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Abstract
In this paper, the variational iteration method (VIM) is applied to solve the time and
space-time fractional Burgers’ equation for various initial conditions. VIM solutions are
computed for the fractional Burgers’ equation to show the behavior of VIM solutions
as the fractional derivative parameter is changed. The results obtained by VIM are
compared with exact solutions and also with expansions of the exact solutions. VIM
solutions are found to be in excellent agreement with these exact solutions.
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1 Introduction
In recent years fractional calculus has been utilized to find solutions of equations gov-
erning the modeling of real materials in engineering and physics. Fractional differential
equations model many phenomena in several fields such as fluid mechanics, chemistry [,
], biology [], viscoelasticity [], engineering, finance, and physics [–]. Therefore, the
use of fractional calculus has gained the attention of scientists and engineers as, though
counter-intuitive, the fractional derivative does arise in physical problems. In this con-
nection there is the work of [–]. Due to the difficulty of obtaining exact solutions of
equations involving a fractional derivative, approximate and numerical techniques have
tended to be used instead. Examples of such approximate and numerical methods are
Taylor collocation method followed in []; Adomian’s decomposition method followed
in [, ]; finite difference method followed in [, ]; homotopy analysis method and
homotopy perturbation methods followed, respectively, in [–] and [].

In addition, there are general papers giving an overview of the field of fractional differ-
ential equations [–]. Also, numerical methods have been used to find solutions of
fractional differential equations [–].

Burgers’ equation is the diffusive equation

ut + auux – cuxx = . ()

Burgers’ equation arises as a model equation for the smoothing of a shock wave by viscos-
ity []. In this application c is modeled on the kinematic viscosity in the Navier-Stokes
equations. Furthermore, Burgers’ equation has an exact solution via the Cole-Hopf equa-
tion which reduces it to the heat equation [, ]. Of particular relevance to this work,
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Burgers’ equation () has the front solution [–]

u(x, t) =
b
a

–
cb
a

tanh
[
b(x – bt)

]
. ()

In this paper we study approximate solutions using VIM for the time and space-time
fractional Burgers’ equation. To the best of our knowledge, this is the first study of the
space-time fractional Burgers’ equation by VIM. The work of [, ] studied only the
time fractional Burgers’ equation and the space fractional Burgers’ equation, but did not
study the space-time fractional Burgers’ equation.

The present paper is organized as follows. The second and third sections are devoted
to the basic ideas of fractional calculus and the standard VIM, respectively. The fourth
and fifth sections are devoted to the application of VIM to evaluate solutions of the time
and space-time fractional Burgers’ equation, respectively. Conclusions are presented in
section seven.

2 Fractional calculus
Definitions of fractional derivatives were given by Riemann, Liouville, Grunwald, Letnikov
and Caputo [–], and they are based on generalized functions. The most commonly
used definitions are those of Riemann [] and Liouville and Caputo []. Here we give
some basic definitions and properties of fractional calculus theory.

Definition . A real function f (t), t > , is said to be in the space Cμ, μ ∈ R, if there exists
a real number p > μ such that f (t) = tpf(t), where f(t) ∈ C[,∞), and it is said to be in the
space Cm

μ iff f m ∈ Cm, m ∈ N .

The Riemann-Liouville fractional integral operator of order α >  for a function f ∈ Cμ,
μ ≥ –, is defined as

Jα
 f (t) =


�(α)

∫ t


(t – τ )α–f (τ ) dτ , t > ,

Jf (t) = f (t).

It has the following properties. For f ∈ Cμ, μ ≥ –, α,β ≥ , and γ > –,
• JαJβ f (t) = Jα+β f (t),
• JαJβ f (t) = Jβ Jαf (t),
• Jαtγ = �(γ +)

�(α+γ +) tα+γ .

Definition . The fractional derivative of f (t) in the Caputo sense is defined as

Dαf (t) = Jm–αDmf (t) =


�(m – α)

∫ t


(t – τ )m–α–f (m)(τ ) dτ ()

for m –  < α ≤ m, m ∈ N , t > , f ∈ Cm
μ , μ ≥ –. Then

DαJαf (t) = f (t),

JαDαf (t) = f (t) –
m–∑

k=

f k(+) tk

k!
.
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3 Basic ideas of VIM
The principles of VIM and its applications to various kinds of differential equations are
given in [–]. To apply VIM, we consider the differential equation

Lu(x, t) + Nu(x, t) = g(x, t), ()

where L is a linear operator, N is a nonlinear operator and g(x, t) is a source term. Accord-
ing to VIM, we construct the correction functional as

un+(x, t) = un(x, t) +
∫ t


λ
(
Lun(x, τ ) + Nũn(x, τ ) – g(x, τ )

)
dτ , ()

where λ is a general Lagrange multiplier [–] which can be determined optimally
through variational theory. The subscript n denotes the nth order approximation, whereas
ũn(x, t) is considered as a restricted variation [–], i.e., δũn(x, t) = . Also new results
were obtained in [, ] using VIM.

4 The time-fractional Burgers’ equation
In this section, we use VIM to solve the time-fractional Burgers’ equation. To obtain this
equation, we replace ut by uα

t in Burgers’ equation (), where n –  < α ≤ n, n ∈ N . Hence,
we obtain the fractional-time Burgers’ equation

uα
t + auux – cuxx = . ()

Now, we construct the correction functional to solve () according to VIM as follows:

un+(x, t) = un(x, t) + Jα
t λ(τ )

(
uα

n,τ + aũnũn,x – cun,xx
)
, ()

un+(x, t) = un(x, t) +


�(α)

∫ t


(t – τ )(α–)λ(τ )

(
uα

n,τ + aũnũn,x – cun,xx
)

dτ , ()

where ũn, ũn,x and ũn,xx are considered as restricted variations. The correction functional
() can be approximately expressed as

un+(x, t) = un(x, t) +
∫ t


λ(τ )

(
um

n,τ + aũnũn,x – cũn,xx
)

dτ . ()

For m = , we obtain the stationary condition

δun+(x, t) = δun(x, t)
(
 + λ(τ )

)|t=τ +
∫ t


δun(x, τ )λ′(τ ) dτ = , ()

λ′(τ ) = , ()
(
 + λ(τ )

)|τ=t = . ()

Equation () is the Euler-Lagrange equation and () is the corresponding natural bound-
ary condition. Thus we have λ = –, and we obtain the variational iteration formula

un+(x, t) = un(x, t) –


�(α)

∫ t


(t – τ )(α–)(uα

n,τ + aunun,x – cun,xx
)

dτ . ()
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Now, as n → ∞, we consider un as an approximation of the exact solution. Iteration ()
is started with u(x, t) = u(x, ), and we obtain the successive approximations

u(x, t) =
 (b – b c tanh(b x))

a
, ()

u(x, t) =
b

aα�(α)
(
�(α)

(
α – αc tanh(bx)

)
+ bctαsech(bx)

)
, ()

u(x, t) =
b

a�(α)

(
�(α) +

bctαsech(bx)
α

+ bctα tanh(bx)sech(bx)

×
( √

π–α

α�(α + 
 )

+
bc�(α)tαsech(bx)

�(α + )�(α + )

)
– c�(α) tanh(bx)

)
. ()

In this manner, we can obtain further approximations u(x, t), u(x, t), . . . For brevity, these
are not given. Note that if we expand the exact solution () in a Taylor series about t = , we
thus obtain VIM solutions at α = . In Figure , we show the surface of the exact solution
() and the second approximation () for α = . in (b) at a = , b = . and c = . We
note from this figure that the trajectory of the second approximation approaches the exact
solution. In Figure  we show the absolute error between the exact solution () and the
second approximation () for different values of b. The value of b plays a very important
role in the acceleration of convergence. As b deceases, the absolute error becomes very
small.

5 The space-time fractional Burgers’ equation
5.1 Tanh initial condition
In this section we study VIM solutions of the space-time fractional Burgers’ equation.
However, before this we expand the exact solution () in the basis functions e–rb(x–bt). By
definition

u(x, t) =
b
a

–
cb
a

tanh
[
b(x – bt)

]
=

b
a

–
cb
a

 – e–(b(x–bt))

 + e–(b(x–bt))

=
b
a

–
cb
a

(

 + 
∞∑

r=

(–)re–r(b(x–bt))

)

= h –
cb
a

( ∞∑

r=

(–)re–r(b(x–bt))

)

, b(x – bt) > , ()

where h = b
a – cb

a . For convenience, we rewrite Burgers’ equation after substituting u =
v + h as

vt + avvx + ahvx – cvxx = . ()

The solution of this equation () is

v(x, t) =
–cb

a

( ∞∑

r=

(–)re–r(b(x–bt))

)

. ()
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Figure 1 Combining the surface exact solution (2) and the surface approximation (16) for α = 0.7,
a = 1, b = 0.01, and c = 1. (a) The surface of the exact solution. (b) The surface of the second approximation.
(c) Combining (a)-(b).
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Figure 2 Comparison of the second approximation (16) with the exact solution (2) for α = 1, a = 1,
c = 1 with (a) b = 0.01 and (b) b = 0.001.

We take the initial condition from () on setting t = 

v(x, ) =
–cb

a

( ∞∑

r=

(–)re–r(bx)

)

. ()

We shall now study VIM for the space-time fractional Burgers’ equation. If we replace vt

by vα
t , vx by vβ

x and vxx by vβ
x , where  < α,β ≤ , in the time fractional Burgers’ equation

(), we obtain

vα
t + a(v + h)vβ

x – cvβ
x = . ()

VIM is given by

vn+(x, t) = vn(x, t) –


�(α)

∫ t


(t – τ )(α–)(vα

n,τ + a(vn + h)vβ
n,x – cvβ

n,x
)

dτ . ()



Saad and Al-Sharif Advances in Difference Equations  (2017) 2017:300 Page 7 of 15

On using this, we can evaluate the successive approximations. We choose v(x, t) = v(x, )
and find

v(x, t) =
–cb

a

( ∞∑

r=

(–)re–r(bx)

)

()

and

v(x, t) = v(x) –
tα

�( + α)
f(x). ()

The second approximation is given by

v(x, t) = v(x, t) –
(

–tαf

�( + α)
+ aI – cI

)
, ()

I =
(h + v)g

�( + α)
tα –

(fg + fh�(α + ) + fv(x))
�(α + )

tα

+
ff�(α + )

�(α + )�(α + )
tα , ()

I =
g

�(α + )
tα –

�(α + )f

�(α + )
tα , ()

fi(x) =
(–bc)

a

∞∑

r=

∞∑

r=

λβ (–)r+r(λ + λ)iβex(λ+λ)

– hbc
∞∑

r=

(–)rλ(i+)βeλx +
bc

a

∞∑

r=

(–)rλ(i+)βeλx, i = , , , , ()

gi = –
bc

a

∞∑

r=

(–)rλiβeλx, i = , ,λ = –br,λ = –br. ()

In the same manner, we can obtain further approximations v(x, t), . . . Setting β =  in
the first approximation () and the second approximation () and after some simplifi-
cations, we obtain the same approximations as () and () on returning to the original
variable. We can obtain VIM solutions of () for b(x – bt) <  using the same procedure
as for b(x – bt) > . Using Mathematica, we can simplify the first approximation v as

v(x, t) =
bc

a(ebx + )
–

(
bctα

aα�(α)(ebx + )

(
–bebx((c + )ebx + c + 

))

–
(
βc(–b)β

(
ebx + 

)
PolyLog

[
–β , –e–bx](–e–bx))

)
. ()

We now use the first approximation (), after returning to the original variable, to find
VIM solutions. Figure  shows VIM solution () for different values of α and β . It can
be seen from this figure that as α →  and β → , VIM solution () tends to the exact
solution (). Therefore, VIM is an efficient and accurate method which can be used to find
approximate analytical solutions of the space-time fractional Burgers’ equation.
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Figure 3 VIM solution (30) in the origin variable u for a = 1, b = 0.01 and c = 0.7 (a) α = 0.4, β = 0.6,
(b) α = 0.6, β = 0.8, (c) α = 1, β = 1 and (d) combining (a)-(c).

5.2 Polynomial initial condition
In this section we study VIM for the space-time fractional Burgers’ equation for another
initial condition. We replace ut by uα

t , uxx by uβ
x and ux by uβ

x , where  < α,β ≤  in
Burgers’ equation (). VIM for () is

un+(x, t) = un(x, t) –


�(α)

∫ t


(t – τ )(α–)(uα

n,τ + aunuβ
n,x – cuβ

n,x
)

dτ . ()
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Figure 3 Continued

We start the iteration with u(x, t) = u(x, ) = x, so that the successive approximations
can be derived from () as

u(x, t) = x, ()

u(x, t) =
(

x +
tx–β

�(α)

(
–

axβ+

�( – β)
+

c
�( – β)

))
, ()

u(x, t) = u(x, t) +


�(α)

(
b –




at(b + b)x–β + b

)
, ()

b =
–actx–β

�(α)�( – β)
+

aβctx–β

�(α)�( – β)
+

ctx–β

�(α)�( – β)
+

ctx–β

�( – β)
, ()

b =
t(–

axβ+– c�(–β)
�(–β)

�(–β) + a(β–)xβ+

�(–β) + c
�(–β) )

�(α)
+

xβ

�( – β)
, ()

b =
t

�(α)

(–cx–β ( axβ+

�(–β) – c
�(–β) )

�( – β)
+ a

×
( ax

(β–)�(–β) + (β–)cx–β

�(–β)

�( – β)
+

ax
�( – β)�( – β)

))
, ()

b =
 sin(πα)t–αx–β (a�( – β)xβ+ – c�( – β))

π (α – )(α – )�( – β)�( – β)
, ()

u(x, t) = u(x, t) + · · · , ()

In a similar manner, we calculate further approximations for (). When we set α =  and
β = , a = , b =  and c =  in ()-(), we obtain

u(x, t) = x( – t), ()

u(x, t) = x
(

 – t + t –
t



)
, ()

u(x, t) = x
(

 – t + t – t +



t –



t +



t –



t
)

· · · . ()
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Using the fact that

u(x, t) = lim
n→∞ un(x, t), ()

we obtain an exact solution of Burgers’ equation (). This solution is the same as that
of [].

Figure  shows the surface of the exact solution () in (a) and the surface of the second
approximation () for α = . and β = . in (b) at a = , b =  and c = . It can be seen
from this figure that the second approximate solution is a good approximation of the exact
solution. If we go to higher order approximations, we will obtain better approximations to
this exact solution.

6 Convergence analysis
In this section the existence of a unique solution is introduced in Theorem .. Further-
more, the convergence of VIM solution () is proved in Theorem .. Finally, the max-
imum absolute truncation error of VIM solution () is given in Theorem .. In this
section we prove theorems for the space-time fractional Burgers’ equation. This theo-
rem covers the time-fractional Burgers’ equation on setting β = . We define (C(I),‖ · ‖)
as a Banach space, the space of all continuous functions on I = R × R+ with the norm
‖v(x, t)‖ = max(x,t)∈I |v(x, t)|.

Lemma . Suppose that v(x, t) and their partial derivatives are continuous. Then the
derivatives Dα

t v(x, t), Dβ
x v(x, t) and Dβ

x v(x, t) are bounded.

Proof We prove that Dα
t v(x, t) is bounded. From the fractional derivative definition () we

have

∥∥Dα
t v(x, t)

∥∥ =
∥
∥∥
∥


�(m – α)

∫ b

a
(t – τ )m–α–v(m)(x, τ ) dτ

∥
∥∥
∥

≤ |b – a|
|(m – α)�(m – α)|

∥
∥v(x, t)

∥
∥ = L

∥
∥v(x, t)

∥
∥, ()

where L = |b–a|
|(m–α)�(m–α)| . In the same manner ‖Dβ

x v(x, t)‖ ≤ L‖v(x, t)‖ and ‖Dβ
x v(x, t)‖ ≤

L‖v(x, t)‖. �

Theorem . Let F(v) = –avvβ
x satisfy the Lipschitz condition with the Lipschitz con-

stant L. Then problem () has the unique solution v(x, t) whenever  < γ < .

Proof Let u and v be two different solutions of the space-time fractional Burgers’ equa-
tion (). For all t ∈ [, T] and τ ∈ [, t], these solutions are bounded on using Lemma ..
Let M = max≤τ≤t,≤t≤T |(t – τ )α–|. Then

u – v = Jα
t
(
–ahDβ

x u(x, τ ) + cDβ
x u(x, τ ) + F(u)

)

– Jα
t
(
–ahDβ

x v(x, τ ) + cDβ
x v(x, τ ) + F(v)

)

=


�(α)

∫ t


(t – τ )α–[–ahDβ

x u(x, τ ) + cDβ
x u(x, τ ) + F(u)

]
dτ

–


�(α)

∫ t


(t – τ )α–[–ahDβ

x v(x, τ ) + cDβ
x v(x, τ ) + F(v)

]
dτ ,
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Figure 4 Combining the surface exact solution (43) and the surface approximation (34) for α = 0.7,
β = 0.5, a = 1, b = 1, and c = 1. (a) The surface of the exact solution. (b) The surface of the second
approximation. (c) Combining (a)-(b).
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max |u – v| = max

∣
∣∣
∣


�(α)

∫ t


(t – τ )α–[–ahDβ

x u(x, τ ) + cDβ
x u(x, τ ) + F(u)

]
dτ

–


�(α)

∫ t


(t – τ )α–[–ahDβ

x v(x, τ ) + cDβ
x v(x, τ ) + F(v)

]
dτ

∣∣
∣∣

≤ [–ahL + cL + L]
�(α)

max
∫ t


|t – τ |α–|u – v|dτ ,

()

‖u – v‖ ≤ [–ahL + cL + L]
�(α)

max
∫ t


|t – τ |α–|u – v|dτ ,

‖u – v‖ ≤ γ ‖u – v‖,

( – γ )‖u – v‖ ≤ ,

where γ = ( [–ahL+cL+L]MT
�(α) ). Since –γ 
= , ‖u–v‖ = . Therefore, u = v, which completes

the proof. �

Theorem . The sequence vn(x, t) obtained from VIM iteration () converges to the ex-
act solution of problem () for  < σ <  and  < γ < .

Proof The approximate solution using VIM is given by

vn+(x, t) = vn(x, t) –


�(α)

∫ t


(t – τ )(α–)(Dα

τ vn + ahDβ
x vn – cDβ

x vn – F(vn)
)

dτ . ()

Since v is the exact solution of equation (), it satisfies VIM formula, i.e.,

v(x, t) = v(x, t) –


�(α)

∫ t


(t – τ )(α–)(Dα

τ v + ahDβ
x v – cDβ

x v – F(v)
)

dτ . ()

On subtracting v from vn+ and recalling that En(x, t) = vn(x, t) – v(x, t), we obtain

En+(x, t) = En(x, t) –


�(α)

∫ t


(t – τ )α–

× [
Dα

t (vn – v) + ahDβ
x (vn – v) – cDβ

x (vn – v) – F(vn – v)
]

dτ ()

max
∣
∣En+(x, t)

∣
∣ ≤ max

∣
∣En(x, t)

∣
∣ –

[L + ahL – cL – L]M
�(α)

max
∫ t



∣
∣En(x, τ )

∣
∣dτ , ()

∥
∥En+(x, t)

∥
∥ ≤ ∥

∥En(x, t)
∥
∥ –

[L + ahL – cL – L]MT
�(α)

∥
∥En(x, t)

∥
∥. ()

Hence,

∥∥En+(x, t)
∥∥ ≤ σ

∥∥En(x, t)
∥∥, ()

where σ = ( – γ), γ = [L+ahL–cL–L]MT
�(α) for all n = , , , . . . Now, if n = ,

∥
∥E(x, t)

∥
∥ ≤ σ

∥
∥E(x, t)

∥
∥, ()

while if n = ,

∥∥E(x, t)
∥∥ ≤ σ ∥∥E(x, t)

∥∥. ()
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If n = , then

∥
∥E(x, t)

∥
∥ ≤ σ ∥∥E(x, t)

∥
∥, . . . ()

∥∥En(x, t)
∥∥ ≤ σ n∥∥E(x, t)

∥∥. ()

Since  < σ < , then ‖En(x, t)‖ →  as n → ∞, i.e., vn → v and the sequence {vn(x, t)}∞n=

converges to v(x, t). �

Theorem . The maximum absolute truncation error of the approximate solution
vn(x, t) of the time-space fractional Burgers’ equation () can be estimated as ‖En(x, t)‖ ≤
σn

–σ
‖v(x, t)‖.

Proof

vn(x, t) – vn+(x, t) =
(
vn(x, t) – v(x, t)

)
+

(
v(x, t) – vn+(x, t)

)

= En(x, t) – En+(x, t). ()

Hence,

En(x, t) = En+(x, t) –
(
vn+(x, t) – vn(x, t)

)
,

∥∥En(x, t)
∥∥ =

∥∥En+(x, t) –
(
vn+(x, t) – vn(x, t)

)∥∥
∥∥En(x, t)

∥∥ ≤ ∥∥En+(x, t)
∥∥ +

∥∥(
vn+(x, t) – vn(x, t)

)∥∥

≤ σ
∥∥En(x, t)

∥∥ +
∥∥(

vn+(x, t) – vn(x, t)
)∥∥.

()

Therefore,

∥
∥En(x, t)

∥
∥ ≤ ‖(vn+(x, t) – vn(x, t))‖

 – σ
()

≤ σ n

 – σ

∥
∥v(x, t)

∥
∥. ()

�

7 Conclusions
Approximate solutions of the time and space-time fractional Burgers’ equation have been
evaluated using the VIM for different initial conditions by expanding the tanh initial con-
dition in the basis functions e–nx. The fractional derivative could then be easily calculated.
An important point is that many authors avoid this initial condition as there was no direct
method to calculate its fractional derivative. In Figure , the surface of VIM solutions with
the exact solution of Burgers’ equation for α = . was plotted. Also, the absolute error
with α =  for different values for b were displayed in Figure . The effect of changes of
b was clear through the resulting decrease of the error. As the value of b decreases, the
absolute error becomes very small. In Figure  the VIM solutions were plotted with dif-
ferent values of α and β . The VIM solutions approach the exact solution as the values of α

and β approach , as shown in Figure . The results were shown to be in very good agree-
ment with both exact solutions and previous approximate solutions. The calculations in
this paper were performed using Mathematica .
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