
Stević Advances in Difference Equations  (2017) 2017:283 
DOI 10.1186/s13662-017-1350-8

R E S E A R C H Open Access

Bounded and periodic solutions to the
linear first-order difference equation on the
integer domain
Stevo Stević*
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1 Introduction
Many classes of difference equations have been studied for a long time (see, for example,
[–] and the references therein). The following difference equation:

xn+ = qnxn + fn, ()

where the coefficients (qn)n∈N and (fn)n∈N and the initial value x are given numbers, is
called the linear first-order difference equation, which is one of the most important and
useful solvable equations. The general solution to equation () is given by

xn = x

n–∏

j=

qj +
n–∑

i=

fi

n–∏

j=i+

qj, n ∈N. ()

If, as usual, the conventions
∏k–

j=k aj =  and
∑k–

j=k aj = , k ∈ Z are used, then () also holds
for n = , that is, the formula holds for every n ∈ N. How formula () is obtained can
be found, for example, in [, , ] (the case when sequences qn and fn are constant can
be also found in [] and many other books dealing completely or partly with difference
equations).

Many nonlinear difference equations of interest are closely related to equation (). For
example, some of the nonlinear equations in [, –] and systems in [, ] have been
solved by transforming them to some special equations of the form in (), which shows its
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importance (some of the equations and systems, such as the one in [], are transformed
into special cases of the delayed version of equation (), which is obviously also solvable;
see also [] and the comments on scaling indices of difference equations and systems).
A deeper analysis can show that even the solvability of some product-type equations and
systems is essentially influenced by the solvability of equation () (see, e.g., [] and the
references therein).

Usefulness of () has also been recently shown in [], where, among others, a small
but nice result on convergence of its solutions was proved by using formula (), partially
extending the result in the following problem in [] (in the eight edition of the Russian
version of the problem book from  it is Problem .).

Problem  Let a sequence (yn)n∈N be defined by a sequence (xn)n∈N as follows:

y = x, yn = xn – αxn–, n ∈N,

where |α| < . If limn→∞ yn = , find limn→∞ xn.

For some other solvable equations, their applications, as well as invariants for some
classes of equations, see, for example, [–, , –].

Note that the domain of the above defined sequences xn is N, and it is difficult to find
papers which consider equation () on Z-the set of all integers, in the literature on differ-
ence equations. One of our aims is to fulfill the possible gap in the study of the equation.
Motivated also by our recent paper [], here, among others, we study bounded solutions
to equation (), but also on the whole Z. We also present some sufficient conditions for the
existence of solutions to () converging to zero when n → –∞ as well as when n → +∞.
Some of the results presented in the next section could be folklore, but we could not locate
them in the literature.

A solution xn to () is said to be (eventually) periodic with period T ∈N if there is n ∈N

such that

xn = xn+T for n ≥ n.

If T = , then such a solution is called eventually constant [].
Periodic solutions to () on N were studied in [], which was another motivation for this

paper. Our main result on periodicity is a nice complement to that in []. Namely, for the
case when the coefficients of equation () are periodic, we describe the long-term behavior
of its non-periodic solutions when n → –∞ as well as when n → +∞.

Assume that S ⊂ Z is an unbounded set and that f := (fn)n∈S is a sequence defined on S.
Then, if

‖f ‖∞,S := sup
n∈S

|fn| < +∞, ()

we say that the sequence f is bounded on S. It is easy to see that the quantity defined in ()
is a norm on the space of all bounded sequences on S. From now on the set S will not be
of special importance, so we will simply use the notation ‖f ‖∞ instead of ‖f ‖∞,S for any
unbounded set S which appears as a domain.
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2 Bounded solutions to equation (1) on Z

In this section we study the existence of bounded solutions to equation (). The cases when
the domains are N and Z \N are treated separately, while the results in the case when the
domain is Z are obtained as some consequences of the considerations on the domains N

and Z \N.
Our first result is, among others, an extension of the result in Problem , so it could be

folklore.

Theorem  Assume that

lim sup
n→+∞

|qn| := q <  ()

and that (fn)n∈N is a bounded sequence. Then the following statements are true.
(a) Every solution to equation () is bounded.
(b) If limn→+∞ fn = , then every solution to equation () converges to zero.

Proof (a) Since () holds, we have that there is n ∈N such that

|qn| ≤  + q


for n ≥ n. ()

Let

M := max
{√

, max
j=,n–

|qj|
}

. ()

Using () and () in (), as well as some standard estimates and sums, we have

|xn| ≤ |x|
n–∏

j=

|qj| +
n–∑

i=

|fi|
n–∏

j=i+

|qj| ()

≤ |x|
n–∏

j=

|qj| + ‖f ‖∞

(n–∑

i=

n–∏

j=i+

|qj| +
n–∑

i=n–

n–∏

j=i+

|qj|
)

≤ |x|
(

 + q


)n–n

Mn
 + ‖f ‖∞

(
 + q



)n–n n–∑

i=

Mn–i–


+ ‖f ‖∞
n–∑

i=n–

(
 + q



)n–i–

≤ |x|
(

M

 + q

)n

+ M‖f ‖∞
(


 + q

)n Mn–
 – 

M – 
+

‖f ‖∞
 – q

< ∞ ()

for n ≥ n, from which the boundedness of (xn)n∈N follows.
(b) Since fn converges to zero, we have that for each ε > , there is n ∈N such that

|fn| < ε for n ≥ n. ()
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Let n = max{n, n}, where n is from (), and

M := max
{√

, max
j=,n–

|qj|
}

. ()

Using (), () and () in (), as well as some standard estimates and sums, we have

|xn| ≤ |x|
(

 + q


)n–n

Mn
 + ‖f ‖∞

n–∑

i=

n–∏

j=i+

|qj| + ε

n–∑

i=n

n–∏

j=i+

|qj|

≤ |x|
(

 + q


)n–n

Mn
 + ‖f ‖∞

(
 + q



)n–n n–∑

i=

Mn–i–
 + ε

n–∑

i=n

(
 + q



)n–i–

≤ |x|
(

M

 + q

)n( + q


)n

+ ‖f ‖∞
(


 + q

)n Mn
 – 

M – 

(
 + q



)n

+
ε

 – q
()

for n ≥ n.
Letting n → +∞ in (), we get

lim sup
n→+∞

|xn| ≤ ε

 – q
.

From this, and since ε is an arbitrary positive number, the result follows. �

Remark  Theorem  is optimal in the sense that condition () cannot be replaced by the
following one: there is n ∈N such that

|qn| <  for n ≥ n. ()

Indeed, assume that qn ∈ (, ), n ∈N, is an increasing sequence such that the sequence

Qn :=
n–∏

j=

qj, n ∈N,

converges to Q ∈ (, ) as n → +∞, and that there are some numbers l and L such that

 < l ≤ fn ≤ L < ∞, n ∈N. ()

Then, by using () and the fact Q ≤ Qn ≤ , n ∈N, we have

|xn| = Qn

∣∣∣∣∣x +
n–∑

j=

fj

Qj+

∣∣∣∣∣ ≥ Q
∣∣–|x| + nl

∣∣ → +∞ ()

as n → +∞, from which it follows that not only there are unbounded solutions to equation
() in this case, but that even none of the solutions to the equation in the case is bounded.

For example, let

qn =  –


(n + ) , n ∈N
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and

fn =  + sin n, n ∈N.

Then

Qn =
n–∏

j=

(
 –


(j + )

)
=

n–∏

j=

(j + )(j + )
(j + ) =

n!(n + )!
(n + )!

=
n + 

(n + )

for n ∈N, from which it follows that limn→+∞ Qn = /,




≤ Qn ≤ , n ∈N, ()

and along with () that

xn =
n + 

(n + )

(
x +

n–∑

j=

( + sin j)
(j + )

j + 

)
. ()

Using (), the following obvious estimate

 ≤ fn ≤ , n ∈N, ()

and the triangle inequality in (), we get

|xn| ≥ 


(



n – |x|
)

, n ∈N,

from which it follows that each solution to equation () in this case is unbounded indeed.
If we assume that fn is a positive sequence such that limn→+∞ fn =  and

∑∞
j= fj = +∞

(for example, fn = /(n + ), n ∈ N), and that qn is chosen as above, then from () and the
fact Q ≤ Qn ≤ , n ∈N, we have

|xn| = Qn

∣∣∣∣∣x +
n–∑

j=

fj

Qj+

∣∣∣∣∣ ≥ Q

∣∣∣∣∣–|x| +
n–∑

j=

fj

∣∣∣∣∣ → +∞

as n → +∞, from which it follows that none of the solutions to equation () in this case
converges to zero. Specially, every solution to the difference equation

xn+ =
(n + )(n + )

(n + ) xn +


n + 
, n ∈N,

is unbounded.

Now we consider the case lim infn→+∞ |qn| > . In this case, we may assume that qn 
= ,
n ∈N, otherwise we can consider () for sufficiently large n for which, due to the condition
lim infn→+∞ |qn| > , will hold qn 
= .
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Theorem  Assume that (qn)n∈N ⊂C\{} is a sequence satisfying the following condition:

lim inf
n→+∞ |qn| := q̂ > , ()

and that (fn)n∈N is a bounded sequence of complex numbers. Then the following statements
are true.

(a) There is a unique bounded solution to equation ().
(b) If fn →  as n → +∞, then the bounded solution also converges to zero as n → +∞.

Proof (a) From (), we have

lim
n→+∞

∣∣∣∣∣

n–∏

j=

qj

∣∣∣∣∣ = +∞. ()

Thus, from () and () we see that for a bounded solution to () it must be

x = –
∞∑

i=

fi∏i
j= qj

, ()

and that the sum on the right-hand side of () is finite (see []).
Using () in (), it follows that

xn = –
n–∏

j=

qj

∞∑

i=n

fi∏i
j= qj

= –
∞∑

i=n

fi∏i
j=n qj

, n ∈N. ()

Condition () implies that there is n ∈N such that

|qn| ≥  + q̂


>  for n ≥ n. ()

Let

M := min
{

/
√

, min
j=,n–

|qj|
}

. ()

Note that M >  due to the assumption qn 
= , n ∈ N.
Hence, by using () and (), we have

∣∣∣∣∣

∞∑

i=

fi∏i
j= qj

∣∣∣∣∣ ≤ ‖f ‖∞
∞∑

i=


∏i

j= |qj|

≤ ‖f ‖∞

(n–∑

i=


∏i

j= |qj|
+


Mn



∞∑

i=n

(


 + q̂

)i–n+
)

≤ ‖f ‖∞
(


Mn

 ( – M)
+


Mn

 (q̂ – )

)
< ∞, ()

from which it follows that x defined in () is finite.
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From () and (), we have

|xn| ≤
∞∑

i=n

|fi|∏i
j=n |qj|

≤ ‖f ‖∞
∞∑

i=n

(


 + q̂

)i+–n

=
‖f ‖∞
q̂ – 

,

for n ≥ n, from which the boundedness of the sequence in () follows. It is directly ver-
ified that the sequence satisfies equation (), from which along with the unique choice of
x in () it follows that it is a unique bounded solution to the equation.

(b) Since fn tends to zero as n → +∞, it follows that () holds for, say, n ≥ n. Using ()
and () in (), we have

|xn| ≤
∞∑

i=n

|fi|∏i
j=n |qj|

< ε

∞∑

i=n

(


 + q̂

)i+–n

=
ε

q̂ – 
()

for n ≥ max{n, n}.
Letting n → +∞ in () the following is obtained:

lim sup
n→+∞

|xn| ≤ ε

q̂ – 
.

From this and by using the fact that ε is an arbitrary positive number, we obtain that xn → 
as n → +∞, as desired. �

Remark  Theorem  is optimal in the sense that condition () cannot be replaced by
the following one: there is n ∈N such that

|qn| >  for n ≥ n. ()

Indeed, assume that qn > , n ∈N, is an decreasing sequence such that the sequence

Qn :=
n–∏

j=

qj, n ∈N,

converges to Q >  as n → +∞, and that there are some numbers l and L such that ()
holds. Then, by using () and the fact Q ≥ Qn ≥ , n ∈N, we have

|xn| = Qn

∣∣∣∣∣x +
n–∑

j=

fj

Qj+

∣∣∣∣∣ ≥ ∣∣–|x| + nl/Q
∣∣ → +∞ ()

as n → +∞, from which it follows that all the solutions to equation () are unbounded in
the case, so, it does not have bounded solutions.

For example, let

qn =  +


n + n + 
, n ∈N,

and

fn =  +  cos n, n ∈N.
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Then

Qn =
n–∏

j=

(
 +


j + j + 

)
=

n–∏

j=

(j + )

(j + )(j + )
=

(n + )
n + 

for n ∈N, from which it follows that limn→+∞ Qn = ,

 ≤ Qn ≤ , n ∈N, ()

and along with () that

xn =
(n + )

n + 

(
x +

n–∑

j=

( +  cos j)
j + 

(j + )

)
. ()

Using (), the following obvious estimate

 ≤ fn ≤ , n ∈N, ()

and the triangle inequality in (), we get

|xn| ≥ 


n – |x|, n ∈N,

from which it follows that each solution to equation () in this case is unbounded.
If we assume that fn is a positive sequence such that limn→+∞ fn =  and

∑∞
j= fj = +∞

(for example, fn = / ln(n + ), n ∈ N), and that qn is chosen as above, then from () and
the fact  ≤ Qn ≤ Q, n ∈N, we have

|xn| = Qn

∣∣∣∣∣x +
n–∑

j=

fj

Qj+

∣∣∣∣∣ ≥
∣∣∣∣∣–|x| +


Q

n–∑

j=

fj

∣∣∣∣∣ → +∞,

as n → +∞, from which it follows that none of the solutions to equation () in this case
converges to zero. Specially, every solution to the difference equation

xn+ =
(n + )

(n + )(n + )
xn +


ln(n + )

, n ∈ N,

is unbounded.

Now we consider the case when n ∈ Z \ N. If in () is qn 
=  for every n ∈ Z \ N, then
the sequence xn is not only well-defined on the set N, but also for every n ∈ Z. Indeed, if
n ≤ , then from () we have

x–n =
x–(n–)

q–n
–

f–n

q–n
, n ∈N. ()

Using one of the methods for solving equation (), from () the following is obtained:

x–n =
x –

∑n
j= f–j

∏j–
l= q–l∏n

j= q–j
()

for n ∈N.
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Closed form formulas () and () together present the general solution to equation ()
on Z, when qn 
= , for n ∈ Z \N.

Now we formulate and prove the corresponding results to Theorems  and  concerning
bounded solutions to equation (). The results are dual to Theorems  and  and are
essentially obtained from them by using the change of variables yn = x–n. However, there
are some different details which are used later in the text. Because of this and for the
completeness, we will sketch their proofs.

First, we consider equation () for the case

lim inf
n→∞ |q–n| =: q̃ > . ()

Theorem  Assume that (q–n)n∈N ⊂ C \ {} is a sequence satisfying condition (), and
that (f–n)n∈N is a bounded sequence of complex numbers. Then the following statements are
true.

(a) Every solution to () is bounded.
(b) If limn→+∞ f–n = , then every solution to () converges to zero as n → +∞.

Proof (a) From () it follows that there is n ∈N such that


|q–n| ≤ 

 + q̃
for n ≥ n. ()

Let

M := min
{

/
√

, min
j=,n–

|q–j|
}

. ()

Using () and () in (), as well as some standard estimates and sums, we have

|x–n| ≤ |x|∏n
j= |q–j| +

n∑

j=

|f–j|∏n
l=j |q–l| ()

≤ |x|
Mn–


+

‖f ‖∞
( – M)Mn–


+

‖f ‖∞
q̃ – 

< ∞

for n ≥ n, from which the boundedness of (xn)n∈N follows.
(b) Since f–n converges to zero as n → +∞, we have that for every ε > , there is n ∈ N

such that

|f–n| < ε for n ≥ n. ()

Let n = max{n, n}, where n is from (), and

M := min
{

/
√

, min
j=,n–

|q–j|
}

. ()

Using (), () and () in (), as well as some standard estimates and sums, we have

|xn| ≤ |x|
(

 + q̃
M

)n–( 
 + q̃

)n

+ ‖f ‖∞
(

 + q̃
M

)n–( 
 + q̃

)n 
 – M

+
ε

q̃ – 
()

for n ≥ n.
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Letting n → +∞ in () and using the fact that ε is an arbitrary positive number, the
result follows. �

Now we consider the case lim supn→+∞ |q–n| < . If so, then a bounded solution (x–n)n∈N
to () is obtained only if

x =
∞∑

j=

f–j

j–∏

l=

q–l, ()

and for such chosen x, it is obtained

x–n =
∑∞

j=n+ f–j
∏j–

l= q–l∏n
l= q–l

=
∞∑

j=n+

f–j

j–∏

l=n+

q–l ()

for n ∈N.

Theorem  Assume that (q–n)n∈N ⊂C \ {} is a sequence such that

lim sup
n→∞

|q–n| := q < , ()

and that (f–n)n∈N is a bounded sequence of complex numbers. Then the following statements
are true.

(a) There is a unique bounded solution to ().
(b) If limn→+∞ f–n = , then the bounded solution x–n also converges to zero as n → +∞.

Proof (a) From () we have that there is n ∈N such that

|q–n| <
 + q


for n ≥ n. ()

By using () and some simple estimates in (), we have

|x–n| ≤
∞∑

j=n+

|f–j|
j–∏

l=n+

|q–l| < ‖f ‖∞
∞∑

j=n+

(
 + q



)j–n–

=
‖f ‖∞
 – q

()

for n ≥ n, from which the boundedness of sequence () easily follows. A simple calcu-
lation shows that the sequence satisfies equation (). Since x is uniquely determined by
the convergent series in (), it follows that the sequence is a unique bounded solution to
().

(b) Since limn→+∞ f–n = , we have that for every ε > , there is n ∈ N such that ()
holds for n ≥ n.

From this, () and (), we have that

|x–n| ≤
∞∑

j=n+

|f–j|
j–∏

l=n+

|q–l| < ε

∞∑

j=n+

(
 + q



)j–n–

=
ε

 – q
()
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for n ≥ max{n, n}. Letting n → +∞ in () and since ε is an arbitrary positive number,
we obtain limn→+∞ x–n = , as desired. �

From Theorems - the following four interesting corollaries are obtained.
From Theorems  and  we obtain the following corollary.

Corollary  Consider equation () for n ∈ Z. Assume that (qn)n∈Z and (fn)n∈Z are sequences
of complex numbers such that q–n 
= , n ∈ N, lim supn→+∞ |qn| <  and lim infn→+∞ |q–n| >
, and

sup
n∈Z

|fn| < ∞. ()

Then the following statements are true.
(a) Every solution to () is bounded on Z.
(b) If

lim
n→±∞ fn = , ()

then, for every solution (xn)n∈Z to (), we have limn→±∞ xn = .

From Theorems  and  we obtain the following corollary.

Corollary  Consider equation () for n ∈ Z. Assume that (qn)n∈Z and (fn)n∈Z are sequences
of complex numbers such that q–n 
= , n ∈N, lim supn→+∞ |qn| <  and lim supn→+∞ |q–n| <
, and that () holds. Then the following statements are true.

(a) There is a unique bounded solution to () on Z.
(b) If () holds, then, for the bounded solution (xn)n∈Z, we have limn→±∞ xn = .

From Theorems  and  we obtain the following corollary.

Corollary  Consider equation () for n ∈ Z. Assume that (qn)n∈Z and (fn)n∈Z are sequences
of complex numbers such that q–n 
= , n ∈N, lim infn→+∞ |qn| >  and lim infn→+∞ |q–n| > ,
and that () holds. Then the following statements are true.

(a) There is a unique bounded solution to () on Z.
(b) If () holds, then, for the bounded solution (xn)n∈Z, we have limn→±∞ xn = .

From Theorems  and  we obtain the following corollary.

Corollary  Consider equation () for n ∈ Z. Assume that (qn)n∈Z and (fn)n∈Z are sequences
of complex numbers such that q–n 
= , n ∈ N, lim infn→+∞ |qn| >  and lim supn→+∞ |q–n| <
, and that () holds. Then the following statements are true.

(a) There is a unique bounded solution to () on Z if and only if

x =
∞∑

j=

f–j

j–∏

l=

q–l = –
∞∑

i=

fi∏i
j= qj

.

(b) If () holds, then, for the bounded solution (xn)n∈Z, we have limn→±∞ xn = .
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3 Periodic solutions to equation (1)
In this section we study equation () in the case when the sequences qn and fn are pe-
riodic with the same period T . Note that if sequence qn is periodic with period T and
sequence fn is periodic with period T, where T 
= T, then T := lcm(T, T) (the least
common multiple of integers T and T) is a common period of these two sequences, since
T = kT = kT for some integers k and k. Hence, the case leads to the investigation of
equation () whose coefficients are periodic with the same period.

Periodic solutions to equation () have been studied in []. Among others, the authors
of [] quote, in an equivalent form, the following basic result, which is certainly folklore.

Theorem  Assume that (qn)n∈N and (fn)n∈N are two periodic sequences with period T .
Then the following statements are true.

(a) If

λ :=
T–∏

j=

qj 
= , ()

then () has a unique T-periodic solution given by the initial condition

x =
∑T–

i= fi
∏T–

j=i+ qj

 – λ
. ()

(b) If

λ =  and
T–∑

i=

fi

T–∏

j=i+

qj = , ()

then () has a one-parameter family of T-periodic solutions.
(c) If

λ =  and
T–∑

i=

fi

T–∏

j=i+

qj 
= , ()

then () has no T-periodic solutions.

The case in (a) is interesting for guaranteeing the uniqueness of a T-periodic solution
to equation (). Note that, due to the T-periodicity of sequences qn and fn, from () we see
that a solution to equation () will be periodic with period T if and only if

x = xT = x

T–∏

j=

qj +
T–∑

i=

fi

T–∏

j=i+

qj,

from which, if () holds, it follows that x must be given by (). However, the authors
of [] did not consider there the relationship between the periodic and other solutions to
equation (). We prove a nice result which gives an answer to the natural problem. Before
this, we formulate and prove a closely related result to Theorem .
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Theorem  Assume that (q–n)n∈N and (f–n)n∈N are two periodic sequences with period T
such that q–n 
= , n = , T . Then the following statements are true.

(a) If

λ̂ :=
T∏

j=

q–j 
= , ()

then () has a unique T-periodic solution given by the initial condition

x̂ =
∑T

j= f–j
∏j–

l= q–l

 – λ̂
. ()

(b) If

λ̂ =  and
T∑

j=

f–j

j–∏

l=

q–l = , ()

then all the solutions to () are T-periodic.
(c) If

λ̂ =  and
T∑

j=

f–j

j–∏

l=

q–l 
= , ()

then () has no T-periodic solutions.

Proof (a)-(c) Since q–n and f–n are periodic, by using () we see that a solution to () will
be T-periodic if and only if

x̂ = x̂–T =
x̂ –

∑T
j= f–j

∏j–
l= q–l

∏T
j= q–j

, ()

from which, if λ̂ 
= , () follows. If λ̂ = , then from the second equality in (), we see
that if () holds we have x̂–T = x̂, so all the solutions are T-periodic, while if () holds,
such x̂ does not exist, so there are no T-periodic solutions in this case, which completes
the proof. �

Now we formulate and prove the main result in this section. The result deals with the
asymptotic behavior of solutions to equation () in the case when the quantity in () is
different from  and .

Theorem  Assume that (qn)n∈Z and (fn)n∈Z are two periodic sequences with period T
and that the quantity in () is different from  and . Then equation () has a unique
T-periodic solution, say, (x̂n)n∈Z, and the following statements are true.

(a) If |λ| < , then all the solutions to () converge geometrically to the periodic one as
n → +∞, while they are getting away geometrically from the periodic one as
n → –∞.
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(b) If |λ| > , then all the solutions to () converge geometrically to the periodic one as
n → –∞, while they are getting away geometrically from the periodic one as
n → +∞.

Proof Unique existence of a T-periodic solution (x̂n)n∈Z to () follows from Theorem (a).
Assume that (xn)n∈Z is an arbitrary solution to (). Then, due to the T-periodicity of qn,
we have

λ =
n+T–∏

j=n

qj ()

for every n ∈ Z (note that due to an assumption we have λ 
= ), from which along with
(), we obtain

xn+T = x

n+T–∏

j=

qj +
n+T–∑

i=

fi

n+T–∏

j=i+

qj

= λ

(
x

n–∏

j=

qj +
n–∑

i=

fi

n–∏

j=i+

qj

)
+

n+T–∑

i=n

fi

n+T–∏

j=i+

qj = λxn + dn, ()

where

dn :=
n+T–∑

i=n

fi

n+T–∏

j=i+

qj, n ∈N.

Using again the periodicity of pn and qn, we have

dn+T =
n+T–∑

i=n+T

fi

n+T–∏

j=i+

qj =
n+T–∑

l=n

fl+T

n+T–∏

j=l+T+

qj

=
n+T–∑

l=n

fl

n+T–∏

k=l+

qk+T =
n+T–∑

l=n

fl

n+T–∏

k=l+

qk = dn, ()

which means that the sequence dn is T-periodic.
From () we see that if x̂n is the periodic solution to (), it must be

x̂n =
dn

 – λ
, n ∈N. ()

Also, we have

xmT+l = λmxl + dl

m–∑

j=

λj, m, l ∈ N. ()

Hence, since λ 
= , we have

|xmT+l – x̂mT+l| =

∣∣∣∣∣λ
mxl + dl

m–∑

j=

λj –
dl

 – λ

∣∣∣∣∣ = |λ|m
∣∣∣∣xl –

dl

 – λ

∣∣∣∣ ()

for every m, l ∈N.
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Let

Cx := max
l=,T–


( T√|λ|)l

∣∣∣∣xl –
dl

 – λ

∣∣∣∣.

Note that since λ /∈ {, }, the quantity is well defined.
Then from () it follows that

|xn – x̂n| ≤ Cx
( T
√|λ|)n for n ∈N. ()

If |λ| < , then from () it follows that all the solutions to equation () converge geo-
metrically to the periodic solution to the equation as n → +∞. Now note that if xn = x̂n

for some n ∈ N, then it will be xn = x̂n for n ≥ n. Moreover, since due to the condition
λ 
= , we have qn 
= , n ∈ N, it follows that xn = x̂n for every n ∈ N. So, for an arbitrary
solution xn different from x̂n, it must be xn 
= x̂n for every n ∈ N. Hence, if |λ| > , then
from () it follows that

|xn – x̂n| ≥
( T
√|λ|)n

min
l=,T–


( T√|λ|)l

∣∣∣∣xl –
dl

 – λ

∣∣∣∣ > , n ∈N,

that is, every solution xn different from x̂n gets away geometrically from the periodic so-
lution as n → +∞.

Now we are going to consider the case n ≤ . From Theorem (a) we see that equation
() has a unique T-periodic solution if () holds with x̂ given in ().

From () we see that λ̂ = λ. Using this fact along with the periodicity of q–n and f–n, we
obtain

x̂ =
∑T

j= f–j
∏j–

l= q–l

 – λ̂
=

∑T
j= fT–j

∏j–
l= q–l

 – λ

=
∑T–

i= fi
∏T–i–

l= q–l

 – λ
=

∑T–
i= fi

∏T–i–
l= qT–l

 – λ

=
∑T–

i= fi
∏T–

s=i+ qs

 – λ
. ()

From () and () we see that x̂ = x, so, there is only one ‘initial value’ for which a
T-periodic solution to () on Z is obtained.

Using (), we obtain

x–(n+T) =
x –

∑n+T
j= f–j

∏j–
l= q–l

∏n+T
l= q–l

=

λ

(x –
∑n

j= f–j
∏j–

l= q–l∏n
l= q–l

)
–

n+T∑

j=n+

f–j∏n+T
l=j q–l

=

λ

x–n – cn ()
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for n ∈N, where

cn =
n+T∑

j=n+

f–j∏n+T
l=j q–l

. ()

Since

cn+T =
n+T∑

j=n+T+

f–j∏n+T
l=j q–l

=
n+T∑

j=n+T+

fT–j∏n+T
l=j q–l

=
n+T∑

k=n+

f–k∏n+T
l=k+T q–l

=
n+T∑

k=n+

f–k∏n+T
l=k+T qT–l

=
n+T∑

k=n+

f–k∏n+T
s=k q–s

= cn,

we see that cn is a T-periodic sequence for n ∈N.
From () we see that if x̃–n is the periodic solution to equation (), then it must be

x̃–n =
cn

λ– – 
, n ∈N. ()

Also, we have

x–(mT+l) = λ–mx–l – cl

m–∑

j=

λ–j ()

for m ∈N.
Hence, since λ 
= , we have

|x–(mT+l) – x̃–(mT+l)| =

∣∣∣∣∣λ
–mx–l – cl

m–∑

j=

λ–j –
cl

λ– – 

∣∣∣∣∣

= |λ|–m
∣∣∣∣x–l –

cl

λ– – 

∣∣∣∣ ()

for every m, l ∈N.
Let

Ĉx := max
l=,T–

( T
√|λ|)l

∣∣∣∣x–l –
cl

λ– – 

∣∣∣∣.

Then from () it follows that

|x–n – x̃–n| ≤ Ĉx

( T√|λ|)n . ()

If |λ| > , then from () it follows that all the solutions to equation () converge geo-
metrically to the periodic solution to the equation as n → +∞. Now note that if x–n = x̃–n

for some n ∈N, then it will be x–n = x̃–n for n ≥ n. Moreover, since q–n 
= , n ∈ N, then
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we have x–n = x̃–n for every n ∈ N. So, for an arbitrary solution x–n different from x̃–n, it
must be x–n 
= x̃–n for every n ∈N. Hence, if  < |λ| < , then from () it follows that

|x–n – x̃–n| ≥
( T
√|λ|)–n

min
l=,T–

( T
√|λ|)l

∣∣∣∣x–l –
cl

λ– – 

∣∣∣∣ > , n ∈N,

and consequently, every solution x–n different from x̃–n gets away geometrically from the
periodic solution as n → +∞, which finishes the proof of the theorem. �
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