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Abstract
This paper deals with the state and output feedback stabilization problems for a
family of nonlinear time-delay systems satisfying some relaxed triangular-type
condition. A new delay-dependent stabilization condition using a controller is
formulated in terms of linear matrix inequalities (LMIs). Based on the
Lyapunov-Krasovskii functionals, global asymptotical stability of the closed-loop
systems is achieved. Finally, simulation results are shown to illustrate the feasibility of
the proposed strategy.
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1 Introduction
Time delays are important components of many dynamical systems that describe coupling
or interconnection between dynamics, propagation, or transport phenomena in shared
environments, economic models [, ], biological systems [], and in competition in pop-
ulation dynamics []. In the literature, there are two categories of criteria: delay-dependent
[, ] and delay-independent criteria. For criteria-dependent delay gives information on
the length of delays, this model is used more frequently than delay-independent ones. For
delay-dependent criteria, see [–] and the references therein. For a delay-free system,
under control laws with high gain observers, asymptotic stability has been achieved by
[–]. The analysis of nonlinear systems with time delays is typically more difficult than
systems without time delays [, ]. The study of the stabilization of the system with delay
was the object of much research (see for example [–] and the references therein). In
[], using the Lyapunov-Krasovskii functional approach and the linear matrix inequality
(LMI)-based design method, the stability problem for time-delay systems is discussed. In
[], a principle of separation has been established in a class of systems, inspired by [],
which covers the class of systems considered by []. Under an output feedback controller
the global asymptotic stability is obtained. In [] and [], under linear growth condi-
tions, global stabilization by state feedback and output feedback has been studied for a
class of nonlinear time-delay systems. In this regard, [] and [] used a linear high gain
observer to achieve global stabilization by output feedback for a class of nonlinear systems
under the same conditions as [] and []. For a system without delay, [] describes a
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new condition to ensure overall stabilization by a linear output reaction. In [], an algo-
rithm for the design of a time-dependent state feedback controller to stabilize the system
under LMI constraints has been presented. To solve the problem of synthesis for control
systems with varying time delays, we use the result of [] as well as the algorithm of [].

The dynamic behavior of neural networks is studied for instance in [–] and the ref-
erences therein. In [], extended dissipativity conditions for generalized neural networks
with interval time delays were investigated. To solve the problem, extended dissipativity
conditions were established in the form of linear matrix inequalities by constructing a suit-
able Lyapunov-Krasovskii functional. Using a new weighted integral inequality technique
[], proposed conditions were expressed in terms of linear matrix inequalities, and used
to examine the exponential stability problem for delayed generalized neural networks.
The problem of robust finite-time stabilization and guaranteed cost control for neural
networks with varying interval time delay has been achieved by []. By constructing a
set of improved Lyapunov-Krasovskii functionals, a design of memoryless state feedback
guaranteed cost controllers has been presented for the system in terms of linear matrix
inequalities.

Under constructing a set of improved Lyapunov-Krasovskii functionals and a Newton-
Leibniz formula, the conditions for the exponential stability of the systems have been es-
tablished in terms of LMIs. [] proposed delay-dependent conditions for the exponential
stability of linear systems with non-differentiable varying interval time delay.

Under delay-dependent conditions, global exponential stability of a class of nonlinear
time-delay systems has been achieved by []. The condition on the nonlinearity to cover
the time-delay systems, given by [], is a generalization of conditions considered by [,
, , ]. Moreover, the generalized conditions cover the systems given by [, ] for
a class of nonlinear delay-free systems.

In this paper, we investigate the problem of output feedback stabilization of a class
of nonlinear time-delay systems, which cover the systems considered by []. Motivated
by [] and [], we use appropriate Lyapunov-Krasovskii functionals to establish global
asymptotical stability of the closed-loop systems. Then they are used to obtain a new state
and input delay-dependent criterion that ensures the stability of the closed-loop system
with a state feedback controller. The rest of this paper is organized as follows. In the next
section, some preliminary results are summarized and the system description is given.
Our main results are stated in Section . First, a parameter-dependent linear state and
output feedback controllers are synthesized to ensure global asymptotical stability of the
nonlinear time-delay system. Finally, an illustrative example is discussed to demonstrate
the effectiveness of the obtained results.

2 System description and preliminary
Consider a time-delay system of the form

{
ẋ(t) = f (x(t), x(t – τ )),
x(θ ) = ϕ(θ ),

()

where τ >  denotes the time delay, and ϕ ∈ C is the initial function where C denotes the
Banach space of continuous functions mapping the interval [–τ , ] → R

n equipped with
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the supremum-norm

‖ϕ‖∞ = max
θ∈[–τ ,]

∥∥ϕ(θ )
∥∥,

with ‖ ‖ being the Euclidean norm. The map f : Rn ×R
n is smooth and satisfies f (, ) = .

The function segment xt is defined by xt(θ ) = x(t + θ ), θ ∈ [–τ , ]. For ϕ ∈ C , we denote by
x(t,ϕ) or in short x(t) the solution of () that satisfies x = ϕ. The segment of this solution
is denoted by xt(ϕ) or in short xt .

Definition  The zero solution of () is called
• stable, if for any ε >  there exists δ >  such that

‖ϕ‖∞ < δ ⇒ ∥∥x(t)
∥∥ < ε, ∀t ≥ ,

• attractive, if there exists σ >  such that

‖ϕ‖∞ < σ ⇒ lim
t→+∞ x(t) = , ()

• asymptotically stable, if it is stable and attractive,
• globally asymptotically stable, if it is stable and δ can be chosen arbitrarily large for

sufficiently large ε, and () is satisfied for all σ > .

Sufficient conditions for stability of a functional differential equation are provided by the
theory of Lyapunov-Krasovskii functionals [], a generalization of the classical Lyapunov
theory of ordinary differential equations []. Let us recall here that a function α : R+ →
R+ is of classK if it is continuous and increasing and α() = , and of classK∞ if it is of class
K and it is unbounded. The following theorem provides sufficient Lyapunov-Krasovskii
conditions for global asymptotic stability of the zero solution of system () (see []).

Theorem  Assume that there exists a locally Lipschitz functional V : C → R+, functions
α and α of class K∞, and function α of class K, such that

(i) α(‖x(t)‖) ≤ V (xt) ≤ α(‖xt‖∞),
(ii) V̇ (xt) ≤ –α(‖x(t)‖).

Then the zero solution of system () is globally asymptotically stable.

Notation  Throughout the paper, the time argument is omitted and the delayed state
vector x(t – τ ) is denoted by xτ . AT means the transpose of A. λmax(A) and λmin(A) denote
the maximal and minimal eigenvalue of a matrix A, respectively. P >  means that the
matrix P is symmetric positive definite. I is an appropriately dimensioned identity matrix,
and diag[· · · ] denotes a block-diagonal matrix.

Lemma  See the Schur complement from []. Let M, P, Q be the given matrices such that
Q > . Then

[
P MT

M –Q

]
<  ⇔ P + MT Q–M < .
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Lemma  For any vector a, b ∈R
n and scalar ε > , we have

aT b ≤ εaT a + ε–bT b.

In this paper, we consider the time-delay nonlinear system

{
ẋ(t) = Ax(t) + Bu(t) + f (x(t), x(t – τ ), u(t)),
y(t) = Cx(t),

()

where x ∈ R
n is the state vector, u ∈ R is the input of the system, y ∈ R is the measured

output, and τ is a positive known scalar that denotes the time delay affecting the state
variables. The matrices A, B and C are given by

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

   · · · 
   · · · 
...

...
...

. . .
...

   · · · 
   · · · 

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣



...



⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, C =
[

  · · ·  
]

,

and the perturbed term is

f
(
x(t), x(t – τ ), u(t)

)
=

[
f
(
x(t), x(t – τ ), u(t)

)
, . . . , fn

(
x(t), x(t – τ ), u(t)

)]T .

The mappings fi : Rn × R
n × R → R, i = , . . . , n, are smooth and satisfy the following

assumption.

Assumption  There exist functions γ(ε) >  and γ(ε) >  such that for ε > ,

n∑
i=

εi–∣∣fi(x, y, u)
∣∣ ≤ γ(ε)

n∑
i=

εi–|xi| + γ(ε)
n∑

i=

εi–|yi|. ()

3 Main results
3.1 Global stabilization by state feedback
This section presents the delay-dependent stabilization conditions obtained by means of
the LMI method. The state feedback controller is given by

u = K(ε)x, ()

where K(ε) = [ k
εn , . . . , kn

ε
] and K = [k, . . . , kn] such that AK := A + BK is Hurwitz.

Theorem  Suppose that Assumption  is satisfied. Then there exist symmetric positive
definite matrices S, Q, Z and there exists a positive constant ε such that the following LMIs
hold:


ε
� + a(ε)I < , ()

–
ε

Q + b(ε)I < , ()
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where

� =

⎡
⎢⎢⎢⎣

AT
K S + SAK + Q S τ̄AT

K Z τ̄AT
K Z

S –I  
τ̄ZAK  –τ̄ I 
τ̄ZAK   –τ̄Z

⎤
⎥⎥⎥⎦ ,

a(ε) = εn(τ̄(‖Z‖ + 
)

+ 
)
γ(ε)

(
γ(ε) + γ(ε)

)
,

b(ε) = εn(τ̄(‖Z‖ + 
)

+ 
)
γ(ε)

(
γ(ε) + γ(ε)

)
.

Then the closed loop time-delay system ()-() is asymptotically stable for any time delay
τ satisfying  ≤ τ ≤ τ̄ .

Proof The closed loop system is given by

ẋ =
(
A + BK(ε)

)
x + f

(
x, xτ , u

)
.

For ε > , let D(ε) = diag[, ε, . . . , εn–] and χ = D(ε)x.
Using the fact that A + BK(ε) = 

ε
D(ε)–AK D(ε), we get

χ̇ =

ε

AKχ + D(ε)f
(
x, xτ , u

)
.

Let us choose a Lyapunov-Krasovskii functional candidate as follows:

W (χt) = W(χt) + W(χt) + W(χt), ()

where

W(χt) = χT Sχ ,

W(χt) = ε

∫ 

–τ

∫ t

t+β

χ̇T (s)Zχ̇ (s) ds dβ ,

W(χt) =

ε

∫ t

t–τ

χT (s)Qχ (s) ds.

Since S is symmetric positive definite, for all χ ∈R
n,

λmin(S)‖χ‖ ≤ χT Sχ ≤ λmax(S)‖χ‖.

This implies that, on the one hand,

W (χt) ≥ λmin(S)‖χ‖,
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and on the other hand,

W (χt) = W(χt) + W(χt) + W(χt)

= χT Sχ + ε

∫ 

–τ

∫ t

t+β

χ̇T (s)Zχ̇ (s) ds dβ +

ε

∫ t

t–τ

χT (s)Qχ (s) ds

= χT Sχ + ε

∫ 

–τ

∫ 

β

χ̇T (s + t)Zχ̇ (s + t) ds dβ +

ε

∫ 

–τ

χT (s + t)Qχ (s + t) ds

≤ λmax(S)‖χ‖ + ε

∫ 

–τ

λmax(Z)
∫ 

β

∥∥χ̇t(s)
∥∥ ds dβ +


ε
λmax(Q)

∫ 

–τ

∥∥χt(s)
∥∥ ds

≤ λmax(S)‖χ‖ – ετλmax(Z)
∫ β



∥∥χ̇t(s)
∥∥ ds +


ε
λmax(Q)

∫ 

–τ

‖χt‖
∞ ds

≤
(

λmax(S) +
τ

ε
λmax(Q)

)
‖χt‖

∞.

The time derivative of W is

Ẇ(χt) =

ε
χT(

AT
K S + SAK

)
χ + χT SD(ε)f

(
x, xτ , u

)
.

So by Assumption  we get

∥∥D(ε)f
(
x, xτ , u

)∥∥ ≤
n∑

i=

εi–∣∣fi
(
x, xτ , u

)∣∣

≤ γ(ε)
n∑

i=

εi–|xi| + γ(ε)
n∑

i=

εi–∣∣xτ
i
∣∣

≤ nγ(ε)
∥∥D(ε)x

∥∥ + nγ(ε)
∥∥D(ε)xτ

∥∥,

which implies that

∥∥D(ε)f
(
x, xτ , u

)∥∥ ≤ nγ(ε)‖χ‖ + nγ(ε)
∥∥χτ

∥∥. ()

Using Lemma  we deduce that

Ẇ(χt) ≤ 
ε
χT(

AT
K S + SAK

)
χ +


ε
χT SSχ + ε

∥∥D(ε)f
(
x, xτ , u

)∥∥

≤ 
ε
χT(

AT
K S + SAK

)
χ +


ε
χT SSχ + ε

(
nγ(ε)‖χ‖ + nγ(ε)

∥∥χτ
∥∥)

≤ 
ε
χT(

AT
K S + SAK

)
χ +


ε
χT SSχ + εnγ 

 (ε)‖χ‖ + εnγ 
 (ε)

∥∥χτ
∥∥

+ εnγ(ε)γ(ε)
(‖χ‖ +

∥∥χτ
∥∥)

≤ 
ε
χT(

AT
K S + SAK

)
χ +


ε
χτ SSχ + εnγ(ε)

(
γ(ε) + γ(ε)

)‖χ‖

+ εnγ(ε)
(
γ(ε) + γ(ε)

)∥∥χτ
∥∥.
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Using Lemma  and (), the time derivative of W is

Ẇ(χt) = ε

(∫ 

–τ

(
χ̇T (t)Zχ̇ (t) – χ̇T (t + β)Zχ̇ (t + β)

)
dβ

)

= ετ χ̇T (t)Zχ̇ (t) – ε

∫ t

t–τ

χ̇T (s)Zχ̇ (s) ds

≤ ετ̄

[

ε

AKχ + D(ε)f
(
x, xτ , u

)]T

Z
[


ε

AKχ + D(ε)f
(
x, xτ , u

)]

≤ τ̄

ε
χT(

AT
K ZAK

)
χ + τ̄χT AT

K ZD(ε)f
(
x, xτ , u

)
+ ετ̄‖Z‖∥∥D(ε)f

(
x, xτ , u

)∥∥

≤ τ̄

ε
χT(

AT
K ZAK

)
χ +

τ̄

ε
χT AT

K ZZAKχ + ετ̄
∥∥D(ε)f

(
x, xτ , u

)∥∥

+ ετ̄‖Z‖∥∥D(ε)f
(
x, xτ , u

)∥∥

≤ τ̄

ε
χT(

AT
K ZAK + AT

K ZZAK
)
χ + ετ̄

(‖Z‖ + 
)
nγ(ε)

(
γ(ε) + γ(ε)

)‖χ‖

+ ετ̄
(‖Z‖ + 

)
nγ(ε)

(
γ(ε) + γ(ε)

)∥∥χτ
∥∥.

The time derivative of W is

Ẇ(χt) =

ε
χT QχT –


ε

(
χτ

)T Qχτ .

Hence, we have

Ẇ (χt) ≤ 
ε
χT{(

AT
K S + SAK + SS

)
+ τ̄

(
AT

K ZAK + AT
K ZZAK

)
+ Q

}
χ

–

ε

(
χτ

)T Qχτ + a(ε)‖χ‖ + b(ε)
∥∥χτ

∥∥.
()

Then, using the Lyapunov-Krasovskii stability Theorem  and the Schur complement
Lemma , we conclude that the closed loop time-delay system ()-() is asymptotically
stable if () and () hold. �

3.2 Global stabilization by output feedback
In [], under Assumption , if the conditions does not depend on the delay τ , global ex-
ponential stability by the dynamic output feedback control is achieved. In this subsection,
we study the problem of global asymptotic stability by output feedback control under As-
sumption  and delay-dependent conditions. The following system is proposed:

˙̂x(t) = Ax̂ + Bu(t) – L(ε)(y – Cx̂), ()

where L(ε) = [ l
ε

, . . . , ln
εn ]T and L = [l, . . . , ln]T such that AL := A+LC is Hurwitz. The output

feedback controller is given by

u = K(ε)x̂. ()
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Theorem  Suppose that Assumption  is satisfied. Then there exist symmetric positive
definite matrices P, M, N and there exists a positive constant ε such that the following
LMIs hold:

� =

⎡
⎢⎢⎢⎣

AT
L P + PAL + N P τ̄AT

L M τ̄AT
L M

P –I  
τ̄MAL  –τ̄ I 
τ̄MAL   –τ̄M

⎤
⎥⎥⎥⎦ < , ()


ε
� +

(
a(ε) + c(ε)

)
I < , ()

–
ε

Q +
(
b(ε) + d(ε)

)
I < , ()

where

c(ε) = εn(τ̄(‖M‖ + 
)

+ 
)
γ(ε)

(
γ(ε) + γ(ε)

)
,

d(ε) = εn(τ̄(‖M‖ + 
)

+ 
)
γ(ε)

(
γ(ε) + γ(ε)

)
.

Then the closed loop time-delay system ()-() is asymptotically stable for any time delay
τ satisfying  ≤ τ ≤ τ̄ .

Proof Define e = x – x̂. We have

ė =
(
A + L(ε)C

)
e + f

(
x, xτ , u

)
. ()

For ε > , let D(ε) = diag[, ε, . . . , εn–] and η = D(ε)e.
Using the fact that A + L(ε)C = 

ε
D(ε)–ALD(ε), we get

η̇ =

ε

ALη + D(ε)f
(
x, xτ , u

)
. ()

Let us choose a Lyapunov-Krasovskii functional candidate as follows:

V (ηt) = V(ηt) + V(ηt) + V(ηt), ()

where

V(ηt) = ηT Pη,

V(ηt) = ε

∫ 

–τ

∫ t

t+β

η̇T (s)Mη̇(s) ds dβ ,

V(ηt) =

ε

∫ t

t–τ

ηT (s)Nη(s) ds.
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The time derivative of V is

V̇(ηt) =

ε
χT(

AT
L P + PAL

)
η + ηT PD(ε)f

(
x, xτ , u

)
≤ 

ε
ηT(

AT
L P + PAL

)
η +


ε
ηT PPη + ε

∥∥D(ε)f
(
x, xτ , u

)∥∥

≤ 
ε
ηT(

AT
L P + PAL

)
η +


ε
ηT PPη + ε

(
nγ(ε)‖χ‖ + nγ(ε)

∥∥χτ
∥∥)

≤ 
ε
ηT(

AT
L P + PAL

)
η +


ε
ηT PPη + εnγ 

 (ε)‖χ‖ + εnγ 
 (ε)

∥∥χτ
∥∥

+ εnγ(ε)γ(ε)
(‖χ‖ +

∥∥χτ
∥∥)

≤ 
ε
ηT(

AT
L P + PAL

)
η +


ε
ηT PPη + εnγ(ε)

(
γ(ε) + γ(ε)

)∥∥χ
∥∥

+ εnγ(ε)
(
γ(ε) + γ(ε)

)∥∥χτ
∥∥.

The time derivative of V is

V̇(ηt) = ε

(∫ 

–τ

(
η̇T (t)Mη̇(t) – η̇T (t + β)Mη̇(t + β)

)
dβ

)

= ετ η̇T (t)Mη̇(t) – ε

∫ t

t–τ

η̇T (s)Mη̇(s) ds

≤ ετ̄

[

ε

ALη + D(ε)f
(
x, xτ , u

)]T

M
[


ε

ALη + D(ε)f
(
x, xτ , u

)]

≤ τ̄

ε
ηT(

AT
L MAL

)
η + τ̄ ηT AT

L MD(ε)f
(
x, xτ , u

)
+ ετ̄‖M‖∥∥D(ε)f

(
x, xτ , u

)∥∥

≤ τ̄

ε
ηT(

AT
L MAL

)
η +

τ̄

ε
ηT AT

L MMALη + ετ̄
∥∥D(ε)f

(
x, xτ , u

)∥∥

+ ετ̄‖M‖∥∥D(ε)f
(
x, xτ , u

)∥∥

≤ τ̄

ε
ηT(

AT
L MAL + AT

L MMAL
)
η + ετ̄

(
 + ‖M‖)nγ(ε)

(
γ(ε) + γ(ε)

)‖χ‖

+ ετ̄
(
 + ‖M‖)nγ(ε)

(
γ(ε) + γ(ε)

)∥∥χτ
∥∥.

The time derivative of V is

V̇(ηt) =

ε
ηT Nη –


ε

(
ητ

)T Nητ .

So we have

V̇ ≤ 
ε
ηT(

AT
L P + PAL + PP + τ̄AT

L MAL + τ̄AT
L MMAL + N

)
η

–

ε

(
ητ

)T Nητ + c(ε)‖χ‖ + d(ε)
∥∥χτ

∥∥. ()

Let

U(ηt ,χt) = αV (ηt) + W (χt),
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where W is given by (). Using () and (), we get

U̇(ηt ,χt) ≤ α

ε
ηT(

AT
L P + PAL + PP + τ̄AT

L MAL + τ̄AT
L MMAL + N

)
η

–
α

ε

(
ητ

)T Nητ +
{
αc(ε) + a(ε)

}‖χ‖ +
{
αd(ε) + b(ε)

}∥∥χτ
∥∥

+

ε
χT{(

AT
K S + SAK + SS

)
+ τ̄

(
AT

K ZAK + AT
K ZZAK

)
+ Q

}
χ

–

ε

(
χτ

)T Qχτ .

Finally, we select α such that

α < min

(
–


ε

λmin(�) + εa(ε)
c(ε)

,

ε

λmax(Q) – εb(ε)
d(ε)

)
. �

Remark  The nonlinear matrix inequalities which appeared in the criteria are success-
fully transformed into the LMIs to be solved easily by various effective optimization algo-
rithms [] or using the MATLAB LMI Control Toolbox [].

Remark  Compared with [] and [], our new criteria overcome some of the main
sources of conservatism, and contain the criteria in [] and [] as a special case of a
class of linear delay systems. Furthermore, the new criteria also contain the well-known
delay-independent stability condition in [] and [].

Remark  In [], state feedback and output controllers for a certain class of nonlinear
timing systems cover the class of systems satisfying a linear growth condition [], us-
ing the Lyapunov-Krasovskii functions. Authors derived delay-independent conditions to
ensure global exponential stability of the closed-loop systems. In this paper, in order to
reduce the conservatism, a new delay-dependent stability criterion is obtained in Theo-
rem  and Theorem  by constructing a new Lyapunov-Krasovskii functional given by ()
and ().

3.3 Numerical example
To check the effectiveness of the result, consider the following system:

ẋ = x(t) +



x sin x cos u +




x(t – τ ) cos u,

ẋ = x(t),

ẋ = u.

()

Following the notation used throughout the paper, let f(x, xτ , u) = 
 x sin x cos u +


 x(t – τ ) cos u, and f(x, xτ , u) = f(x, xτ , u) = . Since f depends on x and xτ

 , the output
feedback scheme in [, ] is not applicable. It is easy to check that system () satisfies
Assumption  with γ(ε) = γ(ε) = 

ε
.

Select K = [– – –] and L = [– – –]T . AK and AL are Hurwitz. Applying Theorem 
and the MATLAB LMI Control Toolbox, we find that conditions () and () are given,
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Figure 1 Trajectories of x1 and x̂1.

Figure 2 Trajectories of x2 and x̂2.

respectively, by

S =

⎡
⎢⎣

. . .
. . .
. . .

⎤
⎥⎦ , P =

⎡
⎢⎣

. –. –.
–. . –.
–. –. .

⎤
⎥⎦ ,

Z =

⎡
⎢⎣

. . .
. . .
. . .

⎤
⎥⎦ , M =

⎡
⎢⎣

. –. –.
–. . –.
–. –. .

⎤
⎥⎦ ,

Q =

⎡
⎢⎣

. . .
. . .
. . .

⎤
⎥⎦ , N =

⎡
⎢⎣

. –. –.
–. . –.
–. –. .

⎤
⎥⎦ .

The above system is asymptotically stable for any τ satisfying  ≤ τ ≤ . and  ≤ τ ≤
.. So ‖Z‖ = . and ‖M‖ = .. This implies that condition () is satisfied
for all ε > . and condition () is satisfied for all ε > .. For our numerical sim-
ulation, we choose the delay τ = ., and ε = .. Corresponding numerical simulation
results are shown in Figures -.

4 Conclusion
In this paper, we are concerned with the problem of global asymptotic stability for a cer-
tain class of nonlinear time-delay systems, written in triangular form, satisfying a linear
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Figure 3 Trajectories of x3 and x̂3.

growth condition [, , , ]. In [], the authors derived delay-independent conditions
to ensure global exponential stability of the closed-loop systems. Using the Lyapunov-
Krasovskii functionals given by () and (), we have derived delay-dependent conditions,
using a controller that is formulated in terms of LMIs, to ensure global asymptotical stabil-
ity of the resulting closed-loop systems. The obtained result extends for global exponential
stability.
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