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Abstract
In this paper we introduce the concept of a PC-mild solution to a general new class
of noninstantaneous impulsive fractional differential inclusions involving the
generalized Caputo derivative with the lower bound at zero in infinite dimensional
Banach spaces. Using the formula of a PC-mild solution, we give two classes of
sufficient conditions to guarantee the existence of PC-mild solutions via fixed point
theorems for multivalued functions. Also we characterize the compactness of the
solution set. We introduce the concept of generalized Ulam-Hyers stability and
present a generalized Ulam-Hyers stability result using multivalued weakly Picard
operator theory. Examples are given to illustrate the theoretical results.
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1 Introduction
Fractional inequalities, equations and inclusions arise in various fields, such as physics,
mechanics and engineering [–] and in particular fractional differential inclusions arise
in mathematical modelling of problems in game theory, stability and optimal control. For
some recent development on qualitative analysis of fractional differential equations and
inclusions, we refer the reader to [–] and the references therein.

The theory of impulsive differential equations and impulsive differential inclusions
arises naturally in biology, physics, engineering, and medical fields [–] and model
processes where at certain moments they change their state rapidly. In general, there are
two impulsive effect in differential equations. One is called instantaneous impulsive differ-
ential equations (see [], i.e., the duration of these changes is relatively short compared
to the overall duration of the whole process). The other is noninstantaneous impulsive
differential equations (see [], i.e., the impulsive action starts at an arbitrary fixed point
and remains active on a finite time interval). For developments in the study of mild solu-
tions to instantaneous impulsive differential equations we refer the reader to [–] and
the references therein. However, the action of instantaneous impulses does not describe
some dynamics of evolution processes in pharmacotherapy. Consider the hemodynamic
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equilibrium of a person. In the case of a decompensation, for example high or low levels of
glucose, one can prescribe some intravenous drugs insulin. The introduction of the drugs
in the bloodstream and the consequent absorption for the body are gradual and continu-
ous process. In this situation the impulsive action starts at any arbitrary fixed point and
stays active on a finite time interval. Hernándaz and O’Regan [] introduced a new class
of noninstantaneous impulsive differential equations of the form

⎧
⎪⎪⎨

⎪⎪⎩

x′(t) = Ax(t) + f (t, x(t)), t ∈ (si, ti+], i = , , , . . . , m,

x(t) = gi(t, x(t)), t ∈ (ti, si], i = , , . . . , m,

x() = x,

()

where A : D(A) ⊆ E → E is the generator of a C-semigroup {T(t) : t ≥ } on a Banach
space E with a norm ‖ · ‖, f : [, b] × E → E is a given function, and the fixed points si

and ti satisfy  = s < t ≤ s < t ≤ s < t · · · < tm ≤ sm < tm+ = b, and gi : [ti, si] × E → E
is continuous for all i = , , . . . , m. Pierri et al. [] studied the existence and uniqueness
of () in the fractional power space using the theory of analytic semigroups. Motivated by
[], Wang and Fečkan [] modified () to the following form:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x′(t) = Ax(t) + f (t, x(t)), t ∈ (si, ti+), i = , , , . . . , m,

x(t+
i ) = gi(ti, x(t–

i )), i = , , . . . , m,

x(t) = gi(t, x(t–
i )), t ∈ (ti, si], i = , , . . . , m,

x() = x,

()

where x(t–
i ) and x(t+

i ) are the left and right limit, respectively, of the function x at the points
ti, i = , . . . , m, and an existence uniqueness result for () was presented. For recent work
on this topic we refer the reader to [–] and the references therein.

For the theory of Ulam stability [] we refer the reader to [–]. Wang and Fečkan
[] introduced four types of Ulam stability for () and presented generalized Ulam-Hyers-
Rassias stability results for () on both compact and unbounded intervals.

For impulsive fractional differential equations, one can propose different concepts of so-
lutions. There are basically two approaches in the literature, one by adopting a generalized
Caputo derivative keeping the lower bound at zero and the other using the classical Ca-
puto derivative and switching it at the impulsive points. In this paper, we study existence
and stability of noninstantaneous impulsive fractional differential inclusions of the form

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

cDα
,tx(t) ∈ F(t, x(t)) a.e. t ∈ (si, ti+], i = , , . . . , m,α ∈ (, ),

x(t+
i ) = gi(ti, x(t–

i )), i = , . . . , m,

x(t) = gi(t, x(t–
i )), t ∈ (tisi], i = , . . . , m,

x() = x,

()

in a separable Banach space E, where cDα
,tx(t) is the generalized Caputo derivative which

is defined via the Riemann-Liouville fractional derivative of order α with the lower limit
zero for the function x at the point t, and the multifunction F : [, b] × E → E will be
defined later.
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The main contributions are:
(i) We give a concept of PC-mild solutions to ().

(ii) Using fixed point theorems for multivalued functions we obtain two classes of
sufficient conditions to guarantee existence of PC-mild solutions in piecewise
continuous spaces endowed with the Chebyshev norm and the Bielecki norm. In
addition, the compactness of the solution set is also discussed.

(iii) We introduce a concept of generalized Ulam-Hyers stability for noninstantaneous
impulsive fractional differential inclusions and we present a
generalized-Ulam-Hyers stability result using multivalued weakly Picard operator
theory.

2 Preliminaries and notations
Let J = [, b]. Denote Pb(E) = {B ⊆ E : B is non-empty and bounded}, Pcl(E) = {B ⊆ E :
Bis non-empty, convex and closed}, Pck(E) = {B ⊆ E : Bis non-empty, convex and
compact}, and let conv(B) (respectively, conv(B)) be the convex hull (respectively, con-
vex closed hull in E of a subset B. Let Lp(J , E) be the space of E-valued Bochner integrable
functions on J with the norm ‖f ‖Lp(J ,E) = (

∫ b
 ‖f (t)‖p dt)


p . We recall that, [] if X and Y

are two topological spaces, then a multifunction G : X → P(Y ) is said to be upper semi-
continuous (u.s.c.) if G–(V ) = {x ∈ X : G(x) ⊆ V } is an open subset of X for every open
V ⊆ Y . Also G is called closed if its graph �G = {(x, y) ∈ X ×Y : y ∈ G(x)} is closed subset of
the topological space X × Y and G is said to be completely continuous if G(B) is relatively
compact for every bounded subset B of X.

If X and Y are two Hausdorff topological spaces and G : X → P(Y ) is a u.s.c. multifunc-
tion with non-empty closed values, then it is closed, and if Y is compact and G is closed,
then it is u.s.c.

If X is a normed space and G : J → Pcl(X), then the set Sp
G = {f ∈ Lp(J , X) : f (t) ∈

G(t), a.e. t ∈ J} is called the set of Lebesgue p-integrable selections of G.
To introduce the concept of mild solution of (), we consider the set of functions

PC(J , E) =
{

x : J → E : x|Ji ∈ C(Ji, E), Ji = (si, ti+], i = , , . . . , m, and

x
(
t+
i
)

and x
(
t–
i
)

exist for each i = , . . . , m
}

,

where x|Ji denotes the domain of x restricted to the subinterval Ji ⊂ J .
It is well known that PC(J , E) is a Banach space endowed with the Chebyshev PC-norm:

‖x‖PC(J ,E) = max
{∥
∥x(t)

∥
∥ : t ∈ J

}
,

or the Bielecki PCB-norm:

‖x‖PCB(J ,E) = max
{

e–Lt∥∥x(t)
∥
∥ : t ∈ J

}
, L ∈ [,∞).

Next, we consider the map χPC : Pb(PC(J , E)) → [,∞] defined by

χPC(B) = max
i=,,...,m

χi(B|Ji ),
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where χi, i = , , . . . , m, is the Hausdorff measure of noncompactness on the Banach space
C(Ji, E) and

B|Ji =
{

x∗ : Ji → E : x∗(t) = x(t), t ∈ Ji and x∗(ti) = x
(
t+
i
)
, x ∈ B

}
.

Of course B|J = {x|J : x ∈ B}. It is easily seen that χPC is the Hausdorff measure of non-
compactness on the Banach space PC(J , E).

In what follows, we recall some basic concepts and properties of fractional calculus in
[, ].

Definition . (see [], p., (.)) The Riemann-Liouville fractional integral of order
q >  with the lower limit zero for a function f ∈ Lp(J , E), p ∈ [,∞) is defined as follows:

Iq
,t f (t) = (gq ∗ f )(t) =

∫ t



(t – s)q–

�(q)
f (s) ds, t ∈ J ,

where gq(t) = tq–

�(q) , for t >  and gq(t) =  for t ≤ , the symbol ∗ denotes the convolution
of function and �(·) is the Euler Gamma function defined by �(q) =

∫ ∞
 tq–e–t dt and the

integration is understand in the sense of Bochner. Obviously, I
,t f (t) = f (t) for q = .

It is well known [], p., (.), that

Iq
,tI

β
,t f (t) = Iq+β

,t f (t), β , q ≥ .

Moreover, by applying Young’s inequality, it follows that

∥
∥Iq

,t f
∥
∥

Lp(J ,E) = ‖gq ∗ f ‖Lp(J ,E) ≤ ‖gq‖L(J ,R+)‖f ‖Lp(J ,E) = gq+(b)‖f ‖Lp(J ,E).

Then Iq
,t maps Lp(J , E) to Lp(J , E).

Definition . ([], p., (.)) Let q > , m be the smallest integer greater than or
equal to q and f ∈ L(J , E) such that gm–q ∗f ∈ W m,(J , E). The Riemann-Liouville fractional
derivative of order q with the lower limit zero for f is defined by

Dq
,t f (t) =

dm

dtm Im–q
,t f (t) =

dm

dtm (gm–q ∗ f )(t),

where

W m,(J , E) =

{

f : f (t) =
m–∑

k=

ck
tk

k!
+ Imϕ(t), t ∈ J for some ϕ ∈ L(J , E)

}

.

Note that in the above definition ϕ = f (m) and ck = f (k)(), k = , , . . . , m – .
Next, we collect some elementary properties for Riemann-Liouville fractional integral

and derivative.

Lemma . (see [], p., Prop. .) Let q >  and m be the smallest integer greater than
or equal to q. Then we have
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(i) If f ∈ L(J , E), then gm–q ∗ (Iq
,t f ) ∈ W m,(J , E) and Dq

,tI
q
,t f (t) = f (t) a.e.

(ii) If γ > q and f ∈ L(J , E) then Dq
,tI

γ
,t f (t) = Iγ –q

,t f (t) a.e. In particular, if γ > k, k ∈N,
then Dk

,tIγ f (t) = Iγ –k
,t f (t) a.e.

(iii) If p > 
q and f ∈ L(J , E), then Iq

,t f (t) is continuous.

Definition . ([], p., (.)) Let q >  and m be an integer such that m –  < q < m.
The Caputo derivative of order q with the lower limit zero for a given function f ∈ L(J , E)
is defined by

cDq
,t f (t) = Dq

,t

(

f (t) –
m–∑

k=

f (k)()
k!

tk

)

,

provided the right side is point-wise defined on J .

We have the following:
(i) If f ∈ C(m)(J , E), then

cDq
,t f (t) =


�(m – q)

∫ t


(t – s)m–q–f (n)(s) ds.

(ii) If f ∈ Lp(J , E), p > 
q , then (Iq

,t f )(k)(t), k = , . . . , m –  exists at any t ∈ J and
(Iq

,t f )(k)() = , k = , . . . , m – , so

cDq
,tI

q
,t f (t) = Dq

,tI
q
,t f (t) = f (t), a.e. t ∈ J . ()

Lemma . Let α ∈ (, ), and h ∈ Lp(J , E), p > 
α

. Assume x : J → E be a function defined
by

x(t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x + 
�(α)

∫ t
 (t – s)α–h(s) ds, t ∈ [, t],

gi(t, x(t–
i )), t ∈ (ti, si], i = , , . . . , m,

gi(si, x(t–
i )) – 

�(α)
∫ si

 (si – s)α–h(s) ds

+ 
�(α)

∫ t
 (t – s)α–h(s) ds, t ∈ [si, ti+], i = , , . . . , m.

()

Then we have the following results:
(i) The function x has the Caputo derivative of order α on (si, ti+], i = , , . . . , m, and

satisfies the following linear problems:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

cDα
,tx(t) = h(t) a.e. t ∈ (si, ti+], i = , , . . . , m,

x(t+
i ) = gi(ti, x(t–

i )), i = , . . . , m,

x(t) = gi(t, x(t–
i )), t ∈ (ti, si], i = , . . . , m,

x() = x.

()

(ii) The function x is continuous at si, i = , . . . , m.
(iii) If ti = si, gi(t, x) = x, i = , . . . , m and (t, x) ∈ J × E, then

x
(
t–
i
)

= x
(
t+
i
)
, i = , . . . , m,
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and for any t ∈ J ,

x(t) = x +


�(α)

∫ t


(t – s)α–h(s) ds.

Proof (i) Let t ∈ (si, ti+], i = , , . . . , m. Using Lemma .(ii) and () we have

cDα
,tx(t) =c Dα

,tI
α
,th(t) = h(t) a.e.

(ii) For any i = , . . . , m,

lim
t→s+

i
x(t) = lim

t→s+
i

[

gi
(
si, x

(
t–
i
))

–


�(α)

∫ si


(si – s)α–h(s) ds

+


�(α)

∫ t


(t – s)α–h(s) ds

]

= gi
(
si, x

(
t–
i
))

= x
(
s–

i
)
.

(iii) Assume that ti = si, gi(t, x) = x, i = , . . . , m and (t, x) ∈ J × E. Note that

x
(
t+
i
)

= gi
(
ti, x

(
t–
i
))

= x
(
t–
i
)
.

Moreover, for t ∈ (t, t],

x(t) = x
(
t–

)

–


�(α)

∫ t


(t – s)α–h(s) ds +


�(α)

∫ t


(t – s)α–h(s) ds

= x +


�(α)

∫ t


(t – s)α–h(s) ds –


�(α)

∫ t


(t – s)α–h(s) ds

+


�(α)

∫ t


(t – s)α–h(s) ds

= x +


�(α)

∫ t


(t – s)α–h(s) ds.

Similarly, for t ∈ (t, t],

x(t) = x
(
t–

)

–


�(α)

∫ t


(t – s)α–h(s) ds +


�(α)

∫ t


(t – s)α–h(s) ds

= x +


�(α)

∫ t


(t – s)α–h(s) ds –


�(α)

∫ t


(t – s)α–h(s) ds

+


�(α)

∫ t


(t – s)α–h(s) ds

= x +


�(α)

∫ t


(t – s)α–h(s) ds.

Next, one can repeat the above procedure to obtain

x(t) = x +


�(α)

∫ t


(t – s)α–h(s) ds, ∀t ∈ J .

The proof is complete. �
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Lemma . Assume that E is a reflexive Banach space and α ∈ (, ). If x ∈ C(J , E) then

Iα
,t

(cDα
,tx(t)

)
= x(t) – x(), ∀t ∈ J .

Proof Since E is reflexive Banach space and x ∈ C(J , E), then there is a h ∈ L(J , E) such
that

x(t) = x() +
∫ t


h(s) ds, ∀t ∈ J .

Then

Iα
,t

(cDα
,tx(t)

)
= Iα

,t
(
I–α

,t x()(t)
)

= I,t
(
x()(t)

)
= x(t) – x().

The proof is finished. �

Lemma . Assume that E is a reflexive Banach space. Let α ∈ (, ) and h ∈ L(J , E). If
x ∈ PC(J , E)

⋂i=m
i= C((si, ti+), E) and satisfies (), then x satisfies ().

Proof Let t ∈ [, t] such that cDα
,tx(t) = h(t). Then

Iα
,th(t) = Iα

,t
(cDα

,tx(t)
)

= x(t) + c.

Since x() = x,

x(t) = x +


�(α)

∫ t


(t – s)α–h(s) ds, for t ∈ [, t].

Let t ∈ (s, t) such that cDα
,tx(t) = h(t). Then

Iα
,th(t) = Iα

,t
(cDα

,tx(t)
)

= x(t) + c.

Thus,

x(t) = Iα
,th(t) – c.

Note that x(s–
 ) = g(s–

 , x(t–
 )), and we have

c = g
(
s–

 , x
(
t–

))

– Iα
,s h(t).

Thus, for t ∈ (s, t)

x(t) = g
(
s–

 , x
(
t–

))

– Iα
,s h(t) +


�(α)

∫ t


(t – s)α–h(s) ds

= g
(
s–

 , x
(
t–

))

–


�(α)

∫ s


(s – s)α–h(s) ds +


�(α)

∫ t


(t – s)α–h(s) ds.

Similarly, we can show that x satisfies () for the other subintervals. �

Now, we introduce the concept of a mild solution for problem ().
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Definition . A function x ∈ PC(J , E) is called a PC-mild solution of () if

x(t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x + 
�(α)

∫ t
 (t – s)α–f (s) ds, t ∈ [, t],

gi(t, x(t–
i )), t ∈ (ti, si], i = , , . . . , m,

gi(si, x(t–
i )) – 

�(α)
∫ si

 (si – s)α–f (s) ds

+ 
�(α)

∫ t
 (t – s)α–f (s) ds, t ∈ (si, ti+], i = , , . . . , m,

()

where f ∈ Sp
F(·,x(·)).

We need the following lemma.

Lemma . ([], p., p., Theorem III.) Let (T ,β) be a measurable space and (E, d)
a separable Banach space. Let G : T → E be a measurable closed valued multifunction
and g : T → E be a measurable function. If the multivalued function

U(t) =
{

x ∈ G(t) :
∥
∥g(t) – x

∥
∥ = d

(
g(t), G(t)

)}
,

has non-empty values, then there is a measurable function z : T → E such that z(t) ∈ U(t)
a.e., i.e.,

∥
∥g(t) – z(t)

∥
∥ = d

(
g(t), G(t)

)
, a.e.

The following fixed point theorems are crucial in the proof of our main result.

Lemma . (see [], p., Cor. . or []) (Kakutani-Fan-Glicksberg) Let W be
a non-empty compact and convex subset of a locally convex topological vector space. If
R : W → Pcl,cv(W ) is an u.s.c. multifunction, then it has a fixed point.

Lemma . (see [], p., Prop. ..) Let W be a closed subset of a Banach space X and
R : W → Pck(X) be a closed multifunction which is γ -condensing on every bounded subset
of W , where γ is a monotone measure of noncompactness defined on X. If the set of fixed
points for R is a bounded subset of X then it is compact.

Lemma . (see [], p.) Let (X, d) be a complete metric space. If R : X → Pcl(X) is a
contraction, then R has a fixed point.

3 Existence of mild solutions for the problem (3)
In this section, we establish existence results for mild solutions of ().

Theorem . Let F : J × E → Pck(E) be a multifunction and gi : [ti, si] × E → E, i =
, , . . . , m. We assume the following conditions:

(H) For every x ∈ E, t → F(t, x) is measurable and for a.e. t ∈ J , x → F(t, x) is upper semi-
continuous.

(H) There exist a function ϕ ∈ Lp(J ,R+), p > 
α

, and a nondecreasing continuous function
� : [,∞) → [,∞] such that, for any x ∈ E,

∥
∥F(t, x)

∥
∥ ≤ ϕ(t)�

(‖x‖), a.e. t ∈ J .
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(H) There exists a function β ∈ Lp(J ,R+), p > 
α

, satisfying

η‖β‖Lp(J ,R+) < , ()

and for every bounded subset D ⊆ E,

χ
(
F(t, D)

) ≤ β(t)χ (D) for a.e. t ∈ J ,

where χ is the Hausdorff measure of noncompactness in E and η = bα– 
p

�(α) ( p–
αp– )

p–
p .

(H) For every i = , , . . . , m, gi is continuous and completely continuous and there exists a
positive constant hi such that

∥
∥gi(t, x)

∥
∥ ≤ hi‖x‖, t ∈ [ti, si], x ∈ E.

Then problem () has a PC-mild solution provided that there is a r >  such that

‖x‖ + h̄r + �(r)η‖ϕ‖Lp(J ,R+) ≤ r, ()

where h̄ =
∑m

i= hi.

Proof From (H) and (H), Sp
F(·,x(·)) is non-empty (see []). Now we turn problem () into

a fixed point problem and define a multifunction R : PC(J , E) → PC(J ,E) as follows: for
x ∈ PC(J , E), R(x) is the set of all functions y ∈ R(x) such that

y(t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x + 
�(α)

∫ t
 (t – s)α–f (s) ds, t ∈ [, t],

gi(t, x(t–
i )), t ∈ (ti, si], i = , , . . . , m,

gi(si, x(t–
i )) – 

�(α)
∫ si

 (si – s)α–f (s) ds

+ 
�(α)

∫ t
 (t – s)α–f (s) ds, t ∈ [si, ti+], i = , , . . . , m,

()

where f ∈ Sp
F(·,x(·)).

It is easy to see that any fixed point for R is a mild solution for (). We prove using
Lemma . that R has a fixed point.

Let B = {x ∈ PC(J , E) : ‖x‖ ≤ r}. Note B is a bounded, closed and convex subset of
PC(J , E). Now, we claim that R(B) ⊆ B. To prove this, let x ∈ B and y ∈ R(x). Using (H),
(), () and Hölder’s inequality we get for t ∈ [, t],

∥
∥y(t)

∥
∥ ≤ ‖x‖ +

�(r)
�(α)

∫ t


(t – s)α–ϕ(s) ds

≤ ‖x‖ +
�(r)
�(α)

‖ϕ‖Lp(J ,R+)

(∫ t


(t – s)

(α–)p
p– ds

) p–
p

≤ ‖x‖ +
�(r)
�(α)

‖ϕ‖Lp(J ,R+)bα– 
p

(
p – 
αp – 

) p–
p

= ‖x‖ + �(r)η‖ϕ‖Lp(J ,R+) ≤ r. ()
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If t ∈ (tisi], = , , . . . , m, then

∥
∥y(t)

∥
∥ ≤ ∥

∥gi
(
t, x

(
t–
i
))∥

∥ ≤ hi
∥
∥x

(
t–
i
)∥
∥ ≤ hir ≤ r. ()

Similarly, for t ∈ [siti+], i = , , . . . , m, we get

∥
∥y(t)

∥
∥

≤ ∥
∥gi

(
si, x

(
t–
i
))∥

∥ +


�(α)

∫ si


(si – s)α–∥∥f (s)

∥
∥ds +


�(α)

∫ t


(t – s)α–∥∥f (s)

∥
∥ds

≤ hir +
�(r)
�(α)

‖ϕ‖Lp(J ,R+)

[(∫ si


(si – s)

(α–)p
p– ds

) p–
p

+
(∫ t


(t – s)

(α–)p
p– ds

) p–
p

]

≤ hir + �(r)η‖ϕ‖Lp(J ,R+) ≤ r. ()

Therefore R(Br) ⊆ Br .
Next, for every n ≥ , set Bn = convR(Bn–). Note that Bn is a non-empty, closed and con-

vex subset of PC(J , E). Moreover, B = convR(B) ⊆ B. Also B = convR(B) ⊆ convR(B) ⊆
B. By induction, the sequence (Bn), n ≥  is a decreasing sequence of non-empty, closed
and bounded subsets of PC(J , E). Set B =

⋂∞
n= Bn.

Now, by arguing as in Steps ,  and  in the proof of Theorem . in [], we see that
the values of R are closed, the set Z|Ji is equicontinuous for every i = , , , . . . , m, and the
graph of the multivalued function R|B : B → B is closed; here Z = R(B) and

Z|Ji =
{

y∗ ∈ C(Ji, E) : y∗(t) = y(t), t ∈ Ji, y∗(ti) = y
(
t+
i
)
, y ∈ Z

}
.

We now show that the subset B =
⋂∞

n= Bn is non-empty and compact in PC(J , E). From
the generalized Cantor intersection theorem [], it is enough to show that

lim
n→∞χPC(Bn) = , ()

where χPC is the Hausdorff measure of noncompactness on PC(J , E) defined in Section .
Let n ≥  be a fixed natural number and ε > . In view of [], p., there exists a se-

quence (yk), k ≥  in R(Bn–) such that

χPC(Bn) = χPCR(Bn–) ≤ χPC{yk : k ≥ } + ε.

From the definition of χPC, the above inequality becomes

χPC(Bn) ≤  max
J=,,...,m

χi(S|Ji ) + ε, ()

where S = {yk : k ≥ } and χi is the Hausdorff measure of noncompactness on C(Ji, E).
Since Bn|Ji , J = , , . . . , m, is equicontinuous,

χi(S|Ji ) = sup
t∈Ji

χ
(
S(t)

)
,
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where χ is the Hausdorff measure of noncompactness on E. Therefore, using the nonsin-
gularity of χ , () becomes

χPC(Bn) ≤  max
i=,,...,m

[
sup
t∈Ji

χ
(
S(t)

)]
+ ε

=  sup
t∈J

χ
(
S(t)

)
+ ε

=  sup
t∈J

χ
{

yk(t) : k ≥ 
}

+ ε. ()

Now, since yk ∈ R(Bn–), k ≥  there is xk ∈ Bn– such that yk ∈ R(xk), k ≥ . Recalling the
definition of R for every k ≥  there is a fk ∈ Sp

F(·,xk (·)) such that for every t ∈ J ,

χ
{

yk(t) : k ≥ 
}

≤

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩


�(α)χ{∫ t

 (t – s)α–fk(s) ds : k ≥ } if t ∈ [, t],

χ{gi(t, xk(t–
i )) : k ≥ } if t ∈ (ti, si], i = , , . . . , m,

χ{gi(si, xk(t–
i )) : k ≥ }

+ 
�(α)χ{∫ si

 (si – s)α–fk(s) ds : k ≥ }
+ 

�(α)χ{∫ t
 (t – s)α–fk(s) ds : k ≥ } if t ∈ [si, ti+], i = , , . . . , m.

()

Note that, by the complete continuity of gi, i = , , . . . , m, we get

χ
{

gi
(
t, xk

(
t–
i
))

: k ≥ 
}

= χ
{

gi
(
si, xk

(
t–
i
))

: k ≥ 
}

= . ()

Next, we observe that from (H), that for a.e. t ∈ J

χ
{

fk(t) : k ≥ 
} ≤ χ

{
F
(
s, xk(t)

)
: k ≥ 

}

≤ β(t)χ
{

xk(t) : k ≥ 
}

≤ β(t)χ
(
Bn–(t)

)

≤ β(t)χPC(Bn–) := γ (t). ()

Furthermore, by (H), for any k ≥  and for almost t ∈ J , ‖fk(t)‖ ≤ ϕ(t)�(r). Consequently,
fk ∈ Lp(J , E), k ≥ . Note that γ ∈ Lp(J ,R+). Then, by virtue of [], Lemma (iii), there
exists a compact Kε ⊆ E, a measurable set Jε ⊂ J , with measure less than ε, and a sequence
of functions {zε

k} ⊂ Lp(J , E) such that, for all s ∈ J , {zε
k(s) : k ≥ } ⊆ K and

∥
∥fk(s) – zε

k(s)
∥
∥ < γ (s) + ε for every k ≥  and every s ∈ J – Jε . ()

Using () and Hölder’s inequality, we get k ≥ 

∥
∥
∥
∥

∫

[,t]–Jε
(t – s)α–(fk(s) – zε

k(s)
)

ds
∥
∥
∥
∥

≤
∫

[,t]–Jε
(t – s)α–∥∥fk(s) – zε

k(s)
∥
∥ds
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≤ ∥
∥fk – zε

k
∥
∥

Lp([,t]–Jε ,E)

(∫

[,t]–Jε
(t – s)

(α–)p
p– ds

) p–
p

≤ (
‖γ ‖Lp([,t]–Jε ,R+) + εbp)η�(α). ()

From Hölder’s inequality we get for any k ≥ ,

∥
∥
∥
∥

∫

Jε
(t – s)α–fk(s) ds

∥
∥
∥
∥

≤ �(r)
∫

Jε
(t – s)α–ϕ(s) ds

≤ �(r)‖ϕ‖Lp(Jε ,R+)

(∫

Jε
(t – s)

(α–)p
p– ds

) p–
p

≤ �(r)‖ϕ‖Lp(Jε ,R+)η�(α). ()

From () and () we have, for t ∈ [, t],

χ

({∫ t


(t – s)α–fk(s) ds : k ≥ 

})

≤ χ

({∫

[,t]–Jε
(t – s)α–fk(s) ds : k ≥ 

})

+ χ

({∫

Jε
(t – s)α–fk(s) ds : k ≥ 

})

≤ χ

({∫

[,t]–Jε
(t – s)α–(fk(s) – zε

k(s)
)

ds : k ≥ 
})

+ χ

({∫

[,t]–Jε
(t – s)α–zε

k(s) ds : k ≥ 
})

+ χ

({∫

Jε
(t – s)α–fk(s) ds : k ≥ 

})

≤ (
‖β‖Lp([,t]–Jε ,R+)χPC(Bn–) + εbp)η�(α) + �(r)‖ϕ‖Lp(Jε ,R+)η�(α). ()

Taking into account that ε is arbitrary, the inequality () gives us for all t ∈ [, t],

χ

({∫ t


(t – s)α–fk(s) ds : k ≥ 

})

≤ ‖β‖Lp([,t],R+)χPC(Bn–)η�(α). ()

Similarly, we can show that if t ∈ [si, ti+], i = , , . . . , m, then

χ

{∫ si


(si – s)α–fk(s) ds : k ≥ 

}

≤ ‖β‖Lp([si ,ti+],R+)χPC(Bn–)η�(α) ()

and

χ

{∫ t


(t – s)α–fk(s) ds : k ≥ 

}

≤ ‖β‖Lp([si ,ti+],R+)χPC(Bn–)η�(α). ()
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From (), (), (), () and () for every t ∈ J ,

χ
{

yk(t) : k ≥ 
} ≤ ‖β‖

L

q (J ,R+)

χPC(Bn–)η. ()

Now (), () and the fact that ε is arbitrary, yields

χPC(Bn) ≤ ‖β‖
L


q (J ,R+)

χPC(Bn–)η,

so

 ≤ χPC(Bn) ≤ (
η‖β‖Lp(J ,R+)

)n–
χPC(B), ∀n ≥ .

Since this inequality is true for every n ∈N, from () and by passing to the limit as n → +∞,
we obtain ().

From the generalized Cantor intersection property the set B =
⋂∞

n= Bn is a non-empty
and compact subset of PC(J , E). Moreover, since every Bn is bounded, closed and convex,
B is also bounded closed and convex. We now claim that R(B) ⊆ B. Indeed, R(B) ⊆ R(Bn) ⊆
convR(Bn) = Bn+, for every n ≥ . Therefore, R(B) ⊂ ⋂∞

n= Bn. Also Bn ⊂ B for every n ≥ ,
so R(B) ⊂ ⋂∞

n= Bn =
⋂∞

n= Bn = B.
Therefore, the multivalued R|B : B → B is a closed compact map with non-empty con-

vex compact values, and hence u.s.c. From Lemma ., there is a x ∈ B such that x ∈ R(x).
Thus x is a PC-mild solution for (). �

In the following theorem we prove that the set of PC-mild solutions of () is compact.

Theorem . If the function � in (H) is of the form �(r) = r + , then under the assump-
tions of Theorem . the set of solutions of () is a non-empty compact subset in PC(J , E)
provided that

h̄ + η‖ϕ‖Lp(J ,R+) < . ()

Proof From Theorem . the set of solutions of () is non-empty. Indeed, let R : PC(J , E) →
PC(J ,E) be defined as in Theorem . and we take r in () as

r =
‖x‖ + η‖ϕ‖Lp(J ,R+)

 – (h̄ + η‖ϕ‖Lp(J ,R+))
.

Note r is well defined because of (). From Theorem . we know that the problem ()
has a PC-mild solution in B. Now, by arguing as in the proof of Theorem ., there is a
non-empty convex compact subset B such that R|B : B → B is a closed compact map with
non-empty convex compact values. Then R|B is γPC-condensing on every bounded subset
of B. From Lemma ., in order to show that the set of solutions of () is compact, it
suffices to prove that the set of fixed points of R is bounded. Let x be a fixed point of R.
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Then there is an integrable selection f for F(·, x(·)) such that

x(t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x + 
�(α)

∫ t
 (t – s)α–f (s) ds, t ∈ [, t],

gi(t, x(t–
i )), t ∈ (ti, si], i = , , . . . , m,

gi(si, x(t–
i )) + 

�(α)
∫ t

si
(t – s)α–f (s) ds

+ 
�(α)

∫ t
 (t – s)α–f (s) ds, t ∈ [si, ti+], i = , , . . . , m.

We argue as in Theorem . and we get

‖x‖PC(J ,E) ≤ ‖x‖ + h̄‖x‖PC(J ,E) + 
(‖x‖PC(J ,E) + 

)
η‖ϕ‖Lp(J ,R+).

From (), we obtain

‖x‖PC(J ,E) ≤ ‖x‖ + η‖ϕ‖Lp(J ,R+)

 – (h̄ + η‖ϕ‖Lp(J ,R+))
= r.

Finally, from Lemma ., the proof is complete. �

In the following theorem we will show that if we use the Bielecki PCB-norm, then we
can establish an existence result for () without assuming a condition similar to ().

Theorem . Let F : J × E → Pck(E) and gi : [ti, si] × E → E, i = , , . . . , m. Assume the
following assumptions hold:

(H) For every x ∈ E, t −→ F(t, x) is measurable.
(H) There is a ς ∈ Lp(J ,R+), p > 

α
such that

(i) For every x, y ∈ E,

h
(
F(t, x), F(t, y)

) ≤ ς (t)‖x – y‖, for a.e. t ∈ J ,

where h : Pck(E) × Pck(E) → R
+ is the Hausdorff distance.

(ii) For every x ∈ E,

sup
{‖x‖ : x ∈ F(t, )

} ≤ ς (t), for a.e. t ∈ J .

(H) For all i = , , . . . , m, there is a positive constant ξi such that, for every x, y ∈ E and
every t ∈ [ti, si], we have

∥
∥gi(t, x) – gi(t, y)

∥
∥ ≤ ξi‖x – y‖.

Then () has a PC-mild solution.

Proof From (H) and (H), for any x ∈ PC(J , E), the set Sp
F(·,x(·)) is non-empty. Consider

the multifunction map R : PC(J , E) → PC(J ,E) as follows: for x ∈ PC(J , E), R(x) is the set of
all functions y ∈ R(x) such that () holds. It is easy to see that any fixed point for R is a
PC-mild solution for (). We now show that R satisfies the assumptions of Lemma ..
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Note from (H), for every n ≥ , and for t ∈ J ,

∥
∥F(t, x)

∥
∥ = h

(
F
(
t, x(t)

)
, {})

≤ h
(
F
(
t, x(t)

)
, F(t, )

)
+ h

(
F(t, ), {})

≤ ς (t)
∥
∥x(t)

∥
∥ + ς (t) ≤ ς (t)

(
 + ‖x‖PC(J ,E)

)
.

Arguing as in Step  in the proof of Theorem . in [], we see that the values of R are
closed.

We now show that R is contraction. Let x, x ∈ PC(J , E) and y ∈ R(x). Then there is a
f ∈ Sp

F(·,x(·)) such that

y(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

x + 
�(α)

∫ t
 (t – s)α–f (s) ds, t ∈ [, t],

gi(t, gi–(si–, x(t–
i–)) – 

�(α)
∫ si–

 (si– – s)α–f (s) ds

+ 
�(α)

∫ ti
 (ti – s)α–f (s) ds), t ∈ (ti, si], = , , . . . , m,

gi(si, x(t–
i )) – 

�(α)
∫ si

 (si – s)α–f (s) ds

+ 
�(α)

∫ t
 (t – s)α–f (s) ds, t ∈ [si, ti+], i = , , . . . , m.

()

Next, since F(t, x(t)) is compact for any t ∈ J , the set U(t) = {x ∈ F(t, x(t)) : d(f (t), x) =
d(f (t), G(t))} is non-empty. According to Lemma ., there is a measurable function h :
J → E such that h(t) ∈ F(t, x(t)), a.e. and

∥
∥f (t) – h(t)

∥
∥ = d

(
f (t), F

(
t, x(t)

))
, for a.e. t ∈ J .

Observe that from (H)(i), we have

h
(
F
(
t, x(t)

)
, F

(
t, x(t)

)) ≤ ς (t)
∥
∥x(t) – x(t)

∥
∥, for a.e. t ∈ J .

Then h ∈ Sp
F(·,x(·)) with

∥
∥h(t) – f (t)

∥
∥ ≤ ς (t)

(∥
∥x(t) – x(t)

∥
∥
)
, for a.e. t ∈ J . ()

Let

y(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

x + 
�(α)

∫ t
 (t – s)α–h(s) ds, t ∈ [, t],

gi(t, gi–(si–, x(t–
i–)) – 

�(α)
∫ ti–

 (ti– – s)α–h(s) ds

+ 
�(α)

∫ ti
 (ti – s)α–h(s) ds), t ∈ (ti, si], = , , . . . , m,

gi(si, x(t–
i )) – 

�(α)
∫ si

 (si – s)α–h(s) ds

+ 
�(α)

∫ t
 (t – s)α–h(s) ds, t ∈ [si, ti+], i = , , . . . , m.

()

Now y ∈ R(x) and if t ∈ [, t] we get from (), () and Hölder’s inequality

e–Lt∥∥y(t) – y(t)
∥
∥

≤ e–Lt

�(α)

∫ t


(t – s)α–∥∥h(s) – f (s)

∥
∥ds
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≤ e–Lt

�(α)

∫ t


(t – s)α–ς (s)eLs(e–Ls∥∥x(s) – x(s)

∥
∥
)

ds

≤ e–Lt

�(α)
‖x – x‖PCB(J ,E)

∫ t


(t – s)α–eLsς (s) ds

≤ 
�(α)

‖x – x‖PCB(J ,E)

∫ t


(t – s)α–e–L(t–s)ς (s) ds

≤ tα– 
p

�(α)

(
p – 
αp – 

) p–
p

‖x – x‖PCB(J ,E)

(∫ t



(
e–L(t–s)ς (s)

)p ds
) 

p
. ()

Also, if t ∈ [siti+], i = , , . . . , m, we get

∥
∥y(t) – y(t)

∥
∥

≤ ∥
∥gi

(
t, x

(
t–
i
))

– gi
(
t, x

(
t–
i
))∥

∥

+


�(α)

∫ si


(si – s)α–∥∥h(s) – f (s)

∥
∥ds

+


�(α)

∫ t


(t – s)α–∥∥h(s) – f (s)

∥
∥ds

≤ ξi
∥
∥x

(
t–
i
)

– x
(
t–
i
)∥
∥

+


�(α)
‖x – x‖PCB(J ,E)

∫ si


(si – s)α–eLsς (s) ds

+


�(α)
‖x – x‖PCB(J ,E)

∫ t


(t – s)α–eLsς (s) ds.

Then

e–Lt∥∥y(t) – y(t)
∥
∥

≤
[

e–LteLtiξi +
s
α– 

p
i

�(α)

(
p – 
αp – 

) p–
p

(∫ si



(
e–L(t–s)ς (s)

)p ds
) 

p

+
tα– 

p

�(α)

(
p – 
αp – 

) p–
p

(∫ t



(
e–L(t–s)ς (s)

)p ds
) 

p
]

‖x – x‖PCB(J ,E)

≤ ‖x – x‖PCB(J ,E)

[

eL(ti–t)ξi

+ 
tα– 

p

�(α)

(
p – 
αp – 

) p–
p

(∫ t



(
e–L(t–s)ς (s)

)p ds
) 

p
]

≤ ‖x – x‖PCB(J ,E)

[

eL(ti–si)ξi +
tα– 

p

�(α)

(
p – 
αp – 

) p–
p

(∫ t



(
e–L(t–s)ς (s)

)p ds
) 

p
]

. ()

Similarly, if t ∈ (tisi], i = , , . . . , m, we get from (), (), () and (H),

∥
∥y(t) – y(t)

∥
∥ ≤ ξi

(

ξi–
∥
∥x

(
t–
i–

)
– x

(
t–
i–

)∥
∥

+


�(α)

∫ ti–


(ti– – s)α–∥∥f (s) – h(s)

∥
∥ds
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+


�(α)

∫ t


(t – s)α–∥∥f (s) – h(s)

∥
∥ds

)

≤ ξi

(

ξi–
∥
∥x

(
t–
i
)

– x
(
t–
i
)∥
∥

+


�(α)

∫ ti–


(ti– – s)α–ς (s)

∥
∥x(s) – x(s)

∥
∥ds

+


�(α)

∫ t


(t – s)α–ς (s)

∥
∥x(s) – x(s)

∥
∥ds

)

.

Then, for t ∈ (ti, si], i = , , . . . , m,

e–Lt∥∥y(t) – y(t)
∥
∥

≤ e–Ltξiξi–
∥
∥x

(
t–
i–

)
– x

(
t–
i–

)∥
∥

+
ξi

�(α)
‖x – x‖PCB(J ,E)

∫ ti–


(ti– – s)α–e–L(t–s)ς (s) ds

+
ξi

�(α)
‖x – x‖PCB(J ,E)

∫ ti


(ti – s)α–e–L(t–s)ς (s) ds

≤ ‖x – x‖PCB(J ,E)ξi

[

ξi–e–LteLti–

+
(

t
α– 

p
i–

�(α)

(
p – 
αp – 

) p–
p

+
t
α– 

p
i

�(α)

(
p – 
αp – 

) p–
p

)(∫ t



(
e–L(t–s)ς (s)

)p ds
) 

p
]

.

Therefore,

e–Lt∥∥y(t) – y(t)
∥
∥ ≤ ‖x – x‖PCB(J ,E)ξi

[

ξi–e–L(ti–ti–)

+
tα– 

p

�(α)

(
p – 
αp – 

) p–
p

(∫ t



(
e–L(t–s)ς (s)

)p ds
) 

p
]

. ()

From (), (), (), we get

∥
∥R(x) – R(x)

∥
∥

PCB(J ,E) < K‖x – x‖PCB(J ,E),

where

K = max

{

max
≤i≤m

ξi

[

ξi–e–L(ti–ti–)

+


�(α)

(
p – 
αp – 

) p–
p

max
t∈J

tα– 
p

(∫ t



(
e–L(t–s)ς (s)

)p ds
) 

p
]

,

max
≤i≤m

e–L(si–ti)ξi +


�(α)

(
p – 
αp – 

) p–
p

max
t∈J

tα– 
p

(∫ t



(
e–L(t–s)ς (s)

)p ds
) 

p
}

.

We can choose a sufficiently large L such that K <  and so R is contraction. Thus, from
Lemma ., R has a fixed point which is a mild solution for (). �
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Remark . If we take ς (·) = MF , where MF is a positive real number, in Theorem .,
then we can choose

K = max

{

max
≤i≤m

ξiξi–e–L(ti–ti–) +
ξi

�(α)

(
p – 
αp – 

) p–
p MF

(Lp)

p

max
t∈J

tα– 
p ,

max
≤i≤m

e–L(si–ti)ξi +


�(α)

(
p – 
αp – 

) p–
p MF

(Lp)

p

max
t∈J

tα– 
p

}

,

where we use the fact that
∫ t


e–L(t–s)p ds =

 – e–Ltp

Lp
≤ 

Lp
, t ∈ J .

4 Concepts and results for generalized Ulam-Hyers stability
In this section we introduce the concept of generalized Ulam-Hyers stability for (). First
we give some basic definitions and results on multivalued weakly Picard operators [,
].

Definition . Let (X, d) be a metric space. A multivalued operator R : X → Pcl(X) is said
to be a multivalued weakly Picard operator (MWPO), if for each u ∈ X, and each v ∈ R(u),
there exists a sequence (un) such that

(i) u = u, u = v;
(ii) un+ ∈ R(un), n ∈ N;

(iii) the sequence (un) is convergent and its limit is a fixed point of R.

Note that each MWPO has at least a fixed point.

Remark . A sequence (un) satisfying conditions (i) and (ii) in Definition . is called a
sequence of successive approximations of R starting from (u, v) ∈ Graph(R).

Definition . Let (X, d) be a metric space and � : [,∞) → [,∞) be an increasing
function which is continuous at  and �() = .

A multivalued operator R : X → Pcl(X) is said to be a �-weakly multivalued Picard op-
erator (�-MWPO) if it is a weakly multivalued Picard operator and there is a function
R∞ : Graph(R) → Fix(R) such that:

(i) z = R∞(u, v) if and only if there is sequence of successive approximations of R
starting from (u, v) that converges to z.

(ii) for all (u, v) ∈ Graph(R), we have d(u, R∞(u, v)) ≤ �(d(u.v)).
If there exists c >  such that �(t) = ct, for each t ∈ [,∞), then R is called a c-weakly
multivalued Picard operator (c-MWPO).

Definition . Let (X, d) be a metric space and γ ∈ (, ). A multivalued operator R : X →
Pcl(X) is said to be a γ -contraction if

h
(
R(x), R(y)

) ≤ γ d(x, y), ∀x, y ∈ X.

Remark . Let (X, d) be a complete metric space and γ ∈ (, ). If R : X → Pcl(X) is a
γ -contraction, then it is a c-MWPO, where c = ( – γ )–.
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Let us recall the notation of a comparison function [, ].

Definition . A function ϕ : [,∞) → [,∞) is said to be comparison function if it is
increasing and for any t ∈ [,∞),ϕn(t) →  as n → ∞, where ϕn(t) = ϕn–(ϕ(t)).

As a consequence, we also have ϕ(t) < t, for each t > , ϕ() =  and ϕ is continuous at .

Definition . A function ϕ : [,∞) → [,∞) is said to be strictly comparison function
if it is strictly increasing and

∑∞
n= ϕn(t) < ∞, for each t > .

Example . The mappings ϕ,ϕ : [,∞) → [,∞) given by ϕ(t) = ct, c ∈ [, ),ϕ(t) =
t

t+ , t ∈ [,∞), are strictly comparison functions.

Definition . Let (X, d) be a metric space and ϕ : [,∞) → [,∞) be strictly compari-
son. A multivalued operator R : X → Pcl(X) is said to be a ϕ-contraction if

h
(
R(x), R(y)

) ≤ ϕ
(
d(x, y)

)
, ∀x, y ∈ X.

The following result is a generalization of the Covitz-Nadler fixed point theorem and is
known in the literature as Wegrzyk’s fixed point theorem [].

Lemma . Let (X, d) be a complete metric space and ϕ : [,∞) → [,∞) be strictly
comparison. If the multivalued operator R : X → Pcl(X) is a ϕ-contraction, then there is x ∈
X with x ∈ R(x) and for any u ∈ X, there is a sequence (un) in X such that un ∈ R(un–), n ∈
N, and the sequence (un) is convergent and its limit is a fixed point of R.

Also, the following result is known as Wegrzyk’s theorem [].

Lemma . Let (X, d) be a complete metric space and ϕ : [,∞) → [,∞) be strictly com-
parison. If the multivalued operator R : X → Pcl(X) is a ϕ-contraction, then it is a MWPO,
and hence it has a fixed point.

The following lemma was proved in [].

Lemma . Let (X, d) be a complete metric space and ϕ : [,∞) → [,∞) be strictly
comparison. If the multivalued operator R : X → Pcl(X) is a ϕ-contraction, then

(i) R is a MWPO, and hence it has a fixed point.
(ii) If additionally, there is a c >  such that ϕ(ct) ≤ cϕ(t), for every t ∈ [,∞) and t =  is

a point of uniform convergence for the series
∑∞

n= ϕn(t), then R is a �-MWPO with
�(t) = t +

∑∞
n= ϕn(t).

Following [], we first introduce the definition of Ulam-Hyers stability for (), and then
we extend it to the generalized Ulam-Hyers stability case.

Set Z = PC(J , E)
⋂i=m

i= C((si, ti+), E).
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Definition . Equation () is said to be Ulam-Hyers stable if there exists a positive real
number CFmg such that, for each ε >  and each solution y ∈ Z of the inequalities

⎧
⎪⎪⎨

⎪⎪⎩

d(cDα
,ty(t), F(t, y(t))) ≤ ε a.e. t ∈ (si, ti+], i = , , . . . , m,

‖y(t) – gi(t, y(t–
i ))‖ ≤ ε, t ∈ (ti, si], i = , . . . , m,

‖y(t+
i ) – gi(ti, y(t–

i ))‖ ≤ ε, i = , . . . , m,

()

there is a mild solution x ∈ PC(J , E) for () such that

∥
∥x(t) – y(t)

∥
∥ ≤ εCFmg , ∀t ∈ J . ()

Definition . Equation () is said to be generalized Ulam-Hyers stable if there exists
an increasing function θ : [,∞) → [,∞), which is continuous at t =  and θ () =  such
that, for each ε >  and each solution y ∈ Z of the inequality (), there is a mild solution
x ∈ PC(J , E) for () such that

∥
∥x(t) – y(t)

∥
∥ ≤ θ (ε), ∀t ∈ J . ()

In the following we show that () has a mild solution which is generalized Ulam-Hyers
stable.

Theorem . Let F : J × E −→ Pck(E) be a multifunction and gi : [ti, si] × E → E (i =
, , . . . , m). We suppose (H) and the following assumptions:

(H) There is a function ς ∈ Lp(J ,R+), p > 
α

and a strict comparison function ϕ : [,∞) →
[,∞) such that

(i) For every x, y ∈ E,

h
(
F(t, x), F(t, y)

) ≤ ς (t)ϕ
(‖x – y‖), for a.e. t ∈ J .

(ii) For every x ∈ E

sup
{‖x‖ : x ∈ F(t, )

} ≤ ς (t), for a.e. t ∈ J .

(H) For all i = , , . . . , m, there is a positive constant ξi such that for every x, y ∈ E and every
t ∈ [ti, si] we have

∥
∥gi(t, x) – gi(t, y)

∥
∥ ≤ ξiϕ

(‖x – y‖).

Then () has a PC-mild solution provided

ξ + η‖ς‖L(J ,R+) < , ()

where ξ =
∑i=m

i= ξi.
Moreover, if additionally E is reflexive and there is a c > , such that ϕ(ct) ≤ cϕ(t), for
every t ∈ [,∞) and t =  is a point of uniform convergence for the series

∑∞
n= ϕn(t),

then () is generalized Ulam-Hyers stable.
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Proof From (H) and (H), for any x ∈ PC(J , E), the set Sp
F(·,x(·)) is non-empty. Consider the

multifunction map, R : PC(J , E) → PC(J ,E) defined as follows: for x ∈ PC(J , E), R(x) is the
set of all functions y ∈ R(x) given by (). We show that R satisfies the assumptions of
Lemma ., that is, R is a ϕ-contraction.

Note from (H), for every n ≥ , and for a.e. t ∈ J ,

∥
∥F(t, x)

∥
∥ = h

(
F
(
t, x(t)

)
, {})

≤ h
(
F
(
t, x(t)

)
, F(t, )

)
+ h

(
F(t, ), {})

≤ ς (t)ϕ
(∥
∥x(t)

∥
∥
)

+ ς (t)

≤ ς (t)
(
 + ϕ

(‖x‖PC(J ,E)
))

.

Moreover, we know that R is closed valued.
Now we show that R is a ϕ-contraction. Let x, x ∈ PC(J , E) and y ∈ R(x). Then there

is a f ∈ Sp
F(·,x(·)) such that, for any t ∈ Ji , i = , , . . . , m,

y(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

x + 
�(α)

∫ t
 (t – s)α–f (s) ds, t ∈ [, t],

gi(t, x(t–
i )), t ∈ (ti, si], i = , , . . . , m,

gi(si, x(t–
i )) – 

�(α)
∫ si

 (si – s)α–f (s) ds

+ 
�(α)

∫ t
 (t – s)α–f (s) ds,

t ∈ [si, ti+], i = , , . . . , m.

()

Next, since F(t, x(t)) is compact for any t ∈ J , the set U(t) = {x ∈ F(t, x(t)) : d(f (t), x) =
d(f (t), G(t))} is non-empty. From Lemma ., there is a measurable function h : J → E such
that h(t) ∈ F(t, x(t)), a.e. and

∥
∥f (t) – h(t)

∥
∥ = d

(
f (t), F

(
t, x(t)

))
, for a.e. t ∈ J .

Observe from (H)(i) that we have

h
(
F
(
t, x(t)

)
, F

(
t, x(t)

)) ≤ ς (t)ϕ
(∥
∥x(t) – x(t)

∥
∥
)
, for a.e. t ∈ J .

Then h ∈ Sp
F(·,x(·)) with

∥
∥h(t) – f (t)

∥
∥ ≤ ς (t)ϕ

(∥
∥x(t) – x(t)

∥
∥
)
, a.e. t ∈ J . ()

Let

y(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

x + 
�(α)

∫ t
 (t – s)α–h(s) ds, t ∈ [, t],

gi(t, x(t–
i )), t ∈ (ti, si], i = , , . . . , m,

gi(si, x(t–
i )) – 

�(α)
∫ si

 (si – s)α–h(s) ds

+ 
�(α)

∫ t
 (t – s)α–h(s) ds,

t ∈ [si, ti+], i = , , . . . , m.

()
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Now y ∈ R(x) and if t ∈ [, t] we get from (), (), () and Hölder’s inequality

∥
∥y(t) – y(t)

∥
∥ ≤ 

�(α)

∫ t


(t – s)α–∥∥h(s) – f (s)

∥
∥ds

≤ 
�(α)

ϕ
(‖x – x‖PC(J ,E)

)
∫ t


(t – s)α–ς (s) ds

≤ ϕ
(‖x – x‖PC(J ,E)

)
η‖ς‖Lp(J ,R+). ()

Similarly, for t ∈ (tisi], i = , , . . . , m, using (), (), () again via (H), one has

∥
∥y(t) – y(t)

∥
∥ ≤ ∥

∥gi
(
si, x

(
t–
i
))

– gi
(
si, x

(
t–
i
))∥

∥

≤ ξiϕ
(∥
∥x

(
t–
i
)

– x
(
t–
i
)∥
∥
)

≤ ξiϕ
(‖x – x‖PC(J ,E)

)
. ()

Next, for t ∈ [siti+], i = , , . . . , m, we get

∥
∥y(t) – y(t)

∥
∥ ≤ ∥

∥gi
(
t, x

(
t–
i
))

– gi
(
t, x

(
t–
i
))∥

∥

+


�(α)

∫ si


(si – s)α–∥∥h(s) – f (s)

∥
∥ds

+


�(α)

∫ t


(t – s)α–∥∥h(s) – f (s)

∥
∥ds

≤ ξiϕ
(‖x – x‖PC(J ,E)

)

+


�(α)
ϕ
(‖x – x‖PC(J ,E)

)
∫ si


(si – s)α–ς (s) ds

+


�(α)
ϕ
(‖x – x‖PC(J ,E)

)
∫ t


(t – s)α–ς (s) ds

≤ ξiϕ
(‖x – x‖PC(J ,E)

)
+ ϕ

(‖x – x‖PC(J ,E)
)
η‖ς‖Lp(J ,R+)

≤ (
ξ + η‖ς‖Lp(J ,R+)

)
ϕ
(‖x – x‖PC(J ,E)

)
. ()

By interchanging the role of y and y we obtain from () and (), (), (),

∥
∥R(x) – R(x)

∥
∥

PC(J ,E) < ϕ
(‖x – x‖PC(J ,E)

)
.

Therefore, R is a ϕ-contraction and thus by Lemma ., R has a fixed point which is a
PC-mild solution for ().

Next we show that () is generalized Ulam-Hyers stable.
Let ε >  and y ∈ Z such that

⎧
⎪⎪⎨

⎪⎪⎩

d(cDα
,ty(t), F(t, y(t))) ≤ ε, a.e. t ∈ (si, ti+], i = , , . . . , m,

‖y(t) – gi(t, y(t–
i ))‖ ≤ ε, t ∈ (ti, si], i = , . . . , m,

‖y(t+
i ) – gi(ti, y(t–

i ))‖ ≤ ε, i = , . . . , m.
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According to Lemma ., there is a f ∈ Sp
F(·,y(·)) such that

∥
∥cDα

,ty(t) – f (t)
∥
∥ = d

(cDα
,ty(t), F

(
t, y(t)

))
, a.e. t ∈ (si, ti+], i = , , . . . , m.

Then
⎧
⎪⎪⎨

⎪⎪⎩

‖cDα
,ty(t) – f (t)‖ ≤ ε, a.e. t ∈ (si, ti+], i = , , . . . , m,

‖y(t) – gi(t, y(t–
i ))‖ ≤ ε, t ∈ (ti, si], i = , . . . , m,

‖y(t+
i ) – gi(ti, y(t–

i ))‖ ≤ ε, i = , . . . , m,

which means that
⎧
⎪⎪⎨

⎪⎪⎩

cDα
,ty(t) = f (t) + γ (t), a.e. t ∈ (si, ti+], i = , , . . . , m,

y(t) = gi(t, y(t–
i )) + γ (t), t ∈ (ti, si], i = , . . . , m,

y(t+
i ) = gi(ti, y(t–

i )) + γ (t), i = , . . . , m,

where γ ∈ PC(J , E)
⋂i=m

i= C((si, ti+),R+) and |γ (t)| ≤ ε,∀t ∈ J .
Therefore, from Lemma ., one obtains

y(t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

y() + 
�(α)

∫ t
 (t – s)α–(f (s) + γ (s)) ds, t ∈ [, t],

gi(t, y(t–
i )) + γ (t), t ∈ (ti, si], i = , . . . , m,

gi(si, y(t–
i )) – 

�(α)
∫ si

 (si – s)α–(f (s) + γ (s)) ds

+ 
�(α)

∫ t
 (t – s)α–(f (s) + γ (s)) ds, t ∈ [si, ti+], i = , , . . . , m.

()

Next, let z ∈ PC(J , E) be defined by

z(t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

y() + 
�(α)

∫ t
 (t – s)α–f (s) ds, t ∈ [, t],

gi(t, y(t–
i )), t ∈ (ti, si], i = , , . . . , m,

gi(si, y(t–
i )) – 

�(α)
∫ si

 (si – s)α–f (s) ds

+ 
�(α)

∫ t
 (t – s)α–f (s) ds, t ∈ [si, ti+], i = , , . . . , m.

()

Observing that z ∈ R(y) and from () and () we get

‖y – z‖PC(J ,E) ≤ εbα

�(α + )
+ ε. ()

Now, from Lemma ., R is a �-MWPO with �(t) = t +
∑∞

n= ϕn(t). Thus, the function
R∞ : Graph(R) → Fix(R) is well defined and

∥
∥y – R∞(y, z)

∥
∥

PC(J ,E) ≤ �
(‖y – z‖PC(J ,E)

)
. ()

Put x = R∞(y, z). Then x ∈ R(x) and from () and () we have

∥
∥x(t) – y(t)

∥
∥ ≤ ‖y – x‖PC(J ,E) ≤ �

(‖y – z‖PC(J ,E)
)

= �

(
εbα

�(α + )
+ ε

)

:= θ (ε),

where θ (t) = �( tbα

�(α+) + t).
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Since � is increasing, continuous at  and �() = , the function θ is increasing, con-
tinuous at t =  and θ () = . Consequently, () is generalized Ulam-Hyers stable. �

5 Examples
In this section, we give examples to illustrate our results. Set J = [, ].

Example . Let K be a non-empty closed subset of a compact separable Banach space
E. Let F : J × E → Pck(E) be a multivalued function defined by

F(t, x) =
e–γ t‖x‖

λ( + ‖x‖)
K , ()

where γ ∈ (,∞) and λ is a constant such that sup{‖z‖ : z ∈ K} ≤ λ. Clearly for every
x ∈ E, t → F(t, x) is measurable. Moreover, for any x ∈ E and any t ∈ J , we have

h
(
F(t, x), F(t, y)

) ≤ e–γ t
∣
∣
∣
∣

‖x‖
 + ‖x‖ –

‖y‖
 + ‖y‖

∣
∣
∣
∣ ≤ e–γ t‖x – y‖.

For a.e. t ∈ J , x → F(t, x) is upper semicontinuous, i.e., (H) is satisfied.
For every bounded subset D ⊆ E, χ (F(t, D)) ≤ β(t)χ (D) for a.e. t ∈ J holds with β(t) =

e–γ t . Also, for any (t, x) ∈ J × E,

∥
∥F(t, x)

∥
∥ ≤ e–γ t ≤ e–γ t( + ‖x‖).

Then (H) is satisfied with ϕ(t) = e–γ t and �(t) = t + .
Now, for any i = , , . . . , m, let gi : [ti, si] × E → E, be defined by

gi(t, x) = ξix, ()

where ξi, i = , , . . . , m, is a positive constant. Obviously gi is continuous and since E is
compact gi is a compact map. Moreover, ‖gi(t, x)‖ ≤ ξi‖x‖. Thus (H) is satisfied. From
Theorem ., problem () has a PC-mild solution, where F and gi are given by () and
() provided that

η‖β‖Lp(J ,E) < , ()

and there is a r >  such that

‖x‖ +
m∑

i=

ξir + (r + )‖ϕ‖L(J ,E) < r. ()

Note that () is equivalent to


�(α)

(
p – 
αp – 

) p–
p

(


γ p
–

e–γ p

–γ p

)

< ,

and this inequality will be satisfied if


γ p�(α)

(
p – 
αp – 

) p–
p

< . ()
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Similarly () will be satisfied if

‖x‖ +
m∑

i=

ξir +
(r + )

γ
< r,

which is equivalent to

‖x‖ +

γ

< r

(

 –

( m∑

i=

ξi +

γ

))

.

So, by choosing γ large enough one can arrive at () and choosing ξi such that
∑m

i= ξi +

γ

< . Then, by applying Theorem ., problem () has a PC-mild solution. Further, by
applying Theorem . the set of solutions of () is a non-empty compact set.

Example . Set E = {x = {xn}n∈Z : xn ∈ R, limn→±∞ xn = } with the norm ‖x‖ =
supn∈Z |xn|. Then E is a separable Banach space.

Let F : J × E → E be a multifunction defined by

F(t, x) =
{

fn(t, xn–, xn, xn+)
}

n∈Z,

where for any n ∈ Z, fn : J ×R
 → R is a multifunction defined as

fn(t,μ,η,σ ) = a
cos π t
|n| + 

+ [–aη, aη] + aμ + aσ ,

where a, a, a and a are constants. It is easy to see that (H) is satisfied. Moreover, for
any (t, x) ∈ J × E,

∥
∥F(t, x)

∥
∥ ≤ |a| + |a||xn| + |a||xn–| + |a||xn+|

≤ |a| + A‖x‖
≤ A

(
 + ‖x‖),

where A = max{|a|, |a|, |a|, |a|}. Thus condition (H)(ii) is satisfied with ζ (·) = A. Next,
let t ∈ J , x, y ∈ E, u ∈ F(t, x) and v ∈ F(t, y). Then

u =
(

a
cos π t
|n| + 

+ λnxn + axn– + axn+

)

n∈Z

and

v =
(

a
cos π t
|n| + 

+ μnyn + ayn– + ayn+

)

n∈Z
,

where |λn| ≤ |a| and |μn| ≤ |a|. Then

‖u – v‖E = sup
n∈Z

‖un – vn‖ ≤ A‖x – y‖,
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which means that

h
(
F(t, x), F(t, y)

) ≤ A‖x – y‖.

Thus (H)(i) is satisfied.
Now, for any i = , , . . . , m, let gi : [ti, si]×E → E be defined by (). Now (H) is satisfied.

Then, from Theorem ., problem () has a PC-mild solution.

Example . Let K be a non-empty convex compact subset of a separable reflexive Ba-
nach space E. Let F : J × E → Pck(E) be a multivalued function defined by

F(t, x) =
e–βt‖x‖

λσ ( + ‖x‖)
K ,

where β ,σ ∈ (,∞) and λ is a constant such that sup{‖z‖ : z ∈ K} ≤ λ. The multivalued
function F satisfies condition (H). Moreover, for any x ∈ E and any t ∈ J , we have

h
(
F(t, x), F(t, y)

) ≤ e–βt

σ

∣
∣
∣
∣

‖x‖
 + ‖x‖ –

‖y‖
 + ‖y‖

∣
∣
∣
∣ ≤ e–βt

σ
‖x – y‖.

Then (H)(i) holds with ς (t) = e–βt , t ∈ J and ϕ(t) = t
σ

, t ∈ [,∞). Note that ϕ is strictly
comparison. Clearly (H)(ii) holds because ‖F(t, )‖ = , t ∈ J .

Now, for any i = , , . . . , m, let gi : [ti, si]×E → E be defined by (). Now (H) is satisfied.
Then, from Theorem . problem () has a PC-mild solution provided that () holds.
The inequality () is equivalent to

ξ +


�(α)

(
p – 
αp – 

) p–
p

(

β

–


βeβ

)

< ,

and the above inequality will be satisfied if

ξ +


β�(α)

(
p – 
αp – 

) p–
p

< . ()

By choosing ξi sufficient small and β large enough one can arrive at ().
Observe that, for any c ∈ R, ϕ(ct) = cϕ(t), t ∈ [,∞) and t =  is a point of uniform con-

vergence for the series
∑∞

n= ϕn(t) =
∑∞

n=
t

σn . Then, from Theorem . problem () is
generalized Ulam-Hyers stable.
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24. Wang, J, Fečkan, M, Zhou, Y: A survey on impulsive fractional differential equations. Fract. Calc. Appl. Anal. 19, 806-831

(2016)
25. Myshkis, AD, Samoilenko, AM: Sytems with impulsive at fixed moments of time. Mat. Sb. 74, 202-208 (1967)
26. Hernándaz, E, O’Regan, D: On a new class of abstract impulsive differential equation. Proc. Am. Math. Soc. 141,

1641-1649 (2013)
27. Fan, Z: Impulsive problems for semilinear differential equations with nonlocal conditions. Nonlinear Anal. 72,

1104-1109 (2010)
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61. Rus, IA, Petruşel, A, Sîntǎmǎrian, A: Data dependence of the fixed point set of some multivalued weakly Picard

operators. Nonlinear Anal. 52, 1947-1959 (2003)
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