemma . ([, ]) Let K be a cone in the real Banach space X and Kr,R = {x ∈ K :
r ≤ ‖x‖ ≤ R} with R > r > . Suppose that � : Kr,R → K is strict-set contractive such that
one of the following two conditions is satisfied:

(i) �x � x, ∀x ∈ K , ‖x‖ = r and �x � x, ∀x ∈ K , ‖x‖ = R.
(ii) �x � x, ∀x ∈ K , ‖x‖ = r and �x � x, ∀x ∈ K , ‖x‖ = R.

Then � has at least one fixed point in Kr,R.

Define

PC(T) =
{

x = (x, . . . , xn+m) : T →R
n+m, x|(tk ,tk+) ∈ Crd

(
(tk , tk+),Rn+m),

∃x
(
t–
k
)

= x(tk), x
(
t+
k
)
, k ∈ N

+}.

Set

X =
{

x : x ∈ PC(T), x(t + ω) = x(t), t ∈ T
}

equipped with the norm defined by ‖x‖ =
∑n+m

i= |xi|, where |xi| = supt∈[,ω]T{|xi(t)|},
i = , , . . . , n + m. Then X is a Banach space. In view of Lemma ., we define the cone
K in X as

K =
{

x = (u, . . . , un, v, . . . , vm) ∈ X : ui(t) ≥ σi|ui|, vj(t) ≥ 
σ̂j

|vj|, t ∈ [,ω]T
}

.

Let the map � be defined by

(�x)(t) =
(
(�x)(t), . . . , (�nx)(t), (�x)(t), . . . , (�mx)(t)

)T , (.)

where x ∈ K , t ∈ T,

(�ix)(t) =
∫ t+ω

t
Gi(t, s)ui(s)

[
Xi
(
s, u(s), v(s)

)
+ Yi

(
s, u(s), v(s)

)]
�s

+
∑

tk∈[t,t+ω)T

Gi(t, tk)eri

(
σ (tk), tk

)
Iik
(
u(tk), v(tk)

)
, i = , , . . . , n,

(�jx)(t) =
∫ t+ω

t
Ĝj(t, s)vj(s)

[
X̂j
(
s, u(s), v(s)

)
+ Ŷj

(
s, u(s), v(s)

)]
�s

+
∑

tk∈[t,t+ω)T

Ĝj(t, tk)e(–dj)
(
σ (tk), tk

)
Îjk
(
u(tk), v(tk)

)
, j = , , . . . , m,

and Gi(t, s) (i = , , . . . , n), Ĝj(t, s) (j = , , . . . , m) defined by (.) and (.), respectively.

Lemma . Assume that (H) holds, then � : K → K defined by (.) is well defined, that
is, �(K) ⊂ K .
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Proof For any x ∈ K , it is clear that �x ∈ PC(T). In view of Lemma . and (.), we obtain

(�ix)(t + ω)

=
∫ t+ω

t+ω

Gi(t + ω, s)ui(s)
[
Xi
(
s, u(s), v(s)

)
+ Yi

(
s, u(s), v(s)

)]
�s

+
∑

tk∈[t+ω,t+ω)T

Gi(t + ω, tk)eri

(
σ (tk), tk

)
Iik
(
u(tk), v(tk)

)

=
∫ t+ω

t
Gi(t + ω, τ + ω)ui(τ + ω)

[
Xi
(
τ + ω, u(τ + ω), v(τ + ω)

)
+ Yi

(
τ + ω, u(τ + ω),

v(τ + ω)
)]

�τ +
∑

tl∈[t,t+ω)T

Gi(t + ω, tl + ω)eri

(
σ (tl + ω), tl + ω

)
Iil
(
u(tl + ω), v(tl + ω)

)

=
∫ t+ω

t
Gi(t, τ )ui(τ )

[
Xi
(
τ , u(τ ), v(τ )

)
+ Yi

(
τ , u(τ ), v(τ )

)]
�τ

+
∑

tl∈[t,t+ω)T

Gi(t, tl)eri

(
σ (tl), tl

)
Iil
(
u(tl), v(tl)

)
= (�ix)(t),

that is, (�ix)(t + ω) = (�ix)(t), ∀t ∈ T, i = , , . . . , n. Similarly, we have (�jx)(t + ω) =
(�jx)(t), ∀t ∈ T, j = , , . . . , m. So �x ∈ X. For any x ∈ K , we have

|�ix| ≤ 
 – σi

[∫ ω


ui(s)

[
Xi
(
s, u(s), v(s)

)
+ Yi

(
s, u(s), v(s)

)]
�s

+
p∑

k=

eri

(
σ (tk), tk

)
Iik
(
u(tk), v(tk)

)
]

, i = , , . . . , n,

|�jx| ≤ σ̂j

σ̂j – 

[∫ ω


vj(s)

[
X̂j
(
s, u(s), v(s)

)
+ Ŷj

(
s, u(s), v(s)

)]
�s

+
p∑

k=

e(–dj)
(
σ (tk), tk

)
Îjk
(
u(tk), v(tk)

)
]

, j = , , . . . , m,

and

(�ix)(t) ≥ σi

 – σi

[∫ t+ω

t
ui(s)

[
Xi
(
s, u(s), v(s)

)
+ Yi

(
s, u(s), v(s)

)]
�s

+
p∑

k=

eri

(
σ (tk), tk

)
Iik
(
u(tk), v(tk)

)
]

=
σi

 – σi

[∫ ω


ui(s)

[
Xi
(
s, u(s), v(s)

)
+ Yi

(
s, u(s), v(s)

)]
�s

+
p∑

k=

eri

(
σ (tk), tk

)
Iik
(
u(tk), v(tk)

)
]

≥ σi|�ix|, i = , , . . . , n,
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(�jx)(t) ≥ 
σ̂j – 

[∫ t+ω

t
vj(s)

[
X̂j
(
s, u(s), v(s)

)
+ Ŷj

(
s, u(s), v(s)

)]
�s

+
p∑

k=

e(–dj)
(
σ (tk), tk

)
Îjk
(
u(tk), v(tk)

)
]

=


σ̂j – 

[∫ ω


vj(s)

[
X̂j
(
s, u(s), v(s)

)
+ Ŷj

(
s, u(s), v(s)

)]
�s

+
p∑

k=

e(–dj)
(
σ (tk), tk

)
Îjk
(
u(tk), v(tk)

)
]

≥ 
σ̂j

|�jx|, j = , , . . . , m.

So �x ∈ K . This completes the proof of Lemma .. �

Lemma . Assume that (H) holds, then � : K → K defined by (.) is completely con-
tinuous.

Proof It is easy to see that � is continuous and bounded. Now we show that � maps
bounded sets into relatively compact sets. Let � ⊂ K be an arbitrary open bounded
set in K , then there exists a number R >  such that ‖x‖ < R for any x = (u, . . . , un,
v, . . . , vm)T ∈ �. We prove that �(�) is compact. In fact, for any x ∈ � and t ∈ [,ω]T,
we have

∣
∣(�ix)(t)

∣
∣ =

∫ t+ω

t
Gi(t, s)ui(s)

[
Xi
(
s, u(s), v(s)

)
+ Yi

(
s, u(s), v(s)

)]
�s

+
∑

tk∈[t,t+ω)T

Gi(t, tk)eri

(
σ (tk), tk

)
Iik
(
u(tk), v(tk)

)

≤ 
 – σi

[∫ ω


ui(s)

[
Xi
(
s, u(s), v(s)

)
+ Yi

(
s, u(s), v(s)

)]
�s

+
p∑

k=

eri

(
σ (tk), tk

)
Iik
(
u(tk), v(tk)

)
]

≤ 
 – σi

[

Rω
(

max
s∈[,ω]T,x∈B(,R)

{
Xi(s, u, v)

}
+ max

s∈[,ω]T ,x∈B(,R)

{
Yi(s, u, v)

})

+

σi

p∑

k=

max
x∈B(,R)

{
Iik(u, v)

}
]

� Ai, i = , , . . . , n,

and

∣
∣(�ix)�(t)

∣
∣ =
∣
∣ri(t)(�ix)(t) – ui(t)

[
Xi
(
t, u(t), v(t)

)
+ Yi

(
t, u(t), v(t)

)]∣
∣

≤ rM
i Ai + R

(
max

t∈[,ω]T,x∈B(,R)

{
Xi(t, u, v)

}
+ max

t∈[,ω]T ,x∈B(,R)

{
Yi(t, u, v)

})

� Bi, i = , , . . . , n.
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Similarly, for any x ∈ � and t ∈ [,ω]T, we have

∣
∣(�jx)(t)

∣
∣ =

∫ t+ω

t
Ĝj(t, s)vj(s)

[
X̂j
(
s, u(s), v(s)

)
+ Ŷj

(
s, u(s), v(s)

)]
�s

+
∑

tk∈[t,t+ω)T

Ĝj(t, tk)e(–dj)
(
σ (tk), tk

)
Îjk
(
u(tk), v(tk)

)

≤ σ̂j

σ̂j – 

[

Rω
(

max
s∈[,ω]T ,x∈B(,R)

{
X̂j(s, u, v)

}
+ max

s∈[,ω]T,x∈B(,R)

{
Ŷj(s, u, v)

})

+ σ̂j

p∑

k=

max
x∈B(,R)

{
Îjk(u, v)

}
]

� Âj, j = , , . . . , m,

and
∣
∣(�jx)�(t)

∣
∣ =
∣
∣–dj(t)(�jx)(t) + vj(s)

[
X̂j
(
t, u(t), v(t)

)
+ Ŷj

(
t, u(t), v(t)

)]∣
∣

≤ dM
j Âj + R

(
max

t∈[,ω]T ,x∈B(,R)

{
X̂j(t, u, v)

}
+ max

t∈[,ω]T ,x∈B(,R)

{
Ŷj(t, u, v)

})

� B̂j, j = , , . . . , m.

Hence,

∥
∥(�x)

∥
∥≤

n∑

i=

Ai +
m∑

j=

Âj,
∥
∥(�x)�

∥
∥≤

n∑

i=

Bi +
m∑

j=

B̂j.

It follows from Lemma . in [] that �(�̄) is relatively compact in X. The proof of
Lemma . is complete. �

3 Main results
In this section, we shall give our main results.

Theorem . Assume that

(H) max{max≤i≤n{ γi
σi(–σi)

}, max≤j≤m{ γ̂jσ̂

j

σ̂j– }} < .

(H) X
i < ∞, X̂

j < ∞, Y 
i < ∞, Ŷ 

j < ∞, X∞
i > , X̂∞

j > , Y ∞
i > , Ŷ ∞

j > , i = , , . . . , n,
j = , , . . . , m.

If (H)-(H) hold, then system (.) has at least one ω-periodic solution.

Proof By the assumptions (H) and (H) of the theorem, there exists a positive number δ

such that

max

{

max
≤i≤n

{
γi

σi( – σi)

}

, max
≤j≤m

{
γ̂jσ̂


j

σ̂j – 

}}

+ δ < 

and for any

 < ε < min

{



,



min
≤i≤n

{
X∞

i + Y ∞
i
}

,



min
≤j≤m

{
X̂∞

j + Ŷ ∞
j
}
}

,
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there exist positive numbers r < R such that, for i = , , . . . , n, j = , , . . . , m,

Iik(x, . . . , xn+m) < (γi + ε)
n+m∑

l=

xl, for  <
n+m∑

l=

xl < r,

Îjk(x, . . . , xn+m) < (γ̂j + ε)
n+m∑

l=

xl, for  <
n+m∑

l=

xl < r,

Xi(t, x, . . . , xn+m) <
(
X

i + ε
)

n+m∑

l=

xl, for  <
n+m∑

l=

xl < r,

X̂j(t, x, . . . , xn+m) <
(
X̂

j + ε
)

n+m∑

l=

xl, for  <
n+m∑

l=

xl < r,

Yi(t, x, . . . , xn+m) <
(
Y 

i + ε
)

n+m∑

l=

xl, for  <
n+m∑

l=

xl < r,

Ŷj(t, x, . . . , xn+m) <
(
Ŷ 

j + ε
)

n+m∑

l=

xl, for  <
n+m∑

l=

xl < r,

Xi(t, x, . . . , xn+m) >
(
X∞

i – ε
)

n+m∑

l=

xl, for
n+m∑

l=

xl > R,

X̂j(t, x, . . . , xn+m) >
(
X̂∞

j – ε
)

n+m∑

l=

xl, for
n+m∑

l=

xl > R,

Yi(t, x, . . . , xn+m) <
(
Y ∞

i – ε
)

n+m∑

l=

xl, for
n+m∑

l=

xl > R,

Ŷj(t, x, . . . , xn+m) >
(
Ŷ ∞

j – ε
)

n+m∑

l=

xl, for
n+m∑

l=

xl > R.

Take

 < r < min

{

min
≤i≤n

{
δ( – σi)

ω(X
i + Y 

i + )

}

, min
≤j≤m

{
δ(σ̂j – )

ωσ̂j(X̂
j + Ŷ 

j + )

}

, r

}

and

R = max

{[
min

≤i≤n,≤j≤m

{
σi, σ̂ –

j
}]–

R,

[

ω min
≤i≤n,≤j≤m

{
σi, σ̂ –

j
}

× min

{

min
≤i≤n

{
σ 

i (X∞
i + Y ∞

i – ε)
 – σi

}

, min
≤j≤m

{ X̂∞
j + Ŷ ∞

j – ε

σ̂j(σ̂j – )

}}]–}

.

Then we have  < r < R. It follows from Lemmas . and . that � is strict-set contractive
on Kr,R. By Lemma ., it is easy to see that if there exists x∗ ∈ K such that �x∗ = x∗, then
x∗ is one positive ω-periodic solution of system (.). Now, we shall prove that condition
(ii) of Lemma . holds.
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First, we prove that �x � x, ∀x ∈ K , ‖x‖ = r. Otherwise, there exists x ∈ K , ‖x‖ = r such
that �x �= x. So ‖x‖ >  and �x – x ∈ K , which implies that

(�ix)(t) – ui(t) ≥ σi|�ix – ui| ≥ , ∀t ∈ [,ω]T, i = , , . . . , n, (.)

and

(�jx)(t) – vj(t) ≥ 
σ̂j

|�jx – vj| ≥ , ∀t ∈ [,ω]T, j = , , . . . , m. (.)

Moreover, for t ∈ [,ω]T, we have

(�ix)(t) =
∫ t+ω

t
Gi(t, s)ui(s)

[
Xi
(
s, u(s), v(s)

)
+ Yi

(
s, u(s), v(s)

)]
�s

+
∑

tk∈[t,t+ω)T

Gi(t, tk)eri

(
σ (tk), tk

)
Iik
(
u(tk), v(tk)

)

≤ 
 – σi

[∫ ω


ui(s)

[
Xi
(
s, u(s), v(s)

)
+ Yi

(
s, u(s), v(s)

)]
�s

+
p∑

k=

eri

(
σ (tk), tk

)
Iik
(
u(tk), v(tk)

)
]

≤ ω|ui|
 – σi

[
(
X

i + ε
)
( n∑

i=

|ui| +
m∑

j=

|vj|
)

+
(
Y 

i + ε
)
( n∑

i=

|ui| +
m∑

j=

|vj|
)]

+


σi( – σi)
(γi + ε)

( n∑

i=

|ui| +
m∑

j=

|vj|
)

≤ ω(X
i + Y 

i + ε)
 – σi

r +
γi + ε

σi( – σi)
r

<
[

ω(X
i + Y 

i + ε)
 – σi

× δ( – σi)
ω(X

i + Y 
i + )

+
γi + ε

σi( – σi)

]

r

=
[

δ(X
i + Y 

i + ε)
X

i + Y 
i + 

+
γi + ε

σi( – σi)

]

r, i = , , . . . , n. (.)

Similarly, for t ∈ [,ω]T, we have

(�jx)(t) =
∫ t+ω

t
Ĝj(t, s)vj(s)

[
X̂j
(
s, u(s), v(s)

)
+ Ŷj

(
s, u(s), v(s)

)]
�s

+
∑

tk∈[t,t+ω)T

Ĝj(t, tk)e(–dj)
(
σ (tk), tk

)
Îjk
(
u(tk), v(tk)

)

≤ ωσ̂j|vj|
σ̂j – 

[
(
X̂

j + ε
)
( n∑

i=

|ui| +
m∑

j=

|vj|
)

+
(
Ŷ 

j + ε
)
( n∑

i=

|ui| +
m∑

j=

|vj|
)]

+
σ̂ 

j

σ̂j – 
(γ̂j + ε)

( n∑

i=

|ui| +
m∑

j=

|vj|
)

≤ ωσ̂j(X̂
j + Ŷ 

j + ε)
σ̂j – 

r +
σ̂ 

j (γ̂j + ε)
σ̂j – 

r
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<
[

ωσ̂j(X̂
j + Ŷ 

j + ε)
σ̂j – 

× δ(σ̂j – )
ωσ̂j(X̂

j + Ŷ 
j + )

+
σ̂ 

j (γ̂j + ε)
σ̂j – 

]

r

=
[

δ(X̂
j + Ŷ 

j + ε)

X̂
j + Ŷ 

j + 
+

σ̂ 
j (γ̂j + ε)
σ̂j – 

]

r, j = , , . . . , m. (.)

From (.)-(.) and the arbitrariness of ε, we get

‖x‖ ≤ ‖�x‖ ≤
(

max

{

max
≤i≤n

{
γi

σi( – σi)

}

, max
≤j≤m

{
γ̂jσ̂


j

σ̂j – 

}}

+ δ

)

r < r = ‖x‖,

which is a contradiction. Next, we prove that �x � x, ∀x ∈ K , ‖x‖ = R also holds. Indeed,
we only need to prove that �x ≮ x, ∀x ∈ K , ‖x‖ = R. For the sake of contradiction, suppose
that there exists x ∈ K and ‖x‖ = R such that �x < x. Thus x – �x ∈ K \ {θ = (, , . . . , )T }.
Furthermore, for any t ∈ [,ω]T, we have

ui(t) – (�x)(t) ≥ σi|ui – �ix| ≥ , i = , , . . . , n, (.)

and

vj(t) – (�x)(t) ≥ σ̂ –
j |vj – �jx| ≥ , j = , , . . . , m. (.)

Since x ∈ K and ‖x‖ = R, we find ∀s ∈ [,ω]T,

n∑

l=

ul
(
s – τil(s)

)
+

m∑

j=

vj
(
s – τij(s)

)

≥
n∑

l=

σl|ul| +
m∑

j=

σ̂ –
j |vj|

≥ min
≤l≤n,≤j≤m

{
σl, σ̂ –

j
}
( n∑

l=

|ul| +
m∑

j=

|vj|
)

= min
≤l≤n,≤j≤m

{
σl, σ̂ –

j
}

R ≥ R, i = , , . . . , n,

and

n∑

l=

∫ 

–∞
Kil(τ )ul(s + τ )�τ +

m∑

j=

∫ 

–∞
Lij(τ )vj(s + τ )�τ

≥
n∑

l=

σl|ul|
∫ 

–∞
Kil(τ )�τ +

m∑

j=

σ̂ –
j |vj|

∫ 

–∞
Lij(τ )�τ

≥ min
≤l≤n,≤j≤m

{
σl, σ̂ –

j
}
{ n∑

l=

|ul| +
m∑

j=

|vj|
}

= min
≤l≤n,≤j≤m

{
σl, σ̂ –

j
}

R ≥ R, i = , , . . . , n.
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In addition, for any t ∈ [,ω]T, we have

(�ix)(t) =
∫ t+ω

t
Gi(t, s)ui(s)

[
Xi
(
s, u(s), v(s)

)
+ Yi

(
s, u(s), v(s)

)]
�s

+
∑

tk∈[t,t+ω)T

Gi(t, tk)eri

(
σ (tk), tk

)
Iik
(
u(tk), v(tk)

)

≥ σ 
i |ui|
 – σi

∫ ω



[
Xi
(
s, u(s), v(s)

)
+ Yi

(
s, u(s), v(s)

)]
�s

≥ σ 
i ω|ui|
 – σi

[
(
X∞

i – ε
)
( n∑

i=

σi|ui| +
m∑

j=

σ –
j |vj|

)

+
(
Y ∞

i – ε
)
( n∑

l=

∫ 

–∞
Kil(τ )σl|ul|�τ +

m∑

j=

∫ 

–∞
Lij(τ )σ –

j |vj|�τ

)]

≥ σ 
i ω|ui|
 – σi

(
X∞

i + Y ∞
i – ε

)
min

≤i≤n,≤j≤m

{
σi, σ̂ –

j
}

R, i = , , . . . , n. (.)

Similarly, for any t ∈ [,ω]T, we derive

(�jx)(t) =
∫ t+ω

t
Ĝj(t, s)vj(s)

[
X̂j
(
s, u(s), v(s)

)
+ Ŷj

(
s, u(s), v(s)

)]
�s

+
∑

tk∈[t,t+ω)T

Ĝj(t, tk)e(–dj)
(
σ (tk), tk

)
Îjk
(
u(tk), v(tk)

)

≥ |vj|
σ̂j(σ̂j – )

∫ ω



[
X̂j
(
s, u(s), v(s)

)
+ Ŷj

(
s, u(s), v(s)

)]
�s

≥ ω|vj|
σ̂j(σ̂j – )

[
(
X̂∞

j – ε
)
( n∑

i=

σi|ui| +
m∑

j=

σ –
j |vj|

)

+
(
Ŷ ∞

j – ε
)
( n∑

l=

∫ 

–∞
K̂jl(τ )σl|ul|�τ +

m∑

i=

∫ 

–∞
L̂ij(τ )σ –

j |vj|�τ

)]

≥ ω|vj|
σ̂j(σ̂j – )

(
X̂∞

j + Ŷ ∞
j – ε

)
min

≤i≤n,≤j≤m

{
σi, σ̂ –

j
}

R, j = , , . . . , m. (.)

It follows from (.) and (.) that

‖�x‖ =
n∑

i=

|�ix| +
m∑

j=

|�jx|

≥
n∑

i=

σ 
i ω|ui|
 – σi

(
X∞

i + Y ∞
i – ε

)
min

≤i≤n,≤j≤m

{
σi, σ̂ –

j
}

R

+
m∑

j=

ω|vj|
σ̂j(σ̂j – )

(
X̂∞

j + Ŷ ∞
j – ε

)
min

≤i≤n,≤j≤m

{
σi, σ̂ –

j
}

R

≥ min

{

min
≤i≤n

{
σ 

i (X∞
i + Y ∞

i – ε)
 – σi

}

, min
≤j≤m

{
X̂j + Ŷj – ε

σ̂j(σ̂j – )

}}

× min
≤i≤n,≤j≤m

{
σi, σ̂ –

j
}

Rω

≥ R. (.)
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From (.)-(.), we obtain ‖x‖ > ‖�x‖ ≥ R, which is a contradiction. Therefore, condition
(ii) of Lemma . holds. By Lemma ., we see that � has at least one nonzero fixed point
in Kr,R. Therefore, system (.) has at least one positive ω-periodic solution. The proof of
Theorem . is complete. �

Similar to the proof of Theorem ., one can show that the existence of positive ω-
periodic solutions for the impulsive system without infinite distributed time delays or with
pure infinite distributed delays on time scales.

Theorem . In system (.), assume that Yi(t, ·, ·) ≡ , Ŷj(t, ·, ·) ≡ , X
i < ∞, X̂

j < ∞,
X∞

i > , X̂∞
j >  (i = , . . . , n; j = , . . . , m) and (H)-(H) hold. Then system (.) has at least

one positive ω-periodic solution.

Theorem . In system (.), assume that Xi(t, ·, ·) ≡ , X̂j(t, ·, ·) ≡ , Y 
i < ∞, Ŷ 

j < ∞,
Y ∞

i > , Ŷ ∞
j >  (i = , . . . , n; j = , . . . , m) and (H)-(H) hold. Then system (.) has at least

one positive ω-periodic solution.

In system (.), if Iik ≡ , Îjk ≡  (i = , , . . . , n; j = , , . . . , m), then system (.) changes
into the following nonimpulsive system:

{
u�

i (t) = ui(t)[ri(t) – Xi(t, u(t), v(t)) – Yi(t, u(t), v(t))], t ∈ T,
v�

j (t) = vj(t)[–dj(t) + X̂j(t, u(t), v(t)) + Ŷj(t, u(t), v(t))], t ∈ T,
(.)

where T, ri, dj, Xi, Yi, X̂j, Ŷj (i = , , . . . , n; j = , , . . . , m) are the same as those in system
(.). We have the following.

Theorem . Assume that X
i < ∞, X̂

j < ∞, Y ∞
i > , Ŷ ∞

j >  (i = , . . . , n; j = , . . . , m) and
(H) hold. Then system (.) has at least one positive ω-periodic solution.

Proof Let X = {x : x ∈ Crd(T,Rn+m), x(t + ω) = x(t), t ∈ T} with the norm defined by ‖x‖ =
∑n+m

i= |x||, here |x| = supt∈[,ω]T{|xi(t)|}, i = , , . . . , n + m. Then X is a Banach space. De-
fine the cone K in X by

K =
{

x : x = (u, . . . , un, v, . . . , vm)T ∈ X, ui(t) ≥ σi|ui|, vj(t) ≥ σ̂ –
j |vj|,

t ∈ [,ω]T, i = , . . . , n, j = , . . . , m
}

.

The map � be defined by

(�x)(t) =
(
(�x)(t), . . . , (�nx)(t), (�x)(t), . . . , (�mx)(t)

)
,

where x ∈ K , t ∈ T,

(�ix)(t) =
∫ t+ω

t
Gi(t, s)ui(s)

[
Xi
(
s, u(s), v(s)

)
+ Yi

(
s, u(s), v(s)

)]
�s, i = , , . . . , n,

(�jx)(t) =
∫ t+ω

t
Ĝj(t, s)vj(s)

[
X̂j
(
s, u(s), v(s)

)
+ Ŷj

(
s, u(s), v(s)

)]
�s, j = , , . . . , m,
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and Gi(t, s), Ĝj(t, s) (i = , , . . . , n; j = , , . . . , m) are defined by (.) and (.), respectively.
The remainder of the proof is similar to the proof of Theorem . and is omitted here. The
proof of Theorem . is complete. �

Similarly, we can prove the following.

Theorem . In system (.), assume that Yi(t, ·, ·) ≡ , Ŷj(t, ·, ·) ≡ , X
i < ∞, X̂

j < ∞,
X∞

i > , X̂∞
j >  (i = , . . . , n; j = , . . . , m) and (H) hold. Then system (.) has at least one

positive ω-periodic solution.

Theorem . In system (.), assume that Xi(t, ·, ·) ≡ , X̂j(t, ·, ·) ≡ , Y 
i < ∞, Ŷ 

j < ∞,
Y ∞

i > , Ŷ ∞
j >  (i = , . . . , n; j = , . . . , m) and (H) hold. Then system (.) has at least one

positive ω-periodic solution.

4 Applications
In this section, as applications of our main results, we will give some existence results of
positive periodic solutions for Lotka-Volterra systems with or without impulses.

Firstly, we consider two classes of Lotka-Volterra system with impulses and time delays
on time scales as follows:

{
u�

i (t) = ui(t)[ai(t) –
∑n

j= aij(t)
∫ 

–∞ Kij(s)uj(t + s)�s], t �= tk , t ∈ T,
ui(t+

k ) = ui(t–
k ) – Iik(ui(tk)), k = , , . . . ,

(.)

and
{

u�
i (t) = ui(t)[ai(t) –

∑n
j= aij(t)uj(t) –

∑n
j= bij(t)uj(t – τj(t))], t �= tk , t ∈ T,

ui(t+
k ) = ui(t–

k ) – Iik(ui(tk)), k = , , . . . ,
(.)

where i = , , . . . , n. T is an ω-periodic time scale, ω >  is a constant. ai ∈ Crd(T, (,∞)),
aij, bij ∈ Crd(T, (,∞)), τj ∈ Crd(T, (,∞)T) (j = , , . . . , n) are rd-continuous ω-periodic
functions. Kij ∈ Crd((–∞, )T, (,∞)) with

∫ 
–∞ Kij(s)�s =  (i, j = , , . . . , n), Iik ∈

C((,∞), (,∞)). There exists a positive integer p such that ti,k+p = tk +ω, Ii,k+p = Iik , k ∈ Z,
[,ω)T ∩ {tk : k ∈ Z} = {t, t, . . . , tp}.

Theorem . Assume that max≤i≤n{ γi
σi(–σi)

} < , aij(t) >  (i, j = , , . . . , n), then system
(.) has at least one positive ω-periodic solution.

Proof In this case,

Yi(t, u, u, . . . , un) =
n∑

j=

aij(t)uj, i = , , . . . , n,

Y 
i = lim sup

∑n
i= ui→

max
t∈[,ω]T

Yi(t, u, . . . , un)
∑n

i= ui
≤ max

≤j≤n

{
max

t∈[,ω]T

{
aij(t)

}}
< ∞, i = , , . . . , n,

and

Y ∞
i = lim inf∑n

i= ui→
min

t∈[,ω]T

Yi(t, u, . . . , un)
∑n

i= ui
≥ min

≤j≤n

{
min

t∈[,ω]T

{
aij(t)

}}
> , i = , , . . . , n.
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It follows from Theorem . that system (.) has at least one positive ω-periodic solution.
The proof of Theorem . is complete. �

In the light of Theorem ., we have the following.

Theorem . Assume that max≤i≤n{ γi
σi(–σi)

} < , aij(t), bij(t) >  (i, j = , , . . . , n), then sys-
tem (.) has at least one positive ω-periodic solution.

Next we consider the following predator-prey delay Lotka-Volterra system with im-
pulses on time scales:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

u�
i (t) = ui(t)[ai(t) –

∑n
l= ail(t)ul(t – σil(t)) –

∑m
j= bij(t)vj(t – τij(t))],

t �= tk , t ∈ T,
ui(t+

k ) = ui(t–
k ) – Iik(ui(tk)), k = , , . . . ,

v�
j (t) = vj(t)[–rj(t) –

∑n
l= djl(t)ul(t – δjl(t)) –

∑m
h= ejh(t)vh(t – θjh(t))],

t �= tk , t ∈ T,
vj(t+

k ) = vj(t–
k ) + Îjk(vj(tk)), k = , , . . . ,

(.)

where i = , , . . . , n, j = , , . . . , m. T is an ω-periodic time scale, ω >  is a constant. ai, rj ∈
Crd(T, (,∞)), ail, bij, djl, ejh ∈ Crd(T, (,∞)), σil, τij, δjl, θjh ∈ Crd(T, (,∞)T) (i, l = , , . . . , n;
j, h = , , . . . , m) are ω-periodic functions. Iik , Îjk ∈ C((,∞), (,∞)). there exists a positive
integer p such that ti,k+p = tk + ω, Ii,k+p = Iik , k ∈ Z, [,ω)T ∩ {tk : k ∈ Z} = {t, t, . . . , tp}.

Theorem . Assume that max≤i≤n{ γi
σi(–σi)

} < , max≤j≤n{ γ̂jσ̂j
σ̂j– } < , ail(t), bij(t), djl(t),

ejh(t) >  (i, l = , , . . . , n; j, h = , , . . . , m) and supt∈[,ω]T{μ(t)rj(t)} <  (j = , , . . . , m), then
system (.) has at least one positive ω-periodic solution.

Proof In this case,

Xi(t, u, . . . , un, v, . . . , vm) =
n∑

l=

ail(t)ul +
m∑

j=

bij(t)vj, i = , , . . . , n,

X̂j(t, u, . . . , un, v, . . . , vm) =
n∑

l=

djl(t)ul +
m∑

h=

ejh(t)vh, j = , , . . . , m,

X
i = lim sup

∑n
i= ui+

∑m
j= vj→

max
t∈[,ω]T

Xi(t, u, . . . , un, v, . . . , vm)
∑n

i= ui +
∑m

j= vj

≤ max
≤l≤n,≤j≤m

{
max

t∈[,ω]T

{
ail(t), bij(t)

}}
< ∞, i = , , . . . , n,

X∞
i = lim inf∑n

i= ui+
∑m

j= vj→
min

t∈[,ω]T

Xi(t, u, . . . , un, v, . . . , vm)
∑n

i= ui +
∑m

j= vj

≥ min
≤l≤n,≤j≤m

{
min

t∈[,ω]T

{
ail(t), bij(t)

}}
> , i = , , . . . , n,

X̂
j = lim sup

∑n
i= ui+

∑m
j= vj→

max
t∈[,ω]T

X̂j(t, u, . . . , un, v, . . . , vm)
∑n

i= ui +
∑m

j= vj

≤ max
≤l≤n,≤h≤m

{
max

t∈[,ω]T

{
djl(t), ejh(t)

}}
< ∞, j = , , . . . , m,
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and

X̂∞
j = lim inf∑n

i= ui+
∑m

j= vj→
min

t∈[,ω]T

X̂j(t, u, . . . , un, v, . . . , vm)
∑n

i= ui +
∑m

j= vj

≥ min
≤l≤n,≤h≤m

{
min

t∈[,ω]T

{
djl(t), ejh(t)

}}
> , j = , , . . . , m.

By Theorem ., system (.) has at least one positive ω-periodic solution. The proof is
complete. �

To this end, considering the existence of positive periodic solutions for systems (.)-
(.) without impulses, we conclude the following assertions.

Theorem . In system (.), assume that Iik ≡ , aij(t) >  (i, j = , , . . . , n), then system
(.) has at least one positive ω-periodic solution.

Theorem . In system (.), assume that Iik ≡ , aij(t), bij(t) >  (i, j = , , . . . , n), then
system (.) has at least one positive ω-periodic solution.

Theorem . In system (.), assume that Iik ≡ , Îjk ≡ , ail(t), bij(t), djl(t), ejh(t) > 
(i, l = , , . . . , n; j, h = , , . . . , m) and supt∈[,ω]T{μ(t)rj(t)} <  (j = , , . . . , m), then system
(.) has at least one positive ω-periodic solution.
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