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Abstract
We study the absolute stability of large-scale time-delay Lurie indirect control systems
with unbounded coefficients. Based on Lyapunov-Krasovskii functional approach, we
derive some novel absolute stability conditions for this class of Lurie systems with a
single nonlinearity. These conditions are particularly suitable for large-scale
time-delay Lurie systems with unbounded coefficients. At the same time, they are
also effective for such systems with bounded or constant coefficients. Furthermore,
we extend the results obtained to multiple nonlinearities. The effectiveness of the
proposed methods is illustrated via two numerical examples.
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1 Introduction
In the early s, the absolute stability concept was defined by Lurie and Postnikov [].
Since then, the absolute stability analysis for Lurie systems has received considerable at-
tention from the academic community, and there have been a great number of publications
on this topic [–]. Meanwhile, the time-delay phenomenon frequently appears in prac-
tical engineering systems. Its presence can degrade performance of the control system or
even lead to instability. Therefore, the research of absolute stability of time-delay Lurie
systems is of important significance. In [], by splitting the whole delay interval into even
or uneven subintervals, a new Lyapunov-Krasovskii functional was constructed. Based on
Lyapunov second method, some new absolute stability conditions were proposed. In [],
by employing integral-equality technique, the stability criteria for Lurie control systems
with multiple delays were obtained. In [], the absolute stability of Lurie nonlinear systems
with time-varying delay was investigated based on augmented Lyapunov-Krasovskii func-
tional and free-weighting matrix approach. At the same time, the absolute stability theory
of time-delay Lurie systems was also applied in the study of synchronization problems;
some relevant works were presented in [–].

It should be pointed out that some practical systems, such as communication systems,
electric power systems, and biological systems, can be represented in the form of large-
scale systems []. Over the past few years, much effort has been devoted to investigating
the problem of absolute stability of large-scale Lurie control systems, and many impor-
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tant results have been reported in the open literature. In [], some sufficient conditions
in terms of BMIs were presented to guarantee the absolute stability of interconnected
Lurie direct control system. By using the decomposing method of large-scale system and
M-matrix property, the authors in [] considered a class of Lurie indirect control large-
scale systems and derived simple stability conditions. Subsequently, the authors in []
extended the criteria proposed in [] to the case of large-scale Lurie indirect control sys-
tems with multiple operators and unbounded coefficients. By employing a similar method,
the absolute stability problem of large-scale Lurie direct control systems with time-varying
coefficients was well addressed in [, ]. However, to our knowledge, there are few re-
sults on the absolute stability of large-scale Lurie systems subject to time-delay. This has
motivated our study.

In this paper, we deal with the absolute stability problem of a class of large-scale time-
delay Lurie indirect control systems with unbounded coefficients. A Lyapunov-Krasovskii
functional-based approach is presented to obtain some new sufficient conditions such that
the absolute stability of the system under consideration can be ensured. The main contri-
butions of this paper are as follows: (i) The elements of the system coefficient matrices
can be unbounded functions, and the time-delay can be very large under admissible con-
ditions. (ii) The stability criteria proposed are applicable not only to large-scale time-delay
Lurie systems with unbounded coefficients but also to this class of systems with bounded
or constant coefficients.

Notation: Throughout the paper, P >  (P < ) means that a matrix P is symmetric pos-
itive (negative) definite; λ(A) denotes any eigenvalue of square matrix A; ‖x‖ stands for
the Euclidean norm of a vector x = [x x · · · xn]T , that is, ‖x‖ =

√∑n
i= x

i ; ‖A‖ is the
matrix norm induced by the vector Euclidean norm, that is, ‖A‖ = max‖x‖= ‖Ax‖, and
it is easy to verify that ‖A‖ =

√
λmax(AT A); limt→∞ denotes the upper limit. For sim-

plicity of presentation, let φ(s) = [xT
 (t + s) xT

 (t + s) · · · xT
m(t + s) σ (t)]T , s ∈ [–τ , ], t ≥ ;

|‖φ‖| =
√∫ 

–τ
‖φ(s)‖ ds.

To obtain our main results, the following lemmas are needed.

Lemma  (The Schur complement lemma []) Let M, N , P be constant matrices of ap-
propriate dimensions, where M and N are symmetric. Then

[
M P
PT N

]
< 

if and only if N <  and M – PN–PT < .

Consider the following functional differential equations with finite delay:

ẋ(t) = f (t, xt), ()

where x(t) ∈ Rn, xt is a function defined in the interval [–h, ] as xt(θ ) = x(t +θ ), –h ≤ θ ≤ ,
h is the maximum delay, and f is a functional. Let C be the set of all continuous functions
defined in the interval [–h, ]. Then the initial condition of () can be expressed as xt = φ,
for φ ∈ C. With this notation, the domain of definition of f is R × C. A more detailed
description can be found in [].
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Denote by K the set of strictly increasing continuous functions W : R+ → R+ with
W () = . Also, |‖φ‖| =

√∫ 
–τ

‖φ(s)‖ ds, where ‖ · ‖ refers to the usual Euclidean norm.
For system (), we have the following lemma.

Lemma  Suppose that a functional V and functions W , W, W, W ∈ K are such that
(i) W (‖φ()‖) ≤ V (t,φ) ≤ W(‖φ()‖) + W(|‖φ‖|),

(ii) V̇ (t,φ) ≤ –W(‖φ()‖).
Then the zero solution of () is uniformly asymptotically stable. In addition, if
lims→∞ W (s) = ∞, then it is globally uniformly asymptotically stable.

Proof Burton in [, ] has proved the classical uniform asymptotic stability result. In
fact, if lims→∞ W (s) = ∞, then, in the proof of Theorem  of [], for arbitrary large δ > ,
there exists ε >  such that W(δ) + W([nhδ]


 ) < W (ε), and therefore the global uniform

asymptotic stability can be concluded. �

We first analyze large-scale time-delay Lurie indirect control systems with a single non-
linearity, and then we extend the results derived to multiple nonlinearities. For the multi-
ple nonlinearities case, σ (t) in φ(s) is regarded as a vector.

2 Absolute stability of large-scale Lurie systems with a single nonlinearity
Consider the following large-scale time-delay Lurie indirect control system with un-
bounded coefficients and a single nonlinearity:

⎧
⎪⎪⎨
⎪⎪⎩

ẋi(t) =
∑m

j= Aij(t)xj(t) +
∑m

j= Bij(t)xj
(
t – τj(t)

)
+ bi(t)f

(
σ (t)

)
,

i = , , . . . , m,

σ̇ (t) =
∑m

i= cT
i (t)xi(t) – ρ(t)f

(
σ (t)

)
,

()

where xi(t) ∈ Rni (i = , , . . . , m) and σ (t) ∈ R are the state vectors, the vector functions
bi(t), ci(t) ∈ Rni (i = , , . . . , m) are continuous in [, ∞),

∑m
i= ni = n; the matrix functions

Aij(t), Bij(t) ∈ Rni×nj (i, j = , , . . . , m) are continuous in [, ∞); τj(t) (j = , , . . . , m) refers
to the time-delay; ρ(t) is a continuous function in [,∞) and satisfies ρ(t) ≥ ρ >  with
constant ρ . The continuous nonlinearity f (·) satisfies the following sector condition:

F[k,k] =
{

f (·)|f () = ; kσ
(t) ≤ σ (t)f

(
σ (t)

) ≤ kσ
(t),σ (t) ∈ R – {}},

where k, k are constants such that k > k > .

Definition  ([]) System () is said to be absolutely stable if its zero solution is globally
asymptotically stable for any nonlinearity f (·) ∈ F[k,k].

We make the following assumptions for system ().
A The time-delay τi(t) (i = , , . . . , m) are continuous and piecewise differentiable

functions with

 ≤ τi(t) ≤ τi, τ̇i(t) ≤ αi < ,
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where τi, αi (i = , , . . . , m) are constants. At the nondifferentiability points of τi(t),
τ̇i(t) represents max[τ̇i(t – ), τ̇i(t + )].

A For any t ∈ [,∞), there exist matrices Pi > , Gi >  (i = , , . . . , m) such that

λ
(
PiAii(t) + AT

ii (t)Pi + Gi
) ≤ –δi(t) ≤ –ξi < ,

where δi(t) > , ξi >  (i = , , . . . , m) are functions and constants, respectively.
A For any t ∈ [,∞),

‖PiAij(t) + AT
ji (t)Pj‖√

δi(t)δj(t)
≤ ηij,

‖PiBij(t)‖√
δi(t)( – αj)λmin(Gj)

≤ γij,

where ηij (i, j = , , . . . , m; i �= j), γij (i, j = , , . . . , m) are constants, and ηij = ηji.
A For any t ∈ [,∞),

‖Pibi(t) + 
 ci(t)‖√

δi(t)ρ(t)
≤ μi,

where μi (i = , , . . . , m) are constants.
To simplify the statements, we define the following auxiliary matrices:

D =

⎡
⎢⎢⎢⎢⎣

– η · · · ηm

η – · · · ηm
...

...
...

ηm ηm · · · –

⎤
⎥⎥⎥⎥⎦

, R =

⎡
⎢⎢⎢⎢⎣

γ γ · · · γm

γ γ · · · γm
...

...
...

γm γm · · · γmm

⎤
⎥⎥⎥⎥⎦

, U =

⎡
⎢⎢⎢⎢⎣

μ

μ
...

μm

⎤
⎥⎥⎥⎥⎦

.

Notice that by A the matrix D is symmetric.

Theorem  Under A-A, system () is absolutely stable if D + RRT + UUT < .

Proof By utilizing Pi, Gi (i = , , . . . , m) appearing in the assumptions, we choose the fol-
lowing Lyapunov-Krasovskii functional:

V (t,φ) =
m∑

i=

(
xT

i (t)Pixi(t) +
∫ t

t–τi(t)
xT

i (s)Gixi(s) ds
)

+
∫ σ (t)


f (s) ds.

We can verify that if f ∈ F[k,k], then 
 kσ

(t) ≤ ∫ σ (t)
 f (s) ds ≤ 

 kσ
(t). Letting τ =

max{τi, i = , , . . . , m}, V (t,φ) satisfies

m∑
i=

λmin(Pi)
∥∥xi(t)

∥∥ +



kσ
(t)

≤ V (t,φ) ≤
m∑

i=

(
λmax(Pi)

∥∥xi(t)
∥∥ + λmax(Gi)

∫ t

t–τ

∥∥xi(s)
∥∥ ds

)
+




kσ
(t).
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Further, we have

min

{
λmin(P), . . . ,λmin(Pm),




k

}∥∥φ()
∥∥

≤ V (t,φ)

≤ max

{
λmax(P), . . . ,λmax(Pm),

k



}∥∥φ()
∥∥

+ max
{
λmax(G), . . . ,λmax(Gm)

}∫ 

–τ

∥∥φ(s)
∥∥ ds.

Namely, let

W(s) = min

{
λmin(P), . . . ,λmin(Pm),




k

}
s,

W(s) = max

{
λmax(P), . . . ,λmax(Pm),




k

}
s,

W(s) = max
{
λmax(G), . . . ,λmax(Gm)

}
s.

Then we obtain, for t ≥ , the following inequalities:

W
(∥∥φ()

∥∥) ≤ V (t,φ) ≤ W
(∥∥φ()

∥∥) + W
(∣∣‖φ‖∣∣).

Thus, condition (i) of Lemma  is satisfied. Moreover, lims→∞ W(s) = ∞.
The derivative of V (t,φ) along the trajectory of system () is

V̇ (t,φ)|()

=
m∑

i=

(
xT

i (t)Piẋi(t) + xT
i (t)Gixi(t)

)

–
m∑

i=

(
 – τ̇i(t)

)
xT

i
(
t – τi(t)

)
Gixi

(
t – τi(t)

)
+ σ̇ (t)f

(
σ (t)

)

=
m∑

i=

xT
i (t)

(
PiAii(t) + AT

ii (t)Pi + Gi
)
xi(t) + 

m∑
i=

m∑
j=
j �=i

xT
i (t)PiAij(t)xj(t)

+ 
m∑

i=

m∑
j=

xT
i (t)PiBij(t)xj

(
t – τj(t)

)
+ 

m∑
i=

xT
i (t)Pibi(t)f

(
σ (t)

)

–
m∑

i=

(
 – τ̇i(t)

)
xT

i
(
t – τi(t)

)
Gixi

(
t – τi(t)

)
+

m∑
i=

xT
i (t)ci(t)f

(
σ (t)

)

– ρ(t)f (σ (t)
)

=
m∑

i=

xT
i (t)

(
PiAii(t) + AT

ii (t)Pi + Gi
)
xi(t) + 

m∑
i=

m∑
j=
j �=i

xT
i (t)PiAij(t)xj(t)
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+ 
m∑

i=

m∑
j=

xT
i (t)PiBij(t)xj

(
t – τj(t)

)
+ 

m∑
i=

xT
i (t)

(
Pibi(t) +




ci(t)
)

f
(
σ (t)

)

–
m∑

i=

(
 – τ̇i(t)

)
xT

i
(
t – τi(t)

)
Gixi

(
t – τi(t)

)
– ρ(t)f (σ (t)

)

=
m∑

i=

xT
i (t)

(
PiAii(t) + AT

ii (t)Pi + Gi
)
xi(t) +

m∑
i=

m∑
j=
j �=i

xT
i (t)

(
PiAij(t) + AT

ji (t)Pj
)
xj(t)

+ 
m∑

i=

m∑
j=

xT
i (t)PiBij(t)xj

(
t – τj(t)

)
+ 

m∑
i=

xT
i (t)

(
Pibi(t) +




ci(t)
)

f
(
σ (t)

)

–
m∑

i=

(
 – τ̇i(t)

)
xT

i
(
t – τi(t)

)
Gixi

(
t – τi(t)

)
– ρ(t)f (σ (t)

)
.

From A and A, using properties of the matrix norm, we get

V̇ (t,φ)|()

≤
m∑

i=

xT
i (t)

(
PiAii(t) + AT

ii (t)Pi + Gi
)
xi(t) +

m∑
i=

m∑
j=
j �=i

xT
i (t)

(
PiAij(t) + AT

ji (t)Pj
)
xj(t)

+ 
m∑

i=

m∑
j=

xT
i (t)PiBij(t)xj

(
t – τj(t)

)
+ 

m∑
i=

xT
i (t)

(
Pibi(t) +




ci(t)
)

f
(
σ (t)

)

–
m∑

i=

( – αi)xT
i
(
t – τi(t)

)
Gixi

(
t – τi(t)

)
– ρ(t)f (σ (t)

)

≤ –
m∑

i=

δi(t)
∥∥xi(t)

∥∥ +
m∑

i=

m∑
j=
j �=i

∥∥PiAij(t) + AT
ji (t)Pj

∥∥∥∥xi(t)
∥∥∥∥xj(t)

∥∥

+ 
m∑

i=

m∑
j=

∥∥PiBij(t)
∥∥∥∥xi(t)

∥∥∥∥xj
(
t – τj(t)

)∥∥

+ 
m∑

i=

∥∥∥∥Pibi(t) +
ci(t)



∥∥∥∥
∥∥xi(t)

∥∥∣∣f (σ (t)
)∣∣

–
m∑

i=

( – αi)λmin(Gi)
∥∥xi

(
t – τi(t)

)∥∥ – ρ(t)f (σ (t)
)
.

To fully utilize A, A, and the unbounded terms in system coefficients, we take√
δi(t)‖xi(t)‖,

√
( – αi)λmin(Gi)‖x(t – τi(t))‖ (i = , , . . . , m), and

√
ρ(t)|f (σ (t))| as the vari-

ables of the following quadratic form. Then the inequality becomes

V̇ (t,φ)|()

≤ –
m∑

i=

δi(t)
∥∥xi(t)

∥∥ +
m∑

i=

m∑
j=
j �=i

‖PiAij(t) + AT
ji (t)Pj‖√

δi(t)δj(t)

√
δi(t)

∥∥xi(t)
∥∥ ·

√
δj(t)

∥∥xj(t)
∥∥
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+ 
m∑

i=

m∑
j=

‖PiBij(t)‖√
δi(t)( – αj)λmin(Gj)

√
δi(t)

∥∥xi(t)
∥∥ ·

√
( – αj)λmin(Gj)xj

(
t – τj(t)

)

+ 
m∑

i=

‖Pibi(t) + 
 ci(t)‖√

δi(t)ρ(t)

√
δi(t)

∥∥xi(t)
∥∥ · √ρ(t)

∣∣f (σ (t)
)∣∣

–
m∑

i=

( – αi)λmin(Gi)
∥∥xi

(
t – τi(t)

)∥∥ – ρ(t)f (σ (t)
)

≤ –
m∑

i=

δi(t)
∥∥xi(t)

∥∥ +
m∑

i=

m∑
j=
j �=i

ηij
√

δi(t)
∥∥xi(t)

∥∥ ·
√

δj(t)
∥∥xj(t)

∥∥

+
m∑

i=

m∑
j=

γij
√

δi(t)
∥∥xi(t)

∥∥ ·
√

( – αj)λmin(Gj)
∥∥xj

(
t – τj(t)

)∥∥

+
m∑

i=

μi
√

δi(t)
∥∥xi(t)

∥∥·√ρ(t)
∣∣f (σ (t)

)∣∣ –
m∑

i=

( – αi)λmin(Gi)
∥∥xi

(
t – τi(t)

)∥∥

– ρ(t)f (σ (t)
)

= Y T D̂Y ,

where

Y =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

√
δ(t)‖x(t)‖

...√
δm(t)‖xm(t)‖√

( – α)λmin(G)‖x(t – τ(t))‖
...√

( – αm)λmin(Gm)‖xm(t – τm(t))‖√
ρ(t)|f (σ (t))|

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

D̂ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

– η · · · ηm γ γ · · · γm μ

η – · · · ηm γ γ · · · γm μ
...

...
...

...
...

...
...

ηm ηm · · · – γm γm · · · γmm μm

γ γ · · · γm –  · · ·  
γ γ · · · γm  – · · ·  

...
...

...
...

...
...

...
γm γm · · · γmm   · · · – 
μ μ · · · μm   · · ·  –

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Using the preceding notations, we have

D̂ =

⎡
⎢⎣

D R U
RT –I 
UT  –

⎤
⎥⎦ .
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By Lemma , D + RRT + UUT <  implies D̂ < . Let –β (β > ) be the maximum eigen-
value of D̂. Then, V̇ (t,φ)|() satisfies

V̇ (t,φ)|()

≤ –β

( m∑
i=

(
δi(t)

∥∥xi(t)
∥∥ + ( – αi)λmin(Gi)

∥∥xi
(
t – τi(t)

)∥∥) + ρ(t)
∣∣f (σ (t)

)∣∣
)

≤ –β

( m∑
i=

ξi
∥∥xi(t)

∥∥ + ρ
∣∣f (σ (t)

)∣∣
)

.

Since σ (t)f (σ (t)) ≥ kσ
(t), we obtain |f (σ (t))| ≥ k|σ (t)|. Hence,

V̇ (t,φ)|()

≤ –β

( m∑
i=

ξi
∥∥xi(t)

∥∥ + ρk
 σ

(t)

)

≤ –β min
{
ξ, . . . , ξm,ρk


}
( m∑

i=

∥∥xi(t)
∥∥ + σ (t)

)
.

Letting W(s) = –β min{ξ, . . . , ξm,ρk
 }s, we have

V̇ (t,φ)|() ≤ W
(∥∥φ()

∥∥).

This means that condition (ii) of Lemma  is satisfied. Thus, by Lemma  and Definition ,
system () is absolutely stable. This completes the proof. �

A For any t ∈ [,∞), there exist matrices Pi > , Gi >  (i = , , . . . , m) such that

λ
(
PiAii(t) + AT

ii (t)Pi + Gi
) ≤ –δi(t) < ,

where δi(t) >  (i = , , . . . , m). Let δ(t) = min{δ(t), δ(t), . . . , δm(t)} and assume that
limt→∞ δ(t) = ∞.

Corollary  Under A, A, A, and A, system () is absolutely stable if D + RRT +
UUT < .

Indeed, by exploiting the limit property, we derive from limt→∞ δ(t) = ∞ that, for any
ξi >  (i = , , . . . , m) (here let ξi = ), there exists T ≥  such that, for t > T ,

–δ(t) ≤ –ξi.

This implies that

λ
(
PiAii(t) + AT

ii (t)Pi + Gi
) ≤ –δi(t) ≤ –δ(t) < –ξi.

The result then follows immediately from Theorem .
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In fact, we only need to ensure that the conditions mentioned are satisfied when time
t is sufficiently large, because asymptotic stability refers to the behavior of the dynamic
systems as time tends to infinity. In other words, A-A can be written as follows: There
exists T ≥  such that the corresponding conditions are satisfied for t > T . In particular,
A and A can be rewritten as follows.

A

lim
t→∞

‖PiAij(t) + AT
ji (t)Pj‖√

δi(t)δj(t)
= ηij, lim

t→∞
‖PiBij(t)‖√

δi(t)( – αj)λmin(Gj)
= γij,

where ηij (i, j = , , . . . , m; i �= j) and γij (i, j = , , . . . , m) are constants, and ηij = ηji.
A

lim
t→∞

‖Pibi(t) + 
 ci(t)‖√

δi(t)ρ(t)
= μi,

where μi (i = , , . . . , m) are constants.

Corollary  Under A, A, A, and A, system () is absolutely stable if D + RRT +
UUT < .

Corollary  Under A, A, A, and A, system () is absolutely stable if one of the follow-
ing two conditions is satisfied:

(I) γij =  (i, j = , , . . . , m) and D + UUT < .
(II) μi =  (i = , , . . . , m) and D + RRT < .

Corollary  Under A, A, A, and A, system () is absolutely stable if γij = μi =  (i, j =
, , . . . , m) and D < .

The proofs of these corollaries are relatively simple and are omitted here.

Remark  It should be pointed out that Lurie system () under consideration is an exten-
sion of Lurie indirect control systems discussed in [, ] since the coefficient matrices are
norm-unbounded. This is the main feature of this paper. All the theorems and corollaries
are applicable to the large-scale time-delay Lurie systems with unbounded coefficients.
Particularly, for this class of systems with bounded or constant coefficients, these results
are also effective.

3 Absolute stability of large-scale Lurie systems with multiple nonlinearities
Consider the following large-scale time-delay Lurie indirect control system with un-
bounded coefficients and multiple nonlinearities:

⎧
⎪⎪⎨
⎪⎪⎩

ẋi(t) =
∑m

j= Aij(t)xj(t) +
∑m

j= Bij(t)xj
(
t – τj(t)

)
+
∑r

j= bij(t)fj
(
σj(t)

)
,

i = , , . . . , m,

σ̇l(t) =
∑m

j= cT
lj (t)xj(t) – ρl(t)fl

(
σl(t)

)
, l = , , . . . , r,

()

where xi(t) ∈ Rni (i = , , . . . , m) and σl(t) ∈ R (l = , , . . . , r) are the state vectors; the
vector functions bij(t) ∈ Rni (i = , , . . . , m; j = , , . . . , r) and clj(t) ∈ Rnj (l = , , . . . , r; j =
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, , . . . , m) are continuous in [, ∞),
∑m

i= ni = n; the matrix functions Aij(t), Bij(t) ∈ Rni×nj

(i, j = , , . . . , m) are continuous in [, ∞); τj(t) (j = , , . . . , m) refer to the time-delays; ρl(t)
(l = , , . . . , r) is continuous in [,∞) and satisfies ρl(t) ≥ ρl >  with constants and ρl . The
continuous nonlinearities fl(σl) (l = , , . . . , r) satisfy the following sector condition:

F[kl,kl] =
{

fl(·)|fl() = ; klσ

l (t) ≤ σl(t)fl

(
σl(t)

) ≤ klσ

l (t),σl(t) ∈ R – {}},

where kl, kl are constants such that kl > kl > .

Definition  System () is said to be absolutely stable if its zero solution is globally asymp-
totically stable for any nonlinearity fi(·) ∈ F[ki,ki] (i = , , . . . , r).

The aforementioned assumptions A-A and the following assumptions are critical to
system ().

A For any t ∈ [,∞),

‖Pibij(t) + 
 cji(t)‖√

δi(t)ρj(t)
≤ μij,

where μij (i = , , . . . , m; j = , , . . . , r) are constants.
The definitions of matrices D and R are the same as before, whereas the matrix U is

redefined as

U =

⎡
⎢⎢⎢⎢⎣

μ μ · · · μr

μ μ · · · μr
...

...
...

μm μm · · · μmr

⎤
⎥⎥⎥⎥⎦

.

Theorem  Under A, A, A, and A, system () is absolutely stable if D+RRT +UUT < .

Proof Let us construct the following Lyapunov-Krasovskii functional:

V (t,φ) =
m∑

i=

(
xT

i (t)Pixi(t) +
∫ t

t–τi(t)
xT

i (s)Gixi(s) ds
)

+
r∑

i=

∫ σi(t)


fi(s) ds.

As in the proof of Theorem , we can show that V (t,φ) satisfies condition (i) of Lemma .
Then, taking the time derivative of V (t,φ) along the trajectory of system () yields

V̇ (t,φ)|()

=
m∑

i=

xT
i (t)

(
PiAii(t) + AT

ii (t)Pi + Gi
)
xi(t) +

m∑
i=

m∑
j=
j �=i

xT
i (t)

(
PiAij(t) + AT

ji (t)Pj
)
xj(t)

+ 
m∑

i=

m∑
j=

xT
i PiBij(t)xj

(
t – τj(t)

)
+ 

m∑
i=

r∑
j=

xT
i (t)

(
Pibij(t) +




cji(t)
)

fj
(
σj(t)

)

–
m∑

i=

(
 – τ̇i(t)

)
xT

i
(
t – τi(t)

)
Gixi

(
t – τi(t)

)
–

r∑
i=

ρi(t)
(
fi
(
σi(t)

)).
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Analogously, applying A, A, and properties of norms, we obtain

V̇ (t,φ)|()

≤ –
m∑

i=

δi(t)
∥∥xi(t)

∥∥ +
m∑

i=

m∑
j=
j �=i

∥∥PiAij(t) + AT
ji (t)Pj

∥∥∥∥xi(t)
∥∥∥∥xj(t)

∥∥

+ 
m∑

i=

m∑
j=

∥∥PiBij(t)
∥∥∥∥xi(t)

∥∥∥∥xj
(
t – τj(t)

)∥∥

+ 
m∑

i=

r∑
j=

∥∥∥∥Pibij(t) +



cji(t)
∥∥∥∥
∥∥xi(t)

∥∥∣∣fj
(
σj(t)

)∣∣

–
m∑

i=

( – αi)λmin(Gi)
∥∥xi

(
t – τi(t)

)∥∥ –
r∑

i=

ρi(t)
(
fi
(
σi(t)

)).

By virtue of
√

δi(t)‖xi(t)‖,
√

( – αi)λmin(Gi)‖x(t – τi(t))‖ (i = , , . . . , m), and√
ρi(t)|fi(σi(t))| (i = , , . . . , r), we can continue estimating the upper bound of V̇ (t,φ)|()

based on A and A:

V̇ (t,φ)|()

≤ –
m∑

i=

δi(t)
∥∥xi(t)

∥∥ +
m∑

i=

m∑
j=
j �=i

ηij
√

δi(t)
∥∥xi(t)

∥∥ ·
√

δj(t)
∥∥xj(t)

∥∥

+
m∑

i=

m∑
j=

γij
√

δi(t)
∥∥xi(t)

∥∥ ·
√

( – αj)λmin(Gj)
∥∥xj

(
t – τj(t)

)∥∥

+ 
m∑

i=

r∑
j=

μij
∥∥xi(t)

∥∥∣∣fj
(
σj(t)

)∣∣ –
m∑

i=

( – αi)λmin(Gi)
∥∥xi

(
t – τi(t)

)∥∥

–
r∑

i=

ρi(t)
(
fi
(
σi(t)

))

= Y T D̂Y ,

where

Y =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

√
δ(t)‖x(t)‖

...√
δm(t)‖xm(t)‖√

( – α)λmin(G)‖x(t – τ(t))‖
...√

( – αm)λmin(Gm)‖xm(t – τm(t))‖√
ρ(t)|f(σ)|

...√
ρr(t)|fr(σr)|

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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D̂ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

– η · · · ηm γ γ · · · γm μ μ · · · μr

η – · · · ηm γ γ · · · γm μ μ · · · μr
...

...
...

...
...

...
...

...
...

ηm ηm · · · – γm γm · · · γmm μm μm · · · μmr

γ γ · · · γm –  · · ·    · · · 
γ γ · · · γm  – · · ·    · · · 

...
...

...
...

...
...

...
...

...
γm γm · · · γmm   · · · –   · · · 
μ μ · · · μm   · · ·  –  · · · 
μ μ · · · μm   · · ·   – · · · 

...
...

...
...

...
...

...
...

...
μr μr · · · μmr   · · ·    · · · –

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Using the preceding notations, we have

D̂ =

⎡
⎢⎣

D R U
RT –I 
UT  –I

⎤
⎥⎦ .

The following proof is similar to that of Theorem . System () is absolutely stable if
D̂ < . Accordingly, the problem comes down to seeking the conditions for D̂ < . By
Lemma , D̂ <  is equivalent to D + RRT + UUT < . This completes the proof. �

Corollary  Under A, A, A, and A, system () is absolutely stable if D + RRT +
UUT < .

Similarly to the single nonlinearity case, to conclude the absolute stability for system (),
we only need to require that there exists a constant T ≥  such that the inequality condi-
tions in A, A, A, and A are satisfied for t > T . Hence, μij (i = , , . . . , m; j = , , . . . , r) in
A can be computed by the corresponding upper limit (if the upper limit is a finite value).

A

lim
t→∞

‖Pibij(t) + 
 cji(t)‖√

δi(t)ρj(t)
= μij,

where μij (i = , , . . . , m; j = , , . . . , r) are constants.

Corollary  Under A, A, A, and A, system () is absolutely stable if D + RRT +
UUT < .

Corollary  Under A, A, A, and A, system () is absolutely stable if one of the following
two conditions is satisfied:

(I) γij =  (i, j = , , . . . , m) and D + UUT < .
(II) μij =  (i = , , . . . , m; j = , , . . . , r) and D + RRT < .

Corollary  Under A, A, A, and A, system () is absolutely stable if γij =  (i, j =
, , . . . , m), μij =  (i = , , . . . , m; j = , , . . . , r), and D < .
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The proofs of these corollaries are relatively simple and are omitted here.

Remark  Recently, the absolute stability of time-delay Lurie indirect control systems
was studied in [, ]. However, these studies were only applicable to the independent
Lurie time-delay systems. Although the authors in [] considered large-scale Lurie indi-
rect control systems, they did not take the time-delay into account. Therefore, the results
in this paper have a greater range of applications.

4 Numerical simulation
The following numerical examples are presented to illustrate the effectiveness of the pro-
posed theoretical results.

Example  Consider the following large-scale time-delay Lurie indirect control system
with a single nonlinearity:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[ ẋ(t)
ẋ(t)

]
=

[ –t– 
 

t –t– 


][ x(t)
x(t)

]
+
[√

t


]
x(t)

+
[√ t

 


√ t



][ x(t–τ(t))
x(t–τ(t))

]
+
[

t





]
x(t – τ(t))

+
[ – t




]
f (σ (t)),

ẋ(t) = [ √
t
√

t ]
[ x(t)

x(t)
]

– (t + 
 )x(t) + [  t


 ]

[ x(t–τ(t))
x(t–τ(t))

]

+
√

t
 x(t – τ(t)) – tf (σ (t)),

σ̇ (t) = [ t
√

t ]
[ x(t)

x(t)
]

+ tx(t) – (t + )f (σ (t)),

()

where τ(t) =  + . sin t, τ(t) = , and f (·) ∈ F[.,].
This system is of the form () with

A(t) =

[
–t – 

 
t –t – 



]
, A(t) =

[√
t



]
,

A(t) =
[√

t
√

t
]

, A(t) = –t –



,

B(t) =

⎡
⎣
√

t
 


√

t


⎤
⎦ , B(t) =

[
t 





]
, B(t) =

[
 t 



]
, B(t) =

√
t


,

b(t) =

[
– t




]
, b(t) = –t, c(t) =

[
t√
t

]
, c(t) = t, ρ(t) = t + .

This problem cannot be solved by the method of [], which did not deal with the time-
delay case. Now, we use the criteria proposed in this paper to analyze the absolute stability
of this system.

Clearly, A is satisfied with τ = ., α = ., τ = , α = .
Then, by letting P = G = I we have

PA(t) + AT
(t)P + G =

[
–t t + 
t +  –t

]
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and

λ
(
PA(t) + AT

(t)P + G
) ≤ –t +

√
t + t + .

Taking T =
√

, for t > T , we obtain

λ
(
PA(t) + AT

(t)P + G
)

< –t +
√

(t + ) < –( –
√

)t.

Thus, we can take

δ(t) = ( –
√

)t.

Notice that, for t > T , we have the inequality

–δ(t) ≤ –ξ = –(
√

 – ).

Letting P = G = , we obtain

PA(t) + AT
(t)P + G = –t.

Then, we can take

δ(t) = t.

Similarly, for t > T , we have the inequality

–δ(t) ≤ –ξ = –
√

.

Hence A is satisfied. In addition, we get

lim
t→∞

‖PA(t) + AT
(t)P‖√

δ(t)δ(t)
= ,

lim
t→∞

‖PA(t) + AT
(t)P‖√

δ(t)δ(t)
= .

Moreover, we have

lim
t→∞

‖PB(t)‖√
δ(t)( – α)λmin(G)

=
√

 –
√


,

lim
t→∞

‖PB(t)‖√
δ(t)( – α)λmin(G)

= ,

lim
t→∞

‖PB(t)‖√
δ(t)( – α)λmin(G)

= ,

lim
t→∞

‖PB(t)‖√
δ(t)( – α)λmin(G)

=



.

Thus, A is satisfied with η = , η = , γ = √
–

√


, γ = , γ = , γ = 
 .
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Figure 1 The state response of system (4).

Furthermore, we derive

lim
t→∞

‖Pb(t) + 
 c(t)‖√

δ(t)ρ(t)
= ,

lim
t→∞

‖Pb(t) + 
 c(t)‖√

δ(t)ρ(t)
= .

Hence A is satisfied with μ = μ = .
Finally, we verify that

D + RRT =

[√
–
 
 – 



]
< .

Thus, we conclude from Corollary  that system () is absolutely stable.
For simulation, we choose f (σ (t)) = σ (t) + sinσ (t) and [x(s) x(s) x(s) σ ()]T =

[   ]T , s ∈ [–, ]. The numerical simulation result is shown in Figure .
It is seen in Figure  that the states of system () converge to zero asymptotically. Thus

the effectiveness of the proposed criteria is illustrated by the simulation result.

Example  Consider the following large-scale time-delay Lurie indirect control system
with two nonlinearities:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[ ẋ(t)
ẋ(t)

]
=

[ –t– 
 

 –t– 


][ x(t)
x(t)

]
+
[√

t


]
x(t)

+
[√

t 


√ t


][ x(t–τ(t))
x(t–τ(t))

]
+
[

t





]
x(t – τ(t))

+
[ –t



]
f(σ(t)) +

[ –t


]
f(σ(t)),

ẋ(t) = [ 
√

t ]
[ x(t)

x(t)
]

– (t + 
 )x(t) + [  t


 ]

[ x(t–τ(t))
x(t–τ(t))

]

+
√

t
 x(t – τ(t)) – tf(σ(t)) + tf(σ(t)),

σ̇(t) = [ t 
√

t ]
[ x(t)

x(t)
]

+ tx(t) – (t + )f(σ(t)),

σ̇(t) = [ t ]
[ x(t)

x(t)
]

– tx(t) – (t + )f(σ(t)),

()

where τ(t) =  + . sin t, τ(t) = , and f (·) ∈ F[.,].
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In comparison with system (), the coefficient matrices here are

A(t) =

[
–t – 

 
 –t – 



]
, A(t) =

[√
t



]
,

A(t) =
[


√

t
]

, A(t) = –t –



,

B(t) =

[√
t 


√

t


]
, B(t) =

[
t 





]
, B(t) =

[
 t 



]
, B(t) =

√
t


,

b(t) =

[
–t


]
, b(t) =

[
–t


]
, b(t) = –t, b(t) = t,

c(t) =

[
t


√

t

]
, c(t) = t, c(t) =

[
t


]
, c(t) = –t,

ρ(t) = t + , ρ(t) = t + .

Next, we show that this system satisfies the conditions of Corollary .
Clearly, A is satisfied with τ = ., α = ., τ = , α = . Also, letting P = G = I , we

obtain

PA(t) + AT
(t)P + G =

[
–t 

 –t

]

and

λ
(
PA(t) + AT

(t)P + G
) ≤ –t +

√
t + .

Taking T = , for t > T , we have

λ
(
PA(t) + AT

(t)P + G
)

< –( –
√

)t.

Similarly, letting P = G = , we have

PA(t) + AT
(t)P + G = –t.

Thus A is fulfilled with δ(t) = ( –
√

)t, δ(t) = t. Moreover,

lim
t→∞

‖PA(t) + AT
(t)P‖√

δ(t)δ(t)
= ,

lim
t→∞

‖PA(t) + AT
(t)P‖√

δ(t)δ(t)
= .



Yu and Liao Advances in Difference Equations  (2017) 2017:276 Page 17 of 19

In addition, by simple calculation we get

lim
t→∞

‖PB(t)‖√
δ(t)( – α)λmin(G)

=

√


 –
√


,

lim
t→∞

‖PB(t)‖√
δ(t)( – α)λmin(G)

= ,

lim
t→∞

‖PB(t)‖√
δ(t)( – α)λmin(G)

= ,

lim
t→∞

‖PB(t)‖√
δ(t)( – α)λmin(G)

=



√


.

Hence A is satisfied with η = η = , γ =
√


–

√
 , γ = , γ = , γ = 


√

 .
Furthermore, we have

lim
t→∞

‖Pb(t) + 
 c(t)‖√

δ(t)ρ(t)
= ,

lim
t→∞

‖Pb(t) + 
 c(t)‖√

δ(t)ρ(t)
= ,

lim
t→∞

‖Pb(t) + 
 c(t)‖√

δ(t)ρ(t)
=

√


,

lim
t→∞

‖Pb(t) + 
 c(t)‖√

δ(t)ρ(t)
=

√


.

Then A is satisfied with μ = μ = , μ = √
 , μ = √


. At last, we verify that

D + RRT + UUT =

[√
–

–
√

 
 – 



]
< .

Thus, according to Corollary , system () is absolutely stable.
For simulation, we choose

f
(
σ (t)

)
= σ (t) + sinσ (t), f

(
σ (t)

)
=

⎧
⎪⎪⎨
⎪⎪⎩

σ (t), |σ (t)| < ,

σ (t),  ≤ |σ (t)| ≤ ,

σ (t), |σ (t)| > ,

and [x(s) x(s) x(s) σ() σ()]T = [    ]T , s ∈ [–, ]. The response curves of this sys-
tem are shown in Figure .

As depicted in Figure , system () is asymptotically stable even though the system co-
efficients are unbounded.

5 Conclusion
In this paper, we have investigated the absolute stability problem of time-varying large-
scale time-delay Lurie indirect control systems. Based on the second Lyapunov method,
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Figure 2 The state response of system (5).

to guarantee absolute stability of this class of systems, some sufficient conditions were for-
mulated by simple inequalities. Finally, two numerical examples were presented to show
the effectiveness of the proposed methods.
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