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Abstract
In this paper, we study a coupled system of fractional boundary value problems
subject to integral boundary conditions. By applying a recent fixed point theorem in
ordered Banach spaces, we investigate the local existence and uniqueness of positive
solutions for the coupled system. We show that the unique positive solution can be
found in a product set, and that it can be approximated by constructing iterative
sequences for any given initial point of the product set. As an application, an
interesting example is presented to illustrate our main result.
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1 Introduction
In this paper we discuss the local existence and uniqueness of positive solutions for the fol-
lowing coupled system of fractional boundary value problem subject to integral boundary
conditions:

⎧
⎨

⎩

Dαu(t) + f (t, v(t)) = , Dβv(t) + g(t, u(t)) = ,  < t < ,

u() = , u() =
∫ 

 φ(t)u(t) dt, v() = , v() =
∫ 

 ψ(t)v(t) dt,
(.)

where  < α, β ≤ , φ,ψ ∈ L[, ] are nonnegative and f , g ∈ C([, ] × [, +∞), [, +∞))
and D is the standard Riemann-Liouville fractional derivative. By a positive solution of the
problem (.), we mean a pair of functions (u, v) ∈ C([, ]) × C([, ]) satisfying (.) with
u(t) ≥ , v(t) ≥ , t ∈ [, ] and (u, v) �= (, ). The functions φ(t), ψ(t) satisfy the following
conditions:

(Q) φ,ψ : [, ] → [, +∞) with φ,ψ ∈ L[, ] and

σ :=
∫ 


φ(t)tα– dt, σ :=

∫ 


ψ(t)tβ– dt ∈ (, );

σ :=
∫ 


tα–( – t)φ(t) dt, σ :=

∫ 


tβ–( – t)ψ(t) dt > .
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Recently, coupled systems of fractional differential equations with a variety of boundary
value conditions have been studied by many people; see [–] and the references therein.
As is well known, coupled systems with boundary conditions appear in the investigations
of many problems such as reaction-diffusion equations and Sturm-Liouville problems (see
[, ]), and they have many applications in different fields of sciences and engineering
(see heat equations [–], steady-state heat flow and beam deformation [, ] for
example), mathematical biology (see [, ]) and so on. So the subject of coupled systems
is gaining much attention and importance. From the literature, we can see that there are a
large number of articles dealing with the existence or multiplicity of solutions or positive
solutions for some nonlinear coupled systems with boundary conditions; see [, , , ,
–, , , , –, –] for details.

In [], Su considered the following two-point boundary value problem for a coupled
system of fractional differential equations:

⎧
⎨

⎩

Dαu(t) = f (t, v(t), Dμv(t)), Dβv(t) = g(t, u(t), Dνu(t)),  < t < ,

u() = u() = v() = v() = ,
(.)

where  < α,β < ,μ,ν > ,α –ν ≥ ,β –μ ≥ , f , g : [, ]×R×R → R are given functions,
and D is also the standard Riemann-Liouville fractional derivative. By applying Schauder
fixed point theorem, the author established sufficient conditions for the existence of solu-
tions for the problem (.). By using the same method, Ahmad and Nieto [] extended the
results of [] to a three-point boundary value problem for a coupled system of fractional
differential equations. By using Banach fixed point theorem and nonlinear alternative of
Leray-Schauder type, Wang et al. [] gave the existence and uniqueness of positive so-
lutions to the following boundary values problem for a coupled system of nonlinear frac-
tional differential equations:

⎧
⎨

⎩

Dαu(t) = f (t, v(t)), Dβv(t) = g(t, u(t)),  < t < ,

u() = , u() = au(ξ ), v() = , v() = bv(ξ ),

where  < α,β < ,  ≤ a, b ≤ ,  < ξ < , f , g : [, ] × R × R → R are given functions, and
D is also the standard Riemann-Liouville fractional derivative.

In [], Yang studied the boundary values problem for a coupled system of nonlinear
fractional differential equations as follows:

⎧
⎨

⎩

Dαu(t) + a(t)f (t, v(t)) = , Dβv(t) + b(t)g(t, u(t)) = ,  < t < ,

u() = , u() =
∫ 

 φ(t)u(t) dt, v() = , v() =
∫ 

 ψ(t)v(t) dt,
(.)

where  < α,β ≤ , a, b ∈ C((, ), [, +∞)),φ,ψ ∈ L[, ] are nonnegative and f , g ∈
C([, ] × [, +∞), [, +∞)), and D is also the standard Riemann-Liouville fractional
derivative. The existence and nonexistence of positive solutions were shown by applying
Banach fixed point theorem, nonlinear alternative of Leray-Schauder type and the fixed
point theorems of cone expansion and compression of norm type. Very recently, in [],
the authors studied a boundary value problem of coupled systems of nonlinear Riemann-
Liouvillle fractional integro-differential equations supplemented with nonlocal Riemann-
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Liouvillle fractional integro-differential boundary conditions. And in [], the authors in-
troduced a new concept of coupled non-separated boundary conditions and solved a cou-
pled system of fractional differential equations supplemented with these conditions. By
using Banach’s contraction principle and Leray-Schauder’s alternative, the authors gave
some new existence and uniqueness results in [, ]. To the best of our knowledge, there
are still very few papers (such as [, ]) considered the uniqueness of positive solutions
of boundary value problems with fractional coupled systems.

Motivated greatly by the above mentioned work and [, ], we consider the local ex-
istence and uniqueness of positive solutions for the coupled system (.). To prove our
main results, we present some definitions, notations and lemmas in Section . And we
give some new properties of the corresponding Green’s function for the system (.). In
Section , we give sufficient conditions for the local existence and uniqueness of positive
solutions for the system (.) by using a recent fixed point theorem in ordered Banach
spaces. To demonstrate our result, we give an interesting example in Section .

2 Preliminaries
Definition . (See [, ]) The fractional integral of order q with the lower limit a for
a function f is given as

Iq
a+ f (t) =


	(q)

∫ t

a
(t – s)q–f (s) ds, t > a, q > , (.)

provided the right-hand side is pointwise defined on [a,∞), here f ∈ C[a, b] and 	 is the
gamma function. For a = , the fractional integral (.) can be written by Iα

+ h(t) = h(t) ∗
ϕα(t), here ϕα(t) = tα–/	(α) for t >  and ϕα(t) =  for t ≤ .

Definition . (See [, ]) Riemann-Liouville derivative of order q with the lower limit
a for a function f : [a,∞) → R is defined as

Dq
a+ f (t) =


	(n – q)

dn

dtn

∫ t

a
(t – s)n–q–f (s) ds, t > a, n –  < q < n.

Lemma . (See []) If
∫ 

 φ(t)tα– dt �= , then, for any σ ∈ C[, ], the unique solution of
the following boundary value problem:

⎧
⎨

⎩

Dαu(t) + σ (t) = ,  < t < ,

u() = , u() =
∫ 

 φ(t)u(t) dt,

is given by

u(t) =
∫ 


Gα(t, s)σ (s) ds,

where

Gα(t, s) = Gα(t, s) + Gα(t, s),
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Gα(t, s) =

⎧
⎨

⎩

tα–(–s)α––(t–s)α–

	(α) ,  ≤ s ≤ t ≤ ,
tα–(–s)α–

	(α) ,  ≤ t ≤ s ≤ ,
(.)

Gα(t, s) =
tα–

 –
∫ 

 φ(t)tα– dt

∫ 


φ(t)Gα(t, s) dt.

Then G(t, s) = (Gα(t, s), Gβ (t, s)) is called the Green’s function of the system (.).

Lemma . (See []) If
∫ 

 φ(t)tα– dt ∈ [, ), then Gα(t, s) given by (.) satisfies
Gα(t, s) ≥  is continuous for all t, s ∈ [, ], Gα(t, s) >  for all t, s ∈ (, ).

Lemma . The function Gα(t, s) has the following properties:

Gα(t, s) ≥ α – 
	(α)

tα–( – t)( – s)α–s, t, s ∈ [, ] (Theorem . of []);

Gα(t, s) ≤ tα–( – s)α–

	(α)
, t, s ∈ [, ].

Proof The second inequality is obvious. �

Lemma . Let α,β ∈ (, ]. Assume that (Q) holds. Then the functions Gα(t, s), Gβ (t, s)
have the following properties:

(α – )σs( – s)α–tα–

( – σ)	(α)
≤ Gα ≤ ( – s)α–tα–

	(α)( – σ)
, t, s ∈ [, ];

(β – )σs( – s)β–tβ–

( – σ)	(β)
≤ Gβ ≤ ( – s)β–tβ–

	(β)( – σ)
, t, s ∈ [, ].

Proof We only prove the first inequality. From Lemma . and Lemma .,

Gα(t, s) = Gα(t, s) + Gα(t, s) ≥ Gα(t, s) =
tα–

 – σ

∫ 


φ(t)Gα(t, s) dt

≥ tα–

 – σ

∫ 


φ(t) · α – 

	(α)
tα–( – t)( – s)α–s dt

=
(α – )tα–s( – s)α–

( – σ)	(α)

∫ 


tα–( – t)φ(t) dt =

(α – )σs( – s)α–tα–

( – σ)	(α)
.

Also, from Lemma .,

Gα(t, s) = Gα(t, s) + Gα(t, s) ≤ tα–( – s)α–

	(α)
+

tα–

 – σ

∫ 


φ(t)

tα–( – s)α–

	(α)
dt

=
tα–

	(α)

[

( – s)α– +
( – s)α–

 – σ

∫ 


tα–φ(t) dt

]

=
tα–

	(α)

[

( – s)α– +
( – s)α–σ

 – σ

]

=
( – s)α–tα–

	(α)( – σ)
. �

In the sequel, we list some definitions, notations in ordered Banach spaces and prelimi-
nary facts which will be used later. For details, see [, –].
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Let (E,‖ · ‖) be a real Banach space which is partially ordered by a cone P ⊂ E, i.e., x ≤ y
if and only if y – x ∈ P. θ is the zero element of E. If there is a constant N >  such that,
for all x, y ∈ E, θ ≤ x ≤ y implies ‖ x ‖≤ N ‖ y ‖, then P is called normal, in this case N
is the infimum of such constants, it is called the normality constant of P. We say that an
operator A : E → E is increasing if x ≤ y implies Ax ≤ Ay.

For all x, y ∈ E, the notation x ∼ y means that there exist λ >  and μ >  such that
λx ≤ y ≤ μx. Clearly, ∼ is an equivalence relation. Given h > θ (i.e., h ≥ θ and h �= θ ), we
define the set Ph = {x ∈ E | x ∼ h}. It is easy to see that Ph ⊂ P.

Let � denote the class of those functions ϕ : (, ) → (, ) which satisfies the condition
ϕ(t) > t for t ∈ (, ).

Lemma . (Theorem . of []) Let P be a normal cone in a real Banach space E, h > θ .
T : P → P is an increasing operator which satisfies:

(i) there is h ∈ Ph such that Th ∈ Ph;
(ii) for any x ∈ P and t ∈ (, ), there exists ϕ ∈ � such that T(tx) ≥ ϕ(t)Tx.

Then:
() the operator T has a unique fixed point x∗ in Ph;
() for any initial value x ∈ Ph, constructing successively the sequence xn = Txn–,

n = , , . . . , we have xn → x∗ as n → ∞.

3 Local existence and uniqueness of positive solutions
Throughout this section, we work in the product space X × X, where X = {u(t)|u(t) ∈
C[, ]} endowed with the norm ‖u‖X = maxt∈[,] |u(t)|. For (u, v) ∈ X ×X, let ‖(u, v)‖X×X =
max{‖u‖X ,‖v‖X}. Evidently, (X × X,‖(u, v)‖X×X) is a Banach space. Define K = {(u, v) ∈
X × X|u(t) ≥ , v(t) ≥ }, P = {u ∈ X|u(t) ≥ , t ∈ [, ]}, then the cone K ⊂ X × X and
K = P × P is normal, and the space X × X can be equipped with a partial order:

(u, v) ≤ (u, v) ⇔ u(t) ≤ u(t), v(t) ≤ v(t), t ∈ [, ].

From Lemma . and the discussion of [], we can obtain the following fact.

Lemma . Assume that (Q) holds and f (t, x), g(t, x) are continuous, then (u, v) ∈ X × X
is a solution of the system (.) if and only if (u, v) ∈ X × X is a solution of the integral
equations

⎧
⎨

⎩

u(t) =
∫ 

 Gα(t, s)f (s, v(s)) ds,

v(t) =
∫ 

 Gβ (t, s)g(s, u(s)) ds.

For (u, v) ∈ X × X, define operators T, T and T by

Tu(t) =
∫ 


Gα(t, s)f

(
s, v(s)

)
ds, Tv(t) =

∫ 


Gβ (t, s)g

(
s, u(s)

)
ds,

T(u, v)(t) =
(∫ 


Gα(t, s)f

(
s, v(s)

)
ds,

∫ 


Gβ (t, s)g

(
s, u(s)

)
ds

)

.

Then T, T : X → X and T : X × X → X × X. Moreover,

T(u, v)(t) =
(
Tu(t), Tv(t)

)
. (.)
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It follows from Lemma . that the fixed point of operator T coincides with the solution of
the system (.).

Theorem . Assume that (Q) and the following conditions hold:

(H) f , g ∈ C([, ] × [, +∞), [, +∞)) and f (t, ), g(t, ) �≡ ;
(H) f (t, u) ≤ f (t, u), g(t, u) ≤ g(t, u) for any t ∈ [, ], u ≥ u ≥ ;
(H) there exist ϕ,ϕ ∈ � such that

f (t,λu) ≥ ϕ(λ)f (t, u), g(t,λu) ≥ ϕ(λ)g(t, u)

for t ∈ [, ], u ∈ [, +∞), where λ ∈ (, ).

Then the problem (.) has a unique positive solution (u∗, v∗) in Kh, where

h(t) =
(
h(t), h(t)

)
=

(
tα–, tβ–), t ∈ [, ].

Moreover, for (u, v) ∈ Kh, the sequences {un} and {vn} converge to u∗ and v∗, respectively,
where

un+(t) =
∫ 


Gα(t, s)f

(
s, vn(s)

)
ds,

vn+(t) =
∫ 


Gβ (t, s)g

(
s, un(s)

)
ds, n = , , . . . ,

we have un+(t) → u∗(t), vn+(t) → v∗(t) as n → ∞.

Lemma . Kh = Ph × Ph , where h = (h, h).

Proof From Section , we know that

Kh =
{

(x, y) : there exist λ(x, y),μ(x, y) >  such that λ(h, h) ≤ (x, y) ≤ μ(h, h)
}

.

For (x, y) ∈ Ph × Ph , we know x ∈ Ph , y ∈ Ph . Then there exist λ,λ,μ,μ > , such that
λh ≤ x ≤ μh,λh ≤ y ≤ μh. Let λ = min{λ,λ},μ = max{μ,μ}. Then

λ(h, h) = (λh,λh) ≤ (x, y) ≤ (μh,μh) ≤ (μh,μh) = μ(h, h).

That is, (x, y) ∈ Kh and thus Ph × Ph ⊂ Kh.
Conversely, for (x, y) ∈ Kh, there exist λ,μ >  such that λh ≤ (x, y) ≤ μh. That is,

(λh,λh) = λ(h, h) ≤ (x, y) ≤ μ(h, h) = (μh,μh).

So we have λh ≤ x ≤ μh,λh ≤ y ≤ μh. That is, x ∈ Ph , y ∈ Ph . Hence, (x, y) ∈ Ph ×Ph .
Consequently, Kh ⊂ Ph × Ph . Therefore, Kh = Ph × Ph . �

Proof of Theorem . Consider the operator T defined in (.). From Lemma ., we know
that (u, v) ∈ K is a positive solution of (.) if and only if (u, v) is a positive fixed point of T .
By using Lemma . and (H), we get T : P → P, T : P → P. And thus T : K → K .
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Firstly, we prove that T : K → K is increasing. For (u, v), (u, v) ∈ K with (u, v) ≤
(u, v), we know that u(t) ≤ u(t), v(t) ≤ v(t), and by using Lemma . and (H),

Tu(t) =
∫ 


Gα(t, s)f

(
s, v(s)

)
ds ≤

∫ 


Gα(t, s)f

(
s, v(s)

)
ds = Tu(t),

Tv(t) =
∫ 


Gβ (t, s)g

(
s, u(s)

)
ds ≤

∫ 


Gβ (t, s)g

(
s, u(s)

)
ds = Tv(t).

Thus,

T(u, v)(t) =
(
Tu(t), Tv(t)

) ≤ (
Tu(t), Tv(t)

)
= T(u, v)(t).

So that T : K → K is increasing.
In the sequel, we show that T satisfies the two conditions of Lemma .. From (H), for

any λ ∈ (, ) and (u, v) ∈ K , we have

T(λu)(t) =
∫ 


Gα(t, s)f

(
s,λv(s)

)
ds ≥ ϕ(λ)

∫ 


Gα(t, s)f

(
s, v(s)

)
ds = ϕ(λ)Tu(t),

T(λv)(t) =
∫ 


G,β (t, s)g

(
s,λu(s)

)
ds ≥ ϕ(λ)

∫ 


Gβ (t, s)g

(
s, u(s)

)
ds = ϕ(λ)Tv(t),

and thus

T
(
λ(u, v)

)
(t) = T(λu,λv)(t) =

(
T(λu)(t), T(λv)(t)

) ≥ (
ϕ(λ)Tu(t),ϕ(λ)Tv(t)

)
.

Let ϕ(t) = min{ϕ(t),ϕ(t)}, t ∈ (, ). Then ϕ ∈ � and

T
(
λ(u, v)

) ≥ (
ϕ(λ)Tu,ϕ(λ)Tv

)
= ϕ(λ)(Tu, Tv) = ϕ(λ)T(u, v), λ ∈ (, ).

Hence, the second condition of Lemma . holds.
Next we prove that the first condition of Lemma . also holds. To this aim, we take

h(t) = h(t) = (h(t), h(t)), where h(t) = tα–, h(t) = tβ–, t ∈ [, ]. From Lemma ., we
only need prove Th ∈ Ph , Th ∈ Ph . By using Lemma . and (H), (H),

Th(t) =
∫ 


Gα(t, s)f

(
s, h(s)

)
ds

≥
∫ 



(α – )σs( – s)α–

( – σ)	(α)
tα–f

(
s, sβ–)ds

≥ (α – )σ

( – σ)	(α)
h(t)

∫ 


s( – s)α–f (s, ) ds

and

Th(t) ≤
∫ 



( – s)α–tα–

	(α)( – σ)
f (s, ) ds

=


	(α)( – σ)
h(t)

∫ 


( – s)α–f (s, ) ds.
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From (H), we obtain f (s, ) ≥ f (s, ) ≥ , s ∈ [, ]. Because f (s, ) �≡ , we have

s( – s)α–f (s, ) �≡ , ( – s)α–f (s, ) �≡ .

Hence,

∫ 


( – s)α–f (s, ) ds ≥

∫ 


s( – s)α–f (s, ) ds > .

Note that σ ≤ σ <  and α –  ≤ , we get

l :=
(α – )σ

( – σ)	(α)

∫ 


s( – s)α–f (s, ) ds ≤ l :=


( – σ)	(α)

∫ 


( – s)α–f (s, ) ds.

So we have l ≥ l >  and lh(t) ≤ Th(t) ≤ lh(t), t ∈ [, ]; and thus Th ∈ Ph . Simi-
larly, by using Lemma . and (H), (H), we also can prove Th ∈ Ph . Therefore,

Th = T(h, h) = (Th, Th) ∈ Ph × Ph = Kh.

Consequently, by Lemma ., there exists a unique x∗ ∈ Kh such that Tx∗ = x∗, and for any
x ∈ Kh, construct a sequence xn+ = Txn, n = , , , . . . , we have xn → x∗ as n → ∞.

Set x∗ = (u∗, v∗), x = (u, v). Then we see that (u∗, v∗) is the unique positive solution of
the system (.) in Kh, and the sequences

un+(t) =
∫ 


Gα(t, s)f

(
s, vn(s)

)
ds → u∗(t),

vn+(t) =
∫ 


Gβ (t, s)g

(
s, un(s)

)
ds → v∗(t),

as n → ∞. �

4 An example
Example . Consider the following coupled system of fractional differential equations:

⎧
⎨

⎩

D 
 u(t) + [v(t)]τ + a(t) = , D 

 v(t) + [u(t)]τ + a(t) = ,  < t < ,

u() = , u() =
∫ 

 tu(t) dt, v() = , v() =
∫ 

 tv(t) dt,
(.)

where τ, τ ∈ (, ), a, a : [, ] → [, +∞) are continuous with ai �≡ . In this example,
α = 

 , β = 
 and

f (t, x) = xτ + a(t), g(t, x) = xτ + a(t), φ(t) = t, ψ(t) = t.

After a simple computation, we have

σ =
∫ 


tα–φ(t) dt =

∫ 


t


 · t dt =

∫ 


t


 dt =




,

σ =
∫ 


tβ–ψ(t) dt =

∫ 


t


 · t dt =

∫ 


t


 dt =




,
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σ =
∫ 


t


 ( – t)t dt =

∫ 



(
t


 – t



)

dt =



,

σ =
∫ 


t


 ( – t)t dt =

∫ 



(
t


 – t



)

dt =



.

Evidently, σ,σ ∈ (, ), σ,σ > . f , g ∈ C([, ]× [, +∞), [, +∞)) and f (t, ) = a(t) �≡ ,
g(t, ) = a(t) �≡ . Note that xτi (i = , ) are increasing in [, +∞), we have f (t, x), g(t, x)
are increasing in x ∈ [, +∞). Hence, (H), (H) are satisfied. In addition, let

ϕ(t) = tτ , ϕ(t) = tτ , t ∈ (, ).

Then ϕ,ϕ ∈ � and, for λ ∈ (, ) and x ∈ [, +∞),

f (t,λx) = λτ xτ + a(t) ≥ λτ
[
xτ + a(t)

]
= ϕ(λ)f (t, x);

g(t,λx) = λτ xτ + a(t) ≥ λτ
[
xτ + a(t)

]
= ϕ(λ)g(t, x).

The condition (H) in Theorem . also holds. Therefore, by Theorem ., the boundary
value problem (.) has a unique positive solution (u∗, v∗) in kh, where

h(t) =
(
h(t), h(t)

)
=

(
t


 , t



)
, t ∈ [, ],

and for any given (u, v) ∈ kh, making the sequences

un+(t) =
∫ 


Gα(t, s)

{[
vn(s)

]τ + a(s)
}

ds,

vn+(t) =
∫ 


Gβ (t, s)

{[
un(s)

]τ + a(s)
}

ds,

n = , , . . . , then we obtain un(t) → u∗(t), vn(t) → v∗(t) as n → ∞, where

Gα(t, s) = Gα(t, s) + Gα(t, s), Gβ (t, s) = Gβ (t, s) + Gβ (t, s),

Gα(t, s) =

⎧
⎪⎨

⎪⎩

t

 (–s)


 –(t–s)




	( 
 )

, s ≤ t,

t

 (–s)




	( 
 )

, t ≤ s,

Gβ (t, s) =

⎧
⎪⎨

⎪⎩

t

 (–s)


 –(t–s)




	( 
 )

, s ≤ t,

t

 (–s)




	( 
 )

, t ≤ s,

Gα(t, s) =
t 



 – σ

∫ 


tGα(t, s) dt

=
t 




	( 

 )

{∫ s


t · t


 ( – s)


 dt +

∫ 

s
t · [t


 ( – s)


 – (t – s)



]

dt
}

=
t 



	( 
 )

[



( – s)

 –




( – s)

 +




( – s)

 –




( – s)



]

=
t 



	( 
 )

[
( – s)


 – ( – s)


 + ( – s)


 – ( – s)



]
,
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and

Gβ (t, s) =
t 



 – σ

∫ 


tGβ (t, s) dt

=
t 




 	( 

 )

{∫ s


t · t


 ( – s)


 dt +

∫ 

s
t
[
t


 ( – s)


 – (t – s)



]

dt
}

=
t 



	( 
 )

[



( – s)

 –




( – s)

 +




( – s)



]

=
t 



	( 
 )

[
( – s)


 – ( – s)


 + ( – s)



]
.

Remark . In Example ., we replace f , g by f ≡ g ≡ . Then the problem (.) has a
unique solution (u∗, v∗), where

u∗(t) =
∫ 


Gα(t, s) ds =


	( 

 )
(
t


 – t



)
, t ∈ [, ],

v∗(t) =
∫ 


Gβ (t, s) ds =


	( 

 )
(
t


 – t



)
, t ∈ [, ].

Further, we can easily obtain


	( 

 )
t


 ≤ u∗(t) ≤ 

	( 
 )

t

 , t ∈ [, ],


	( 

 )
t


 ≤ v∗(t) ≤ 

	( 
 )

t

 , t ∈ [, ].

So the unique solution (u∗, v∗) is a positive solution and satisfies (u∗, v∗) ∈ K
(t


 ,t


 )

.
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