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1 Introduction
For any integer n ≥ , the first kind Chebyshev polynomials {Tn(x)} and the second kind
Chebyshev polynomials {Un(x)} are defined by T(x) = , T(x) = x, U(x) = , U(x) = x
and Tn+(x) = xTn+(x) – Tn(x), Un+(x) = xUn+(x) – Un(x) for all n ≥ . If we write α =
α(x) = x +

√
x –  and β = β(x) = x –

√
x –  for the sake of simplicity, then we have

Tn(x) =


(
αn + βn) =

n


[ n
 ]∑

k=

(–)k (n – k – )!
k!(n – k)!

(x)n–k , |x| <  ()

and

Un(x) =


α – β

(
αn+ – βn+) =

[ n
 ]∑

k=

(–)k (n – k)!
k!(n – k)!

(x)n–k , |x| < . ()

Fibonacci polynomials {Fn(x)} and Lucas polynomials {Ln(x)} are defined by F(x) = ,
F(x) = , L(x) = , L(x) = x and Fn+(x) = xFn+(x) + Fn(x), Ln+(x) = xLn+(x) + Ln(x) for
all n ≥ . If we write U(x) = x+

√
x+
 and V (x) = x–

√
x+
 , then we have

Fn(x) =


U(x) – V (x)
(
Un(x) – V n(x)

)
and Ln(x) = Un(x) + V n(x) for all n ≥ .

These polynomials occupy a very important position in the theory and application of
mathematics, so many scholars have studied their various properties and obtained a series
of interesting and important results. See references [–] for Chebyshev polynomials and
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[–] for Fibonacci and Lucas polynomials. For example, Li Xiaoxue [] proved some
identities involving power sums of Tn(x) and Un(x). As some applications of these results,
she obtained some divisible properties involving Chebyshev polynomials. Precisely, she
proved the congruence

U(x)U(x)U(x) · · ·Un(x) ·
h∑

m=

Tn+
m (x) ≡  mod

(
Uh(x) – 

)
.

In this paper, we shall use the definition and properties of Chebyshev polynomials to
study the power sum problem involving Fibonacci and Lucas polynomials and prove some
new divisible properties involving these polynomials. That is, we shall prove the following
two generalized conclusions.

Theorem  Let n and h be non-negative integers with h ≥ . Then, for any odd number
l ≥ , we have the congruence

Ll(x)Ll(x) · · ·Ll(n+)(x) ·
h∑

m=

Ln+
ml (x) ≡  mod

(
Ll(h+)(x) + Ll(x)

)
.

Theorem  Let n and h be non-negative integers with h ≥ . Then, for any even number
l ≥ , we have the congruence

Fl(x)Fl(x) · · ·Fl(n+)(x) ·
h∑

m=

Ln+
ml (x) ≡  mod

(
Fl(h+)(x) + Fl(x)

)
.

Especially for l =  and , from our theorems we may immediately deduce the following
two corollaries.

Corollary  For any non-negative integers n and h with h ≥ , we have

L(x)L(x) · · ·Ln+(x) ·
h∑

m=

Ln+
m (x) ≡  mod

(
Lh+(x) + x

)
.

Corollary  For any non-negative integers n and h with h ≥ , we have

F(x)F(x) · · ·F(n+)(x) ·
h∑

m=

Ln+
m (x) ≡  mod

(
F(h+)(x) + x

)
.

Some notes: In our theorems, the range of the summation for m is from  to h. If the range
of the summation is  ≤ m ≤ h, then it is very easy to prove the following corresponding
results:

For any odd number l ≥ , we have the polynomial congruence

Ll(x)Ll(x) · · ·Ll(n+)(x) ·
h∑

m=

Ln+
ml (x) ≡  mod

(
Ll(h+)(x) – Ll(x)

)
.
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For any even number l ≥ , we have the polynomial congruence

Fl(x)Fl(x) · · ·Fl(n+)(x) ·
h∑

m=

Ln+
ml (x) ≡  mod

(
Fl(h+)(x) – Fl(x)

)
.

Taking l =  and , and noting that L(x) = F(x) = x, then from these two congruences
we can deduce the following:

L(x)L(x) · · ·Ln+(x) ·
h∑

m=

Ln+
m (x) ≡  mod

(
Lh+(x) – x

)

and

F(x)F(x) · · ·F(n+)(x) ·
h∑

m=

Ln+
m (x) ≡  mod

(
F(h+)(x) – x

)
.

Therefore, our theorems are actually an extension of references [] and [].

2 Several simple lemmas
To complete the proofs of our theorems, we need some new properties of Chebyshev poly-
nomial, which we summarize as the following three lemmas.

Lemma  For any integers m, n ≥ , we have the identity

Tn

(



Lm(x)
)

=



· Lmn(x).

Proof Let α = x+
√

x+
 and β = x–

√
x+
 , then Lm(x) = αm + βm, α · β = – and αm ·

βm = . Replace x by 
 Lm(x) in Tn(x) and note that




Lm(x) +
√




L
m(x) – 

=


(
αm + βm)

+



· √αm + βm +  – 

=


(
αm + βm)

+


(
αm – βm)

= αm,




Lm(x) –
√




L
m(x) – 

=


(
αm + βm)

–



·
√

αm + βm +  – 

=


(
αm + βm)

–


(
αm – βm)

= βm.

From the definition of Tn(x)

Tn(x) =


[(

x +
√

x – 
)n +

(
x –

√
x – 

)n],
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we have the identity

Tn

(



Lm(x)
)

=



[(



Lm(x) +
√




L
m(x) – 

)n

+
(




Lm(x) –
√




L
m(x) – 

)n]

=


[
αmn + βmn]

=



· Lmn(x).

This proves Lemma . �

Lemma  Let n and h be non-negative integers with h ≥ . Then, for any odd number l ≥ ,
we have the congruence

Ll(h+)(n+)(x) + Ll(n+)(x) ≡  mod
(
Ll(h+)(x) + Ll(x)

)
.

Proof We prove this polynomial congruence by complete induction for n ≥ . It is clear
that Lemma  is true for n = . If n = , then note that  � l and L

l(h+)(x) = Ll(h+)(x) –
Ll(h+)(x), we have

Ll(h+)(x) + Ll(x)

= L
l(h+)(x) + Ll(h+)(x) + L

l (x) + Ll(x)

=
(
Ll(h+)(x) + Ll(x)

)(
L

l(h+)(x) + Ll(h+)(x)Ll(x) + L
l (x) + 

)

≡  mod
(
Ll(h+)(x) + Ll(x)

)
.

That is to say, Lemma  is true for n = .
Suppose that Lemma  is true for all integers n = , , . . . , k. That is,

Ll(h+)(n+)(x) + Ll(n+)(x) ≡  mod
(
Ll(h+)(x) + Ll(x)

)
()

for all  ≤ n ≤ k.
Then, for n = k +  ≥ , note the identities

Ll(h+)(x)Ll(h+)(n+)(x) = Ll(h+)(n+)(x) + Ll(h+)(n–)(x)

and

Ll(h+)(x) = L
l(h+)(x) +  ≡ L

l (x) +  mod
(
Ll(h+)(x) + Ll(x)

)
,

applying inductive hypothesis (), we have

Ll(h+)(n+)(x) + Ll(n+)(x)

= Ll(h+)(k+)(x) + Ll(k+)(x)
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= Ll(h+)(x)Ll(h+)(k+)(x) – Ll(h+)(k–)(x)

+ Ll(x)Ll(k+)(x) – Ll(k–)(x)

≡ (
L

l (x) + 
)
Ll(h+)(k+)(x) – Ll(h+)(k–)(x)

+
(
L

l (x) + 
)
Ll(k+)(x) – Ll(k–)(x)

≡ (
L

l (x) + 
)(

Ll(h+)(k+)(x) + Ll(k+)(x)
)

–
(
Ll(h+)(k–)(x) + Ll(k–)(x)

)

≡ 
(
Ll(h+)(x) + Ll(x)

)
.

Now Lemma  follows from complete induction. �

Lemma  Let n and h be non-negative integers with h ≥ . Then, for any even number
l ≥ , we have the congruence

Fl(h+)(n+)(x) + Fl(n+)(x) ≡  mod
(
Fl(h+)(x) + Fl(x)

)
.

Proof We can also prove Lemma  by complete induction. If n = , then it is clear that
Lemma  is true. If n = , then note that  | l and Fl(h+)(x) = (x +)F

l(h+)(x)+Fl(h+)(x),
we have

Fl(h+)(x) + Fl(x)

=
(
x + 

)
F

l(h+)(x) + Fl(h+)(x) +
(
x + 

)
F

l (x) + Fl(x)

=
(
x + 

)(
Fl(h+)(x) + Fl(x)

)(
F

l(h+)(x) + Fl(h+)(x)Fl(x) + F
l (x)

)

+ 
(
Fl(h+)(x) + Fl(x)

)

≡  mod
(
Fl(h+)(x) + Fl(x)

)
.

So Lemma  is true for n = . Suppose that Lemma  is true for all integers n = , , . . . , k.
That is,

Fl(h+)(n+)(x) + Fl(n+)(x) ≡  mod
(
Fl(h+)(x) + Fl(x)

)
()

for all  ≤ n ≤ k.
Then, for n = k + , note the identities

Ll(h+)(x)Fl(h+)(n+)(x) = Fl(h+)(n+)(x) + Fl(h+)(n–)(x)

and

Ll(h+)(x) =
(
x + 

)
F

l(h+)(x) + 

≡ (
x + 

)
F

l (x) +  mod
(
Fl(h+)(x) + Fl(x)

)
,

applying inductive hypothesis (), we have

Fl(h+)(n+)(x) + Fl(n+)(x) = Fl(h+)(k+)(x) + Fl(k+)(x)
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= Ll(h+)(x)Fl(h+)(k+)(x) – Fl(h+)(k–)(x)

+ Ll(x)Fl(k+)(x) – Fl(k–)(x)

≡ [(
x + 

)
F

l (x) + 
]
Fl(h+)(k+)(x) – Fl(h+)(k–)(x)

+
[(

x + 
)
F

l (x) + 
]
Fl(k+)(x) – Fl(k–)(x)

≡ [(
x + 

)
F

l (x) + 
](

Fl(h+)(k+)(x) + Fl(k+)(x)
)

–
(
Fl(h+)(k–)(x) + Fl(k–)(x)

)

≡ 
(
Fl(h+)(x) + Fl(x)

)
.

This completes the proof of Lemma . �

3 Proofs of the theorems
In this section, we shall prove our theorems by mathematical induction. Replace x by 

 ·
Lml(x) in (), from Lemma  we have

h∑

m=

Tn+

(



Lml(x)
)

=



·
h∑

m=

Lml(n+)(x)

=
n + 


·

n∑

k=

(–)k (n – k)!
k!(n +  – k)!

h∑

m=

Ln+–k
ml (x)

or

h∑

m=

[
Lml(n+)(x) – (–)n(n + )Lml(x)

]

= (n + ) ·
n–∑

k=

(–)k (n – k)!
k!(n +  – k)!

h∑

m=

Ln+–k
ml (x). ()

Note the identities

h∑

m=

Lml(n+)(x)

=
h∑

m=

(
αml(n+) + βml(n+))

=
α(h+)l(n+) – 

αl(n+) – 
+

β(h+)l(n+) – 
βl(n+) – 

=
αl(h+)(n+) – (–)lβ l(n+)

αl(n+) – (–)lβ l(n+) +
β l(h+)(n+) – (–)lαl(n+)

β l(n+) – (–)lαl(n+)

=
Ll(h+)(n+)(x) + Ll(n+)(x)

Ll(n+)(x)
if  � l; ()
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and

h∑

m=

Lml(n+)(x) =
Fl(h+)(n+)(x) + Fl(n+)(x)

Fl(n+)(x)
if  | l. ()

If l is an odd number, then from () and () we have

Ll(h+)(n+)(x) + Ll(n+)(x)
Ll(n+)(x)

– (–)n(n + )
Ll(h+)(x) + Ll(x)

Ll(x)

= (n + ) ·
n–∑

k=

(–)k (n – k)!
k!(n +  – k)!

h∑

m=

Ln+–k
ml (x). ()

Now we prove Theorem  by mathematical induction. If n = , then from (), Lemma 
and note that  � l we have

Ll(x)Ll(x)
h∑

m=

L
ml(x)

= Ll(x)Ll(x)
[

Ll(h+)(x) + Ll(x)
Ll(x)

+
Ll(h+)(x) + Ll(x)

Ll(x)

]

≡  mod
(
Ll(h+)(x) + Ll(x)

)
. ()

That is, Theorem  is true for n = .
Suppose that Theorem  is true for all integers  ≤ n ≤ s. Then, for n = s + , from () we

have

Ll(h+)(s+)(x) + Ll(s+)(x)
Ll(s+)(x)

+ (–)s(s + )
Ll(h+)(x) + Ll(x)

Ll(x)

= (s + ) ·
s∑

k=

(–)k (s +  – k)!
k!(s +  – k)!

h∑

m=

Ls+–k
ml (x)

=
h∑

m=

Ls+
ml (x) + (s + ) ·

s∑

k=

(–)k (s +  – k)!
k!(s +  – k)!

h∑

m=

Ls+–k
ml (x). ()

From Lemma  we have

Ll(x)Ll(x) · · ·Ll(s+)(x) · Ll(h+)(s+)(x) + Ll(s+)(x)
Ll(s+)(x)

≡  mod
(
Ll(h+)(x) + Ll(x)

)
. ()

Applying inductive assumption, we have

Ll(x)Ll(x) · · ·Ll(s+)(x)
s∑

k=

(–)k (s +  – k)!
k!(s +  – k)!

h∑

m=

Ls+–k
ml (x)

≡  mod
(
Ll(h+)(x) + Ll(x)

)
. ()
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Combining ()-() and Lemma , we can deduce the congruence

Ll(x)Ll(x) · · ·Ll(s+)(x) ·
h∑

m=

Ls+
ml (x) ≡  mod

(
Ll(h+)(x) + Ll(x)

)
.

This proves Theorem  by mathematical induction.
Now we prove Theorem . If  | l, then from () and () we have

Fl(h+)(n+)(x) + Fl(n+)(x)
Fl(n+)(x)

– (–)n(n + )
Fl(h+)(x) + Fl(x)

Fl(x)

= (n + ) ·
n–∑

k=

(–)k (n – k)!
k!(n +  – k)!

h∑

m=

Ln+–k
ml (x). ()

Applying (), Lemma  and the method of proving Theorem , we may immediately de-
duce the congruence

Fl(x)Fl(x) · · ·Fl(n+)(x) ·
h∑

m=

Ln+
ml (x) ≡  mod

(
Fl(h+)(x) + Fl(x)

)
.

This completes the proof of Theorem .
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