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1 Introduction

There are many works about different applied models by using distinct types of fractional
derivatives via or without singular kernel ([1-6]), discrete fractional boundary value prob-
lems within the Riesz space cases ([7, 8]), finite difference calculations ([9-13]), distinct
types of fractional finite difference equations ([14—26]), and some equations including the
nabla operator ([27-30]). In fact, working on discrete fractional boundary value problems
is useful for modeling in distinct thermal or physical sciences, including steady heat flows,
heat-transfer problems, description of anomalous diffusions, and so on. This leads us to
working on discrete calculations, whereas there is also rich work on continuous fractional
ones. It is well known that each differential equation is a particular case of a related differ-
ential inclusion. For this reason, we better investigate fractional inclusions. It seems that
researchers of thermal sciences (and some other related fields) will investigate more sys-
tems of discrete fractional boundary value inclusions in the future. Recently, some results
on fractional finite difference inclusions have been obtained ([18, 19]).

As is well known, the gamma function has some known properties such as I'(z + 1) =
zI'(z) and I'(n) = (n — 1)! for all n € N. It is well known that the falling function is defined
by t* = F?t(fﬂ)u) for all £, v € R whenever the right-hand side is defined ([31]). Ift +1-visa
pole of the gamma function and £ + 1 is not a pole, then we define £ = 0 ([31]). We can verify
that v2 = v*=L = T'(v + 1) and £2*L = (¢ — v)£~. We use the notations N, = {g,a + La +2,...}

for all 2 € R and NZ ={a,a+1,a+2,...,b} for all real numbers a and b whenever b — a is

a natural number ([31]). Let v > 0 be such that m — 1 < v < m for some natural number .
Then the vth fractional sum of f based at a is defined by AJVf(¢) = ﬁ ZE:Z (t—0(s))=Lf (s)
for all £ € N,,, ([12]). We consider the trivial case A,°f(¢) = f(¢) for ¢ € N,,. Similarly, we

define Af(¢) = F(Ev) o (= o (k)7L (k) for all £ € Ny, (see [28] and [32]).

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, pro-

L]
@ Sprlnger vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and

indicate if changes were made.


http://dx.doi.org/10.1186/s13662-017-1354-4
http://crossmark.crossref.org/dialog/?doi=10.1186/s13662-017-1354-4&domain=pdf
mailto:math2010math@gmail.com

Ghorbanian and Rezapour Advances in Difference Equations (2017) 2017:325 Page 2 of 14

To use the Covitz-Nadler theorem in our main result, we need to introduce some no-
tion about multifunctions on metric spaces. Let (X, d) be a metric space. Denote by P(X),
2%, P,(X), and P.,(X) the class of all subsets, the class of all nonempty subsets, the class
of all closed subsets, and the class of all compact subsets of X, respectively. A mapping
Q: X — 2% is called a multifunction on X, and u € X is called a fixed point of Q when-
ever u € Qu. The (generalized) Pompeiu-Hausdorff metric H; on P.(X) is defined as
H,(A,B) = max{sup,., d(a, B),sup,.z d(A, b)}, where d(A, b) = inf,c4 d(a, b) (see [33] and
[34]). A multifunction T : X — 2% is called a contraction if there exists A € (0,1) such that
Hy(T(x), T(y)) < Ad(x,y) for all x,y € X. In 1970, Covitz and Nadler [35] proved that each
contractive closed-valued multifunction on a complete metric space has a fixed point.

In 2011, Goodrich [36] investigated the general discrete fractional boundary problem

=A"y(@t)=f(t+v-Ly(t+v-1)),
ay(v-2)-BAy(v-2)=0,
yy(v +b) —8Ay(v + b) =

where t € [0,b]n,, v € (1,2] and ay + aé + By # 0 with«, 8,y,8 > 0.1n 2015, by using idea
of [36], Baleanu, Rezapour, and Salehi [18] investigated the existence of a solution for the
fractional finite difference inclusion

A x(t) € F(t,x(t), Ax(t), Ax(t)),
Ex(v-3)+BAx(v-3)=0,

x(n) =0,

yx(b+v)+5Ax(b+v) =0,

where n € N2*271 2 < v < 3, and F: N2*3*1 x R x R x R — 2F is a compact-valued mul-
tifunction. Also, they investigated the fractional finite difference inclusion AZ_Zx(t) €
F(t,x(t), Ax(¢)) via the boundary conditions Ax(b + ) = A and x(u — 2) = B, where
l<u<2ABeR, and F: Nbﬂ”z x R x R — 2% is a compact-valued multifunction in
2016 ([19]). By mixing ideas of the works, we investigate the existence of a solution for the
k-dimensional system of fractional difference inclusions

AV x1(8) € Fi(t,x1(8), ..o %k (8), Axi (8), ..., Axe(8), A%x1(8), ..., A% (),
A1 (0,0 AL 20 (8), AT 12 (8), -, AT (1)),
A _1%(t) € Fy(6,21(8), ..., % (8), Axa(8), ..., Ap(£), A% (2), ..., A% (2),
A3 (0), . AV 20 (0), AT 21 (0), ., AT i (1), 1)

v+

AV 3k(8) € Fi(b,:10), . 3k(8), Axi(8), .., Axr(8), A%, (8), ..., A2 (2),
AL 1 (0), o A3 (0), AT 1 (0), o AT (),

Vi+ Vi + Vit Vi+

with boundary conditions x;(v;—1) = x;(v;) = x;(b+v;) = 0, where x; : ij;_”l" —R,beNy,0<
wij<1l,1<y;<2,2<v;<3,and F;: NZZW{ x R%* — 2R are compact-valued multifunction
fori=1,2,...,kandj=1,2,...,k.

For prove of our main results, we need the following results.
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Lemmal. ([11]) Letac R, v>0withm—1<v <m, and v > 0. Then, A(t —a)’ = u(t -
a)"=L for all t for which both sides are well defined. Also, ALYt —a)k = p=(t - a)*Y for
t € Nayyvw and Ay, (8- a) = p>(t - a)l= for t € Nyypimov.

Lemma 1.2 ([26]) Let u>0withm—-1<pu <m,a €R, and f :N, — R be a map. Then,
Ay ALF &) =fO) +cr(t—a—m+ W)L v eyt —a—m+ )24 -+t —a—m+ p)=2,
where cy,...,c,, € R are some constants.

2 Main results

Now, we are ready to provide our main results.

Lemma2.1 Let2 < u < 3,andy: N5 — R bea map. Then x, is a solution for the fractional
finite difference equation

A/l. lx( ) J’(t) (2)

via the boundary conditions x(u — 1) = x(u) = x(b + 1) = 0 if and only if xy is a solution for
the fractional sum equation x(t) = Zf:2 G(t,5)y(s), where

(t-o@)i (=22 b +p-o(s)t

665 =100 CGOb+ -2

_ —(t=2)— 1(b+;L a(s))
fors <t—pand G(t,s) = o) fort n+1<s.
Proof Suppose that x, satisfies equation (2) with xo(u — 1) = xo(u) = xo(b + ) = 0. Then,
Al _1xo(t) = y(t) for t € N5 and A AL x(t) = A, y( Yfort e th’f Now, using Lemma1.2,
we get xo(£) = c1(£—2)“ L 4 oy (£ -2)E2 4 ¢3(t—2)1=2 ﬁ St (s)“Ly(s) fort € me
Using the boundary condition x(u — 1) = 0, we obtain

-1

0= 1l =3 eain =32 caa =32 e 3101090
s=2

Since (u —3)4=L = (u—3)42=0 and 57 1 Z_l w—1—-0(s))“Ly(s) = 0, we get c3 = 0. Since
x(1) =0,0=c(u -2+ cr(u - 2)“ 2 7 L1t — 0()“y(s). Since (u —2)47L =
and F(u) ZS=2(N o (s))“Ly(s) = 0, we get ¢, = 0. Since x(b + 1) = 0, we get

b
O=ci(b+p—-2)"L4 Zb+u O'(S) y(s)
2

s=

()

b _
andso ¢ = —m Db+ - o (5))““Ly(s). Hence,

x0(t) = ~(e-2 Zb:(m — o () y(s) + ! it o (5))“Zy(s)
Tl p— 2 &V PO T () & 7
b
= Z G(t,9)y(s).

s=2
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Now, let xy be a solution for the sum equation x(¢) = Zf:2 G(¢,5)y(s). Then,

-2pt <
x0(t) = T a2 ;(b - a(s))—y s) tE ; (t-0(s) —y(s).

Since s Y7 (1 — 1 - ()2 7y(s) = o X0 (1 — o(5))4y(s) = 0 and (1 - 3)“~L = (1 -
3)4=2 = (u — 2)¥7L = 0, a simple calculation shows that x(u — 1) = x(u) = x(b + 1) = 0. On
the other hand, it is easy to check that

t—p
x0(2) = c1(t = 2071 4 ¢y (£ — 222 4 c3(t — 2)1=3 + %M) ;(t — () (s)

is a solution for the equation Aﬁ_lx(t) = y(2). O

Now, we are ready to provide our result on the existence of a solution for the k-
dimensional system of fractional finite difference inclusions (1). Let i € {1,...,k} be given,
and A; be the set of all functions x : Nﬁ;"l’ — R endowed with the norm

llx]l; = max !x(t)| + max (t)‘ + max A%x ()‘
b+v; b+v; b+v;
vi-1 ;-1 v;-1
12373 Yii
+ max AL x(¢)| + max |AE x(8)|.
b+v; ¢ b+v; ¢
teN | teN

v V-1
Consider the space X' = X} X X x --- X X with the norm || (x1,%2,..., %) || x = Zle (B
We show that (X, || - || ) is a Banach space. Let {x,} be a Cauchy sequence in X', and let € >
0 be arbitrary. Choose a natural number N such that ||x,, —x,,|| < € forall m,n > N. Then we
get max, v |x,(2) — %, (2)] < €, Max, ybevs2 |Ax,(t) — Ax,,(8)] <€, Max, ybivs2 |A2x,(t) —
A2x,,(t)| <€, Max, b2 | Atx,(t) — Atx,,(t)| < €, and Max, vz |AY %, (t) — AV x,,(2)] < €.
Since R is complete, there are real numbers x(¢), z(£), w(t), p(¢), and g(¢) such that x,, () —
x(t), Ax,(t) — z(t), A%x,(t) — w(t), A*x,(t) — p(t),and AV x,(t) — q(t) forall t € ij*“”.
Note that Ax,(£) = x,(t + 1) — x,(¢), and so Ax(¢) = x(¢ + 1) — x(¢) = z(£). Similarly, we get
A%x(t) = w(t). Also, we have Atx,(t) = F(+u) S Ut — 0 (5)) ", (s). Since x,(s) — x(s),
we get AMx(£) = p(¢). Similarly, we have AYx(¢) = ¢(¢). This implies that there exists a nat-
ural number M such that |x,(£) — x(£)| < £, [Ax,(t) — Ax(£)] < £, |A%x,(t) — A%x(t)] < £
|Akx,(t) — AFx(t)| < £, and |AYx,(2) — AVx(t)| < £ forall t € NE&+v+2 and 5 > M. Thus,

[, — x| = max |x,,(t)—x(t)| + max |Axn(t)—Ax(t)| + max !Azxn(t)—Azx(t)|
tEng+v+2 tEN€+V+2 tEN€+V+2

+ max |A“xn(t) APx(8)] + max |AVxn ) - AVx(t)| <€
teNEv+2 teNg*

for all n > M. This shows that A" is a Banach space. Define the set of selections of F; at
(x1,...,%) € X by
SF,',(xl,xz ..... Xi) = {y : Ng —-R 'y(t) € Fi(trxl(t)r oo ’xk(t)) Axl(t)) ceey AXk(t),
A%y (8),. ., NP2k (0), AL (8), o ALK 2 (8),

AV 21 (D), ..., A% 2 (2)) for all £ € Ny}
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for x = (x1,...,2¢) € X and i = 1,..., k. We say that a function (x1,%,...,x¢) € X is a solu-
tion for the k-dimensional system of inclusions if there exist real-valued functions 1, ..., ¥k
on N5 such that

yi(t) € Fi(t,x1(8), ..., %k (), Ax1 (£), ..., Ax(£), A2 (8), ..., APy (),

Amllxl( ) Aulklxk(t) A%Hxl(t) A%ka(t))

Vi+

forall £ € N}, () =~ 50 (b 4= 0(6)y4(5) + g 0 (- 0(9) ()

T'(v;)(b+v;-2)
and x;(v; — 1) = x;(v;) =x;(b + v;) =0 for i = 1,..., k. Since F;(t,%,(¢),...,xx(¢)) # @ for i =

., k, the selection principle implies that Sg, (x, x,,..x,) is nonempty.

Theorem 2.2 Suppose that Y, ..., Y : N b”’ — R be some maps with

(t)|)(A’ +AD) <1,

O0<L= Z( max
i=1 teN

where

b

! Vi— vi—j
(b+v; = 2% (v —j+1) Z((b+ v; —2)- 1(t—o(s)) J
! : s=2

A; = max

vi+b
teNUrl

~@t-2"Z(b+v; - a(s))uF

)

forj=1,2,3,

b
1 —_
Ay = max , (b +v; =257 (£ — o (s)) "4
' teN”l”’ T (v; — i) (b + vy — 2)4L g( ( )
— (¢ = 2)bizti (b ;- G(s))w_l) ’
and
1 b
AL = max : (b + v — 2L (£ — o (5)) 2
P et D= )b+ v - 20 Zz( (¢=o6)

— (£ -2)"i (b + v - 0 (5))") |.

Assume that F; : Nf:r_vl’ x R — P, (R) is a multifunction such that
5k
Hy(Fi(t, %1, ..., %50), Fi(t, 21, ..., Z5k)) < Yilt) (Z |x; _Zi|>
i-1

forte wal’, i=1,....k and x1,...,%51,21,..., 25 € R. Then the system of fractional differ-
ence inclusions (1) has a solution.
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Proof Choose Yi € SF (X1,%2 y0ver for 1= k Define
(t — 2)\)#1 ’ vi—1 1 t_vi v;—1
hi t)=-— b i — o ; t— i ;
0=~ 5 2 0 4= O 0+ s 3 (e - 019)

forallt e Nﬁ:jf Then #; € X}, and so the set

h; € X; : there exists ¥ € Sr, (x, x,,..x;) Such that

.....

B 3 |
hi(t) = - T (b + v; - 22 b +V; l(s)
F( 3 2 t—o S)) yl(s) forall t e Nb”‘

is nonempty. Define the operator 7: X — 2% by

Tl(xl)xZ; ce )xk)(tl)

TZ(xl;xZ; “e )xk)(tZ)
T(x1,%2, ..., %) (1, B2y v v s i) = X ,

Tk(xl:x27 e ;xk)(tk)

where

Ti(x1,%0,...,%k) = {f € & : there exists y; € Spl.,(xl 0 such that

f(t) __ (t - 2)Vi—1 i(b i O_(S))vi—ly‘(s)
T (i) (b +v; - 2)4=L & ' ’
1 t—=v; - .
+ T ;(t - a(s)) : 1yi(s),for allt e Nfi_l’

We show that the multifunction T has a fixed point. First, we prove that T'(x1,x,, ...,x¢) is a
closed subset of X' for all (x1, %5, ...,%) € X. Let (x1,%,..., %) € X, and let {(x],..., %) }u=1
be a sequence in T'(x1,%2,...,%) with (x{,...,x}) — ), ..,xg). For each n, choose
s 8) € SEL ) X SEa(xtmi) X X SE a1, SUCh that

,,,,,

. (t_z)v,'—l b ' vl 1 t-v;
T T )b+ v — 2y ij(b”’_d(s)) K&+ 7oy s=2(

)=(s)

forte Nﬁ:'_vl", n>1landi=1,...,k. Since the multifunctions Fj,..., Fy are compact-valued,
{y"}=1 has a subsequence that converges to some % : N5 — R. We denote this subse-
quence again by {y/},,>1. It is easy to check that 3} € Sr, x,,...x,) and

,,,,,

-1

(t-2)
T ()b +v;-2)

T 2 (=)

s=2

X (t) > x?(t) =-

b
— Y (b vi— ()" H00s)

§=2
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for all t € Nﬁf{ and i = 1,...,k. This implies that x? € Ti(x1,...,x5) forall i =1,...,k.
Hence, (x?,. ..,xg) € T(x1,...,%x), and so the multifunction T has closed values. Since T
is a compact-valued multifunction, it is easy to see that T'(xy,...,xx) is a bounded set in
X for all (xq,...,x¢) € X. Let (ug,...,ux), (v1,...,vx) € X, (h1,..., ) € T(ug,...,ux) and
(M, ..., l) € T(vy,...,vi). Choose (y1,...,¥k) € SEy u1ity) X SEp(uitmtir) X = X SEp (1t
and ()., 9}) € Sk wnm) X SEymiav) X+ * X SE (n1,.p) SUCh that

(t— 2)vi—1 b I-v;

1 pim
hi(t>=—r(w)(b+vi_2)w_l;(bwl—o(s)) O+ 1 (-0 60) )

and

M0 - ——— S o) e s = S - (6) )
' T(v;)(b + v; — 2)% ' ! T(v) &

forallt e Nf:}{ andi=1,...,k. Since

Hy(Fi(t,m(0),..., ux (@), Ay (B), ..., Aug(t), A u (), ..., A uy(8),
Aﬂtllul(t) A“tkluk(t) AV:I lul(t) Aytkluk(t))
Ei(t,vi(®), ..., vi(0), Avi(2), ..., Av(8), A% (2),..., A*w(2),

AMdl"l(t) Amkﬂ’k(t) Am 1V1(t) 1Vk(t)))

k
< ¥i(t) <Z(’u/(t) - vj(t)’ + ’Auj(t) — Avj(t)’ + ’Azuj(t) - szj(t)‘

j=1

+’Alu?11”/(t)_ v+1V1(t| ‘A:Uu (8) = Arl/Jer/(t)‘))

for all (u1,...,ux), (V1,...,vx) € X and t € Nv”l’, we get

k

i) = yi(6)| < ¥i(0) (Z(Iu;(t) =y + |Awi(0) - Av;(0)] + |A%u;(2) — A%vy(2)|

j=1

|Alutlil u;( v +1"1(t)| |AVU 14i(8) — );”+1Vi(t)|)>
for all t € N5. Since

(-2t -

[1®) = 0] <~ Y (b+vi—0 ()" =y - 0]
4 4 5=2

T g(t o ()" |yile) - (0)]
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and Zfzt—uﬁl % = 0, we obtain

b v, vi—-1
, (b+vi=2)"Ht -0 ()" = (£ = 2)" (b +vi — 0 (s)""
LORLTIEDD b+ e 2)”"11“(w)

s=2

x |yi(s) = yi(s)|.
Hence,

b

Ihie) - K1) < s l)w_lr(v’)Z((bw 2211 — o (5))
teN ! Vi~ 1 s=2

—(t- Z)E(b + v — U(S))E)

x max|yi(t) - y(t)|
teNy

<A! max|y, -y
teN

k
< Alllﬁl(t) (Z(|M/(t) - V/(t)} + !Au,(t) - AVI(t)| + |A2M1(t) - AZVj(lf)|

j-1

|Auulu,(t) I:l{f-lvj(t)| + |A:’;1u;(t) - At?;lvi(t)h)

k
< A’l( max 1/’1’(75)‘) (Z( max ‘uj(t) - v/(t)’ + max ‘Au,'(t) - Avj(t)’
1 j=1 teN;_”l" teNv;_v{

teNiwi
+ max Azu,(t) A2v,(t)| + max |Aflfrluj(t)—AZ'ilvj(t)|
teNﬁ:ljl‘ te vi—l

Yi Yij
+ mEle |Av]+1ui(t) - Avi/+1vi(t)|)>
te N

k
< A} ( max |wi<t>|)<2 Iz —wnl)
te, i=1

1»[fl(t)|)|| Uy =V ..., Uk _Vk)”X

<Al (max

b+v;
1l
teNvFl

forall £ € Ni:'_”{. Since

(£ —2)u2 ’
(D) = 22: (b +vi— ()" “yils)

t—v;j+1

1 .
+ m ; (t—O'(S)) 2 ’(S),
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we get

b
1 . v;—2
Ahy(t) — AK(¢)| < max : E (b +v; = 2)"L(t — o (s))2=
| | tEN:ﬁill’ (b + V- 2)1}1*11—1(1&‘ — 1) sy ( ( )

—(t-2)"2(b+v; -0 (s))")
x max|yi(t) - y(8)]
teNy

< Abmax|y;(¢) - yi(t)|
teNg

= Alz( mi‘fb|1ﬂi(t)|)”(u1 — Viyeeo, Uk _Vk)“)(

teNUrl

forallt e Nf;'_vf. Since

- b
(t - 2)VL 3 v,

20 (#) — _ L i-1
A2hy(t) =20 s o2 SZ:;(b +v; = 0 ()" =yils)
1 t—v;+2
Ty 2 (o6
¢ §=2
we get
1 b , 3
2h; —A? ! C_o\Wil(e Yizs
|A%hi(t) — A?H(D)| < t;gaxlf PR e g((m v = 2)%L(t o (s))

—(t-2)"2(b+v; - a(s))ﬂ)
X ma2c|y,»(t) —yﬁ(t)\
teNy

< Al max|y;(t) - yi(t)|
teNg

< &5 (max [a(o)]) | - oo - )]
t 1

vi-1

forall ¢t e Nf;'_vl" . Using Lemma 1.1, we obtain

b

—(¢ — 2)Vizti—L et
(v = wa) (b + vy — 2)4 ;(W +h- U(S)) i(s)

AL () = -

L=+ /L (t _ U(s))vi—l—uﬁ

C(v; — i) yi(s)

s=2
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and so
| AV () = AL ()]
b
< max 1 — Z((b +u— 2)\15—1 (t _ U(S))vrﬂii
reni*?| T (i = pig) (b + vy = 2)7= 4=

— (t - 2)"ti (b + v; — 0 (s)) "

1
)
x max|yi(£) - y(t)]
teNy

< A, max|y;(t) - yi(?)|
teNg

< & (max |vi(0)]) @ ==

teNvi_1

forte Nv”l’, and similarly

AT (0 - AT @) = A5 max [vi(@)]) | 6 = vy -0
teN =~ !

v;-1
forte Nb”’ Thus,

i - 1|, = max |hi(2) - H(t)| + max |Ah (t) - AK(E)| + max |A2h (t) - A*H(2)|
reNy reNy reny

+ m?x A hi(t) - A’uf';lh/( )| + max |A5;'+lh() NGV A0
te N te N

§(Ai+---+A5)(ma§v

Vi) == v
te N

fori= kandall (uy,...,u),(vi,...,vi) € X, hy € T(w, ..., ux), and i, € T(vy, ..., vi).
This 1mp11es that

[0ny i) = (T ) |

> 7 -],

=

.M» EM»

I
—_

((Al1 +---+A5)( max ’I/f,(t D”(ul—vl,...,uk—vk)HX>

i te N

IA

k
Z( max |1/fl(t)|) A‘ Aé))||(u1—v1,...,uk—vk)“
i=1

14 teN vi—l

=L||(u1—v1,...,uk—vk)||.
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By the result of Covitz and Nadler there exists x* € X such that x* € T(x*). We can check

that x* is a solution for the system of fractional difference inclusions (1). a
The following example illustrates our main result.

Example 1 Consider the two-dimensional system of fractional difference inclusions

2.7 4t sinxi(f) | sinxp()) | |Axi(8)]+|Ax(8)]
A1‘7~’C1(t) €[0,2m +e* + g T s T 210
cos sin(A2x; () 4 cos sin(A2x(2)) |Ag:?x1(t)\ \Ag 77‘2( )l |A§‘§x1(t)\
3elt3 et td cosh(£+10) tet+2 Telt3
1aL2 % ()]
T 1, (3)
2.3 2 @], @l |, [Ax@)l [Axa (8)]
A75xo(t) € [0,4 + € + vl i e der: Sl N7
sin(A2x(8) |, sin(A2x(0) | 1AYSx1(6)1+1A3 %% (0)] N [AL 2 ()] \A%,;%xz(r)\]
3et2+3 et4+4 et4+6 4et2+1 t26t4 ’

with the boundary conditions x1(1.7) = x1(2.7) = x1(7.7) = 0 and x1 (1.3) = x1(2.3) = x1(7.3) =
0.Putb = 5, V) = 2.7, M1l = 0.6, M12 = 0.5, yun = 1.6, Yi2 = 1.2, Vo = 2.3, M21 = 0.8, Moo = 0.4,
y21 =19, ¥ =13,

siny;  sinyy  |y3] + [yal
Fi(t,y1,...,50) = [0’2” rell+ P

36“3 elo
cossinys cossinys |yl [ysl . lyol . Iyl
3et+3 et+t cosh(t +10) tet*2  gett3 = e+t
and
il lyal Lyl lyal

- 2
Bt 2 70) = [074 e e?+4  et?+3  omt> " cosh(£5 + 8)

sin sin + 1
L Sinys  sinye lyz| + 1ysl s lyal s [y10] ‘
3et?+3 ett+a ett+6 4et?>+1 2t

g s s palabal | corsings | cossings | sl , Dol , ol
Note that 27 +e* + 223 + 23 + + sttt (o) T t s T oea >0

for t € N{7 and y,...,y10 € R, and so Fy :NJ7 x R — 2R js a nonempty—valued multi-

: _ 1 _ 1 _ 1~

function. If llfl(t) = then max, 77 [y (2)] = Max,.\77 57 = 37 = 0447 4473 Similarly,
nl [y2l 13l 14l sinys sinye , yzl+lysl 1ol \ho |

we haVe 4 + e + t2+4 + eL2+3 errtz Cosh(t5+8) 3et2+3 + et4+4 + et4+6 + 4et2+l t2e 4 > 0

for t € N{3 and yy,..., ym €R,andso F, : Nj3 x R — 2R jsa nonempty—valued multi-
function. If ¥ () =
that

- 1 1~
, then max, 73 [y (8)] = MaX,eN73 “25 = ety - 30 0448 Note

|
|

L2 +2)

1 5
A}_E@{WZ (M (t - o () = (t - 21(7.7 - 5 (5)) )

= max{0.0,0.0,1.48,3,3.7,2.89,0} = 3.7,

1 5
A‘“[ G (7= e @) - =27 -00))

= max{0,1.48,1.51,0.7,0.8,2.89,4.53} = 4.53,
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)

5

|

A} = max[

tENz:;
= max{1.48,0.03,0.81,1.5,2.09,1.63,1.43} = 2.09,
5

1 - .
AAIL = :?1\%% W Z((57)u(t — g(s))u —(t- 2)2_1(77 _ O,(s))u)

5]

s=

= max{1.87,1.11,0.88,0.77,0.59,0.25,0.16} = 1.87,

5
A} = max | 577722(57 o (©) = (t=2/(7.7 - 0(5)")

teN77

= max{1.35,0.39,0.2,2.42,0.59,0.17,0.08} = 2.42,

A= 1| A G Z (532(-0 )" - € -22(73-00)")
= max{0,0,1.73,3,3.3,2.36,0} = 3.3,
1
A%:g}\‘%: WZ ((5.3):2(¢ - o(s)) - (t-2)%2(7.3 - o(s)) ) }

= max{0,1.73,1.26,0.3,0.93,2.36,2.94} = 2.94,

o

5
:tm@:mZ((m)”(t o ()™ - (¢ - 2722(7.3 - 0 (5))*)

|

= max{1.73,0.47,0.96,1.23,1.43,0.58,0.41} = 1.73,

A2 = max:

7.3
teNj3

5
ﬁz(” (t-0(9) - (t-22(73 -0 ()"

= max({3.76,0.82,0.46,0.33,1.43,0.29,0.14} = 3.76,

and

r)G. 3)132 (6312(t -0 (s) - (¢~ 2173 - 0(5)2)

|

A2 = max
teN]3
= max{4.68,0.56,0.21,2.81,1.82,0.23,0.088} = 4.68.

Thus, we obtain the table:

i

Aj
j=1  j=2  j=3  j=4 _ j=s5
=1 37 453 200 187 242
=2 33 204 173 376 468
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1 1
~ —(3.7+4.53+2.09+1.87 +2.42) + (3.3+2.94 +1.73 +3.76 + 4.68)
40.44 40.04
1
= —(14.63) + (16.44) = 0.77 < 1.
40.44 40.04
On the other hand, we have
Hd(Fl(t>y1; v rylo))Fl(t)ZI; v rZIO))
siny; siny, |ys|+|ya| cossinys
et+4 36t+3 elO 36t+3
COs sin ys . ly71 . lys! s . [y10l
ettt cosh( +10)  tet*2  get*3 = ettt
sinz; sinzy |z3| +|z4| cossinzs
- et+4 - 36“3 - elo - 36“3
cossinze  |zz| |zl |zl |zl
et+t cosh(t +10) tet*2 gett3 ettt
1
< ) (siny1 —sinz; + siny, — Sinzy + |y3 — 23| + |ya — 24| + cos sin y5 — cos sinzs

+ cos sin yg — cossinzg + |y7 — 27| + |ys — 28| + |¥9 — 29| + |¥10 —Zlol)
1 10 10
= D izl ) <va®) ) e -zl
e
i=1 k=1

forallt e NZ;;, Vi,--> 10,21, - -+, 210 € R. Similarly, we have

Hd(FZ(t’ylr- .. ’ylo)’FZ(t’ZI; .. ~)Z10))

bl lyal sl Y4l
et2+4 et2+3 eﬂtz COSh(tS + 8)

sin ys . sin ys . ly7] + lysl . lyol . [y10!
3et?+3 ett+4 et*+6 4et2+1 2et*

lzi]  lza] 23 |24

et2+4 et2+3 eﬂt2 C()sh(t5 + 8)

_sinzs  sinze |z7|+|zg| |zl |zl
36t2+3 et4+4 et4+6 4et2+1 tzet4
< m(b’l —z1| +|y2 — 22| + [y3 — z3| + |ya — za| + sinys — sinzs

+siny — sinze + [y7 — 27| + |ys — 28| + [yo — 20| + [y10 — Z10])

10 10
1
S—e(t2+2) E ly: — zil 51//2(t)E lyk =z
i1

k=1

forall £ € N7, y1,...,%10,21, - .-, 210 € R. Now, using Theorem 2.2, we conclude that prob-
lem (3) has a solution.
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